1
|
Ding W, Ding L, Zhu J, Li L, Ding F. Application of Magnetic Resonance-Ultra Time Echo (MR-UTE) Imaging in the Analysis of the Degree of Degeneration of the Intervertebral Disc Cartilage Endplate. JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS 2021. [DOI: 10.1166/jmihi.2021.3711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Magnetic resonance imaging (MRI) is the most widely used imaging method in clinical lumbar spine examination. Because of its advantages of non-radiation and good tissue contrast, magnetic resonance imaging provides rich and effective diagnostic information for clinic. The most commonly
used sequence is type 2 (T2) sequence, which has a longer time (usually longer than 2000 ms). It shows well in long T2 tissues such as nucleus pulposus, cerebrospinal fluid and adipose tissue, showing moderator high signal in images, while for short T2
tissues such as cartilage endplate and anterior and posterior longitudinal zone, it is often no signal and low signal because of its short attenuation time, thus forming obvious tissue contrast. But at the same time, because the time is too long, for short T2 tissue, the signal
has been attenuated to zero before sequence acquisition, so the complete structure can not be displayed directly. In this paper, the normal human lumbar intervertebral disc was studied by conventional magnetic resonance type 1 (T1), T2 and double-echo-UTE
imaging techniques. Each part of lumbar intervertebral disc and the semi-quantitative analysis of anatomical structure in images were compared, and the advantages and characteristics of each sequence for each anatomical structure of lumbar intervertebral disc and the advantage of MR-UTE in
intervertebral disc display were discussed. It has been found that UTE, as a new sequence which can effectively image short T2 tissue, is gradually applied from experiment to clinic in bone and joint system because of its shorter time. In the gross specimens of lumbar intervertebral
disc, sequence can directly display the cartilage endplate and the short T2 tissue of the anterior and posterior longitudinal ligament.
Collapse
Affiliation(s)
- Weiwei Ding
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan Ningxia, 750004, China
| | - Lei Ding
- Department of Orthopedics, The Yinchuan No. 1 People’s Hospital, Yinchuan Ningxia, 750001, China
| | - Jinwen Zhu
- The Spine Hospital of Xi’an Honghui Hospital, Xi’an Shaanxi, 710054, China
| | - Li Li
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan Ningxia, 750004, China
| | - Feng Ding
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan Ningxia, 750004, China
| |
Collapse
|
2
|
Kjærgaard K, Sørensen M, Mortensen FV, Alstrup AKO. Hepatic blood flow in adult Göttingen minipigs and pre-pubertal Danish Landrace x Yorkshire pigs. Lab Anim 2021; 55:350-357. [PMID: 33853421 DOI: 10.1177/00236772211000370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The liver receives dual blood supply from the hepatic artery and portal vein. The pig is often used as an animal model in positron emission tomography (PET) and pharmacokinetic studies because of the possibility for extensive and direct blood sampling. In this study, we compared measurements of hepatic blood flow in 10 female adult Göttingen minipigs and 10 female pre-pubertal Danish Landrace x Yorkshire (DLY) pigs. Ultrasound transit time flow meter probes were placed around the hepatic artery and portal vein through open surgery, hepatic blood flow measurements were performed, and the liver was weighed. Total hepatic blood flow was on average 363 ± 131 mL blood/min in Göttingen minipigs and 988 ± 180 mL blood/min in DLY pigs (p < 0.001). The mean hepatic blood perfusion was 623 mL blood/min/mL liver tissue and 950 mL blood/min/mL liver tissue (p = 0.005), and the liver weight was 0.58 kg and 1.04 kg, respectively. The mean arterial flow fraction in Göttingen minipigs was 12 ± 7% and lower than in DLY pigs, where it was 24 ± 7% (p = 0.001). Using the gold standard for blood flow measurements, we found that both total hepatic blood flow and blood perfusion were significantly lower in Göttingen minipigs than in DLY pigs. The hepatic blood perfusion and arterial flow fraction in DLY pigs were comparable to normative values from humans. Differences in hepatic blood flow between adult Göttingen minipigs and humans should be considered when performing physiological liver studies in this model.
Collapse
Affiliation(s)
- Kristoffer Kjærgaard
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark.,Department of Nuclear Medicine and PET, Aarhus University Hospital, Denmark
| | - Michael Sørensen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark.,Department of Nuclear Medicine and PET, Aarhus University Hospital, Denmark
| | | | | |
Collapse
|
3
|
Kjærgaard K, Weber B, Alstrup AKO, Petersen JBB, Hansen R, Hamilton-Dutoit SJ, Mortensen FV, Sørensen M. Hepatic regeneration following radiation-induced liver injury is associated with increased hepatobiliary secretion measured by PET in Göttingen minipigs. Sci Rep 2020; 10:10858. [PMID: 32616907 PMCID: PMC7331737 DOI: 10.1038/s41598-020-67609-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Normal liver tissue is highly vulnerable towards irradiation, which remains a challenge in radiotherapy of hepatic tumours. Here, we examined the effects of radiation-induced liver injury on two specific liver functions and hepatocellular regeneration in a minipig model. Five Göttingen minipigs were exposed to whole-liver stereotactic body radiation therapy (SBRT) in one fraction (14 Gy) and examined 4–5 weeks after; five pigs were used as controls. All pigs underwent in vivo positron emission tomography (PET) studies of the liver using the conjugated bile acid tracer [N-methyl-11C]cholylsarcosine ([11C]CSar) and the galactose-analogue tracer [18F]fluoro-2-deoxy-d-galactose ([18F]FDGal). Liver tissue samples were evaluated histopathologically and by immunohistochemical assessment of hepatocellular mitosis, proliferation and apoptosis. Compared with controls, both the rate constant for secretion of [11C]CSar from hepatocytes into intrahepatic bile ducts as well as back into blood were doubled in irradiated pigs, which resulted in reduced residence time of [11C]CSar inside the hepatocytes. Also, the hepatic systemic clearance of [18F]FDGal in irradiated pigs was slightly increased, and hepatocellular regeneration was increased by a threefold. In conclusion, parenchymal injury and increased regeneration after whole-liver irradiation was associated with enhanced hepatobiliary secretion of bile acids. Whole-liver SBRT in minipigs ultimately represents a potential large animal model of radiation-induced liver injury and for testing of normal tissue protection methods.
Collapse
Affiliation(s)
- Kristoffer Kjærgaard
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, 8200, Aarhus N, Denmark. .,Department of Hepatology and Gastroenterology, Aarhus University Hospital, 8200, Aarhus N, Denmark.
| | - Britta Weber
- Department of Oncology, Aarhus University Hospital, 8200, Aarhus N, Denmark
| | | | | | - Rune Hansen
- Department of Oncology, Aarhus University Hospital, 8200, Aarhus N, Denmark
| | | | | | - Michael Sørensen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, 8200, Aarhus N, Denmark.,Department of Hepatology and Gastroenterology, Aarhus University Hospital, 8200, Aarhus N, Denmark
| |
Collapse
|