1
|
Cai Y, Chen Y, Li H, Wang Y, Zhang G, Liang J, Lv L, Huang Y, Zhang W, Dang X, Fang X, Wang Y. Fabrication of GDNF-Gel/HA-Mg nerve conduit and its role in repairing peripheral nerve defects. Mater Today Bio 2025; 32:101764. [PMID: 40290886 PMCID: PMC12022700 DOI: 10.1016/j.mtbio.2025.101764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/05/2025] [Accepted: 04/11/2025] [Indexed: 04/30/2025] Open
Abstract
Background Magnesium (Mg) and its alloys are receiving increasing attention in peripheral nerve regeneration, but they were limited due to the low corrosion resistance and rapid degradation. In this study, GDNF-Gel/HA-Mg was prepared and its value in peripheral nerve defects repairment was explored both in vitro and in vivo. Methods A hydroxyapatite (HA) coating was first applied to the pure Mg surface, followed by the formation of gelatin methacrylate (GelMA) loaded with glial cell-derived neurotrophic factor (GDNF) on the HA-coated Mg surface. GDNF-Gel/HA-Mg corrosion resistance was explored. The effect of GDNF-Gel/HA-Mg conduit on Schwann cell proliferation and migration abilities were investigated. And sciatic nerve defects models were established to explored the role of GDNF-Gel/HA-Mg conduit in peripheral nerve defects repairment. Findings The electrochemical, immersion, and hydrogen evolution experiments indicated that the corrosion resistance in phosphate buffer saline (PBS) of pure Mg was significantly improved by the GDNF-Gel/HA coating. Cell cycle, Cell Count Kit-8 (CCK-8), and clone formation assays indicated that GDNF-Gel/HA-Mg promoted the proliferation of Schwann cells. Scratch and Transwell assay results demonstrated that GDNF-Gel/HA-Mg promoted Schwann cell migration ability dose-dependently. GDNF-Gel/HA-Mg was found to enhance the secretion of nerve growth factor (NGF) and the expression of p75NTR. Flow cytometry results showed that GDNF-Gel/HA-Mg could reduce H2O2-induced oxidative stress and Schwann cell apoptosis. GDNF-Gel/HA-Mg inhibited M1 macrophage polarization while facilitated M2 macrophage polarization in a concentration-dependent manner. The in vivo studies demonstrated that GDNF-Gel/HA-Mg conduit could significantly promote the regeneration and myelination of sciatic nerve, as well as the recovery of denervated gastrocnemius atrophy. Interpretation The GDNF-Gel/HA-Mg conduit prepared in this study exhibited good hydrophilicity and corrosion resistance and greatly enhanced the proliferation, migration, and invasion abilities of Schwann cells, as well as peripheral nerve regeneration.
Collapse
Affiliation(s)
- Yuanqing Cai
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Yi Chen
- College of Materials Science & Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400045, China
| | - Hongyan Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Yanyu Wang
- Fujian University of Traditional Chinese Medicine, Fuzhou, 350003, China
| | - Guangyang Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710006, China
| | - Jialin Liang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710006, China
| | - Leifeng Lv
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710006, China
| | - Ying Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Wenming Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Xiaoqian Dang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710006, China
| | - Xinyu Fang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Yong Wang
- College of Materials Science & Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400045, China
| |
Collapse
|
2
|
Marin A, Herlea V, Bancu A, Giuglea C, Țăpoi DA, Ciongariu AM, Marin GG, Marinescu SA, Dobrete NA, Dumitru AV, Trambitaș C, Șerban D, Sajin M. Correlation Between the Clinical and Histopathological Results in Experimental Sciatic Nerve Defect Surgery. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:317. [PMID: 40005434 PMCID: PMC11857492 DOI: 10.3390/medicina61020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
Background and Objectives: Peripheral nerve defect regeneration is subject to ongoing research regarding the use of conduits associated with various cells or molecules. This article aims to correlate histopathological and clinical outcomes at the end of a 12-week experiment performed on a rat sciatic nerve model and show which repair method has the best results. Materials and Methods: Forty male Wistar rats were divided into four groups to compare the results of four different methods of reconstruction for sciatic nerve defect: (1) nerve graft-control group, (2) empty aortic conduit, (3) aortic conduit filled with platelet-rich plasma (PRP) and (4) aortic conduit filled with mesenchymal stem cells. There were three clinical examinations: a sensitivity test, a mobility test and a footprint test. After 12 weeks, the nerves were excised and assessed microscopically using conventional Hematoxylin and Eosin staining (HE), special stains and immunohistochemistry (IHC). Results: Nerve regeneration was observed in all batches, both from the clinical and histopathological assessment; the two types of examinations correlated for each batch. Immunohistochemistry and special staining offered a more complete image of the nerve regeneration results. Conclusions: Superior nerve regeneration was achieved using an aortic conduit in combination with either PRP or stem cells, while the empty aortic conduit recorded lesser results.
Collapse
Affiliation(s)
- Andrei Marin
- Plastic Surgery Department, St. John’s Hospital, Carol Davila University, 042122 Bucharest, Romania; (A.M.); (C.G.)
| | - Vlad Herlea
- Pathology Department, “Fundeni” Hospital, Carol Davila University, Fundeni Street, 258, 022328 Bucharest, Romania
| | - Alice Bancu
- Pathology Department, Sante Clinic, 060754 Bucharest, Romania;
| | - Carmen Giuglea
- Plastic Surgery Department, St. John’s Hospital, Carol Davila University, 042122 Bucharest, Romania; (A.M.); (C.G.)
| | - Dana Antonia Țăpoi
- Pathology Department, University Emergency Hospital, Carol Davila University, 050474 Bucharest, Romania; (D.A.Ț.); (A.M.C.); (A.V.D.); (M.S.)
| | - Ana Maria Ciongariu
- Pathology Department, University Emergency Hospital, Carol Davila University, 050474 Bucharest, Romania; (D.A.Ț.); (A.M.C.); (A.V.D.); (M.S.)
| | | | | | | | - Adrian Vasile Dumitru
- Pathology Department, University Emergency Hospital, Carol Davila University, 050474 Bucharest, Romania; (D.A.Ț.); (A.M.C.); (A.V.D.); (M.S.)
| | - Cristian Trambitaș
- Plastic Surgery Department, G. E. Palade University of Medicine, Pharmacy, Science and Technology from Târgu Mureș, 540142 Târgu Mureș, Romania;
| | - Dragoș Șerban
- Surgery Department, University Emergency Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Maria Sajin
- Pathology Department, University Emergency Hospital, Carol Davila University, 050474 Bucharest, Romania; (D.A.Ț.); (A.M.C.); (A.V.D.); (M.S.)
| |
Collapse
|
3
|
Ayache A, Unglaub F, Cavalcanti Kußmaul A, Spies CK, Langer MF. [Peripheral nerve grafting]. OPERATIVE ORTHOPADIE UND TRAUMATOLOGIE 2024; 36:332-342. [PMID: 39373740 DOI: 10.1007/s00064-024-00862-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 10/08/2024]
Abstract
OBJECTIVE Peripheral nerve lesions often lead to significant and permanent loss of motor and sensory function. The aim of peripheral nerve grafting is to bridge nerve defects. INDICATIONS When tension-free nerve repair is not possible, peripheral nerve grafting is indicated. CONTRAINDICATIONS Local infection, insufficient soft tissue coverage, significant muscle atrophy or joint contraction in case of "motor" nerve grafting, lack of microsurgical instruments or experience, life-threatening injuries. SURGICAL TECHNIQUE Exposure and preparation of the nerve stumps. Choosing and preparation of the donor nerve. Approximation. Nerve repair. Nerve reconstruction must always be tension-free as nerve repair with tension frequently leads to disruption of nerve healing and poor functional outcome. Autologous nerve grafting from various donor sites leads to excellent functional results with little sensory deficits at the donor regions. POSTOPERATIVE MANAGEMENT Limited immobilization, physiotherapy, ergotherapy, regular clinical and neurological assessments. RESULTS Outcome of peripheral nerve grafting may, for example, depend on defect length, caliber and quality of the injured nerve, quality of the donor nerve, microsurgical expertise of the surgeon, time of reconstruction, and age of the patient.
Collapse
Affiliation(s)
- Ali Ayache
- Abteilung für Handchirurgie, Vulpius Klinik, Vulpiusstr. 29, 74906, Bad Rappenau, Deutschland.
| | - Frank Unglaub
- Abteilung für Handchirurgie, Vulpius Klinik, Vulpiusstr. 29, 74906, Bad Rappenau, Deutschland
- Orthopädisch-Unfallchirurgisches Zentrum, Universitätsklinikum Mannheim, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Deutschland
| | - Adrian Cavalcanti Kußmaul
- Abteilung für Handchirurgie, Vulpius Klinik, Vulpiusstr. 29, 74906, Bad Rappenau, Deutschland
- Klinik für Orthopädie und Unfallchirurgie, Muskuloskelettales Universitätszentrum München (MUM), Klinikum der Universität München, LMU München, München, Deutschland
| | - Christian K Spies
- Handchirurgie, Spital Langenthal, Spital Region Oberaargau SRO AG, Langenthal, Schweiz
| | - Martin F Langer
- Klinik für Unfall‑, Hand- und Wiederherstellungschirurgie, Universitätsklinikum Münster, Münster, Deutschland
| |
Collapse
|
4
|
Ayache A, Langer MF, Cavalcanti Kußmaul A, Unglaub F. [Microsurgical nerve repair]. OPERATIVE ORTHOPADIE UND TRAUMATOLOGIE 2024; 36:343-353. [PMID: 39556212 DOI: 10.1007/s00064-024-00867-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 11/19/2024]
Abstract
Substantial nerve lesions almost always lead to persistent functional deficits, even with ideal treatment. Nerve lesions commonly occur in young patients, are often part of complex injuries, and are repeatedly diagnosed and treated with delay. Functional outcome crucially depends on early and adequate treatment. The aim of surgical treatment is a precise and tension-free microsurgical restoration of nerve continuity in a vital and healthy tissue environment. Adequate microsurgical treatment with differentiated postoperative treatment can result in an excellent clinical outcome, even after a delayed diagnosis.
Collapse
Affiliation(s)
- A Ayache
- Abteilung für Handchirurgie, Vulpius Klinik, Vulpiusstr. 29, 74906, Bad Rappenau, Deutschland.
| | - M F Langer
- Klinik für Unfall‑, Hand- und Wiederherstellungschirurgie, Universitätsklinikum Münster, Münster, Deutschland
| | - A Cavalcanti Kußmaul
- Abteilung für Handchirurgie, Vulpius Klinik, Vulpiusstr. 29, 74906, Bad Rappenau, Deutschland
- Klinik für Orthopädie und Unfallchirurgie, Muskuloskelettales Universitätszentrum München, Klinikum der Universität München, LMU München, München, Deutschland
| | - F Unglaub
- Abteilung für Handchirurgie, Vulpius Klinik, Vulpiusstr. 29, 74906, Bad Rappenau, Deutschland
- Orthopädisch-Unfallchirurgisches Zentrum, Universitätsklinikum Mannheim, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Deutschland
| |
Collapse
|
5
|
Vogt PM, Radtke C, Krezdorn N, Kollewe K, Liebsch C, Dastagir K, Strauß S. Biological conduits based on spider silk for reconstruction of extended nerve defects. Innov Surg Sci 2024; 9:133-142. [PMID: 39309196 PMCID: PMC11416034 DOI: 10.1515/iss-2023-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 05/06/2024] [Indexed: 09/25/2024] Open
Abstract
Objectives The availability of appropriate conduits remains an obstacle for successful reconstruction of long-distance nerve defects. In previous sheep trials, we were able to bridge 6 cm nerve gaps with nerve conduits based on spider silk fibers with full functional outcomes. Here, we describe the first application of spider silk for nerve repair in humans. Methods Four patients with extended nerve defects (>20 cm) underwent nerve reconstruction by interposition of conduits that were composed of spider silk fibers contained in autologous veins. The longitudinal luminal fibers (approx. 2500 fibers per graft) consisted of drag line silk from Trichonephila spiders. All patients were evaluated between 2 and 10 years postreconstruction, clinically, and by neurography. Results In all patients, primary wound healing and no adverse reactions to the implanted spider silk material were observed. Patients regained the following relevant functions: protective sensibility, full flexor function with near-normal grasp and powerful function after microvascular gracilis muscle transfer, and key grip function and gross finger flexion after additional tenodesis. One patient with sciatic nerve reconstruction developed protective sensibility of the lower leg, foot, and gait, enabling normal walking and jogging. No neuroma formation or neuropathic or chronic pain occurred in any of the patients. Conclusions For patients with extended peripheral nerve defects in the extremities, use of conduits based on spider silk fibers offers the possibility of restoring sensory function and protection from neuroma. This kind of nerve bridges provides new perspectives for the reconstruction of complex and long-distance nerve defects.
Collapse
Affiliation(s)
- Peter M. Vogt
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery and Spider Silk Laboratories, Hannover Medical School, Hannover, Germany
| | - Christine Radtke
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery and Spider Silk Laboratories, Hannover Medical School, Hannover, Germany
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University, Vienna, Austria
| | - Nicco Krezdorn
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery and Spider Silk Laboratories, Hannover Medical School, Hannover, Germany
| | - Katja Kollewe
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Christina Liebsch
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery and Spider Silk Laboratories, Hannover Medical School, Hannover, Germany
| | - Khaled Dastagir
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery and Spider Silk Laboratories, Hannover Medical School, Hannover, Germany
| | - Sarah Strauß
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery and Spider Silk Laboratories, Hannover Medical School, Hannover, Germany
| |
Collapse
|
6
|
Cai Y, Chen Y, Zhang G, Lin Y, Zhang J, Liang J, Lv L, Wang Y, Fang X, Dang X. The GDNF-gel/HA-Mg conduit promotes the repair of peripheral nerve defects by regulating PPAR-γ/RhoA/ROCK signaling pathway. iScience 2024; 27:108969. [PMID: 38322994 PMCID: PMC10844047 DOI: 10.1016/j.isci.2024.108969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/16/2023] [Accepted: 01/16/2024] [Indexed: 02/08/2024] Open
Abstract
Magnesium (Mg)-based conduits have gained more attention in repairing peripheral nerve defects. However, they are limited due to poor corrosion resistance and rapid degradation rate. To tackle this issue, glial cell line-derived neurotrophic factor (GDNF)- Gelatin methacryloyl (Gel)/hydroxylapatite (HA)-Mg nerve conduit was developed and implanted in sciatic nerve defect model in Sprague-Dawley (SD) rats. The sciatic functional index measurement showed that the GDNF-Gel/HA-Mg nerve conduit effectively promoted the recovery of sciatic nerve function. The pathological examination results showed that there were more regenerated nerve tissues in GDNF-Gel/HA-Mg group, with a higher number of regenerating axons, and the thickness of the myelin sheath was significantly larger than that of control group (NC group). Immunofluorescence results revealed that the GDNF-Gel/HA-Mg conduit significantly promoted the expression of genes associated with nerve repair. RNA-seq and molecular test results indicated that GDNF-Gel/HA-Mg might be involved in the repair of peripheral nerve defects by regulating PPAR-γ/RhoA/ROCK signaling pathway. Biological sciences; Neuroscience; Molecular neuroscience; Techniques in neuroscience.
Collapse
Affiliation(s)
- Yuanqing Cai
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710006, China
| | - Yi Chen
- College of Materials Science & Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400045, China
| | - Guangyang Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710006, China
| | - Yi Lin
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Jianan Zhang
- Zonglian College, Xi’an Jiaotong University, Xi’an 710054, China
| | - Jialin Liang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710006, China
| | - Leifeng Lv
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710006, China
| | - Yong Wang
- College of Materials Science & Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400045, China
| | - Xinyu Fang
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Xiaoqian Dang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710006, China
| |
Collapse
|
7
|
Rein S, Schober R, Poetschke J, Kremer T. Non degradation of chitosan and initial degradation of collagen nerve conduits used for protection of nerve coaptations. Microsurgery 2024; 44:e31093. [PMID: 37477338 DOI: 10.1002/micr.31093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Nerve conduits are either used to bridge nerve gaps of up to 3 cm or to protect nerve coaptations. Biodegradable nerve conduits, which are currently commercially available, include Chitosan or collagen-based ones. As histological aspects of their degradation are highly relevant for the progress of neuronal regeneration, the aim of this study was to report the histopathological signs of such nerve conduits, which were removed during revision surgery. MATERIALS AND METHODS Either Chitosan (n = 2) or collagen (n = 2) nerve conduits were implanted after neuroma resection and nerve grafting (n = 2) or traumatic nerve lesion after cut (n = 1) or crush injury (n = 1) in two females and two men, aged between 17 and 57 years. Revision surgery with removal of the nerve conduits was indicated due to persisting neuropathic pain and sensorimotor deficits, limited joint motion, or neurolysis with hardware removal at a median time of 17 months (range: 5.5-48 months). Histopathological analyses of all removed nerve conduits were performed. RESULTS A scar neuroma was diagnosed in one out of four patients. Mechanical complication occurred in one patient after nerve conduit implantation bridged over finger joints. Intraoperatively no or only initial signs of degradation of the nerve conduits were observed. Chitosan conduits revealed largely unchanged shape and structure of chitosan, and coating of the conduit by a vascularized fibrous membrane. The latter contained deposits taken up by macrophages, most likely representing dissolved chitosan. Characteristic histopathologic features of the degradation of collagen conduits were a disintegration of the compact collagen into separate fine circular strands, No foreign body reaction was observed in all removed nerve conduits. CONCLUSIONS Both Chitosan nerve conduits have not been degraded. The collagen nerve conduits showed a beginning degradation process. Furthermore, wrapping the repaired nerve with a nerve conduit did neither prevent adhesions nor improved nerve gliding. Therefore, biodegradation in time should be particularly addressed in further developments of nerve conduits.
Collapse
Affiliation(s)
- Susanne Rein
- Department of Plastic and Handsurgery, Burn Unit, Klinikum St. Georg gGmbH, Leipzig, Germany
- Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Ralf Schober
- Institute for Pathology and Tumour Diagnostics, Klinikum St. Georg gGmbH, Leipzig, Germany
| | - Julian Poetschke
- Department of Plastic and Handsurgery, Burn Unit, Klinikum St. Georg gGmbH, Leipzig, Germany
| | - Thomas Kremer
- Department of Plastic and Handsurgery, Burn Unit, Klinikum St. Georg gGmbH, Leipzig, Germany
| |
Collapse
|
8
|
Allgood JE, Bittner GD, Bushman JS. Repair and regeneration of peripheral nerve injuries that ablate branch points. Neural Regen Res 2023; 18:2564-2568. [PMID: 37449590 DOI: 10.4103/1673-5374.373679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
The peripheral nervous system has an extensive branching organization, and peripheral nerve injuries that ablate branch points present a complex challenge for clinical repair. Ablations of linear segments of the PNS have been extensively studied and routinely treated with autografts, acellular nerve allografts, conduits, wraps, and nerve transfers. In contrast, segmental-loss peripheral nerve injuries, in which one or more branch points are ablated so that there are three or more nerve endings, present additional complications that have not been rigorously studied or documented. This review discusses: (1) the branched anatomy of the peripheral nervous system, (2) case reports describing how peripheral nerve injuries with branched ablations have been surgically managed, (3) factors known to influence regeneration through branched nerve structures, (4) techniques and models of branched peripheral nerve injuries in animal models, and (5) conclusions regarding outcome measures and studies needed to improve understanding of regeneration through ablated branched structures of the peripheral nervous system.
Collapse
Affiliation(s)
- JuliAnne E Allgood
- Division of Pharmaceutical Sciences, University of Wyoming, Laramie, WY, USA
| | - George D Bittner
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Jared S Bushman
- Division of Pharmaceutical Sciences, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
9
|
Lavorato A, Aruta G, De Marco R, Zeppa P, Titolo P, Colonna MR, Galeano M, Costa AL, Vincitorio F, Garbossa D, Battiston B. Traumatic peripheral nerve injuries: a classification proposal. J Orthop Traumatol 2023; 24:20. [PMID: 37162617 PMCID: PMC10172513 DOI: 10.1186/s10195-023-00695-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 04/02/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Peripheral nerve injuries (PNIs) include several conditions in which one or more peripheral nerves are damaged. Trauma is one of the most common causes of PNIs and young people are particularly affected. They have a significant impact on patients' quality of life and on the healthcare system, while timing and type of surgical treatment are of the utmost importance to guarantee the most favorable functional recovery. To date, several different classifications of PNIs have been proposed, most of them focusing on just one or few aspects of these complex conditions, such as type of injury, anatomic situation, or prognostic factors. Current classifications do not enable us to have a complete view of this pathology, which includes diagnosis, treatment choice, and possible outcomes. This fragmentation sometimes leads to an ambiguous definition of PNIs and the impossibility of exchanging crucial information between different physicians and healthcare structures, which can create confusion in the choice of therapeutic strategies and timing of surgery. MATERIALS The authors retrospectively analyzed a group of 24 patients treated in their center and applied a new classification for PNI injuries. They chose (a) five injury-related factors, namely nerve involved, lesion site, nerve type (whether motor, sensory or mixed), surrounding tissues (whether soft tissues were involved or not), and lesion type-whether partial/in continuity or complete. An alphanumeric code was applied to each of these classes, and (b) four prognostic codes, related to age, timing, techniques, and comorbidities. RESULTS An alphanumeric code was produced, similar to that used in the AO classification of fractures. CONCLUSIONS The authors propose this novel classification for PNIs, with the main advantage to allow physicians to easily understand the characteristics of nerve lesions, severity, possibility of spontaneous recovery, onset of early complications, need for surgical treatment, and the best surgical approach. LEVEL OF EVIDENCE according to the Oxford 2011 level of evidence, level 2.
Collapse
Affiliation(s)
- Andrea Lavorato
- Neurosurgery Unit, Igea Hospital, via Marcona 69, 20129, Milan, Italy
| | - Gelsomina Aruta
- Department of Neurosciences "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, Turin, Italy
| | - Raffaele De Marco
- Department of Neurosciences "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, Turin, Italy
| | - Pietro Zeppa
- Department of Neurosciences "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, Turin, Italy
| | - Paolo Titolo
- Traumatology-Reconstructive Microsurgery, Department of Orthopedics and Traumatology, CTO Hospital, Turin, Italy
| | - Michele Rosario Colonna
- Department Human Pathology, University of Messina, Viale Della Libertà 395, 98121, Messina, Italy.
| | - Mariarosaria Galeano
- Department of Biological Imaging and Morphology, University of Messina, Messina, Italy
| | - Alfio Luca Costa
- Clinic of Plastic Surgery, Department of Neurosciences, University of Padua, Padua, Italy
| | - Francesca Vincitorio
- Department of Neurosciences "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, Turin, Italy
| | - Diego Garbossa
- Department of Neurosciences "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, Turin, Italy
| | - Bruno Battiston
- Traumatology-Reconstructive Microsurgery, Department of Orthopedics and Traumatology, CTO Hospital, Turin, Italy
| |
Collapse
|
10
|
Lizarraga‐Valderrama LR, Ronchi G, Nigmatullin R, Fregnan F, Basnett P, Paxinou A, Geuna S, Roy I. Preclinical study of peripheral nerve regeneration using nerve guidance conduits based on polyhydroxyalkanaotes. Bioeng Transl Med 2021; 6:e10223. [PMID: 34589600 PMCID: PMC8459605 DOI: 10.1002/btm2.10223] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/09/2021] [Accepted: 03/14/2021] [Indexed: 02/01/2023] Open
Abstract
Nerve guidance conduits (NGCs) are used as an alternative to the "gold standard" nerve autografting, preventing the need for surgical intervention required to harvest autologous nerves. However, the regeneration outcomes achieved with the current NGCs are only comparable with autografting when the gap is short (less than 10 mm). In the present study, we have developed NGCs made from a blend of polyhydroxyalkanoates, a family of natural resorbable polymers. Hollow NGCs made from a 75:25 poly(3-hydroxyoctanoate)/poly(3-hydroxybutyrate) blend (PHA-NGCs) were manufactured using dip-molding. These PHA-NGCs showed appropriate flexibility for peripheral nerve regeneration. In vitro cell studies performed using RT4-D6P2T rat Schwann cell line confirmed that the material is capable of sustaining cell proliferation and adhesion. PHA-NGCs were then implanted in vivo to repair 10 mm gaps of the median nerve of female Wistar rats for 12 weeks. Functional evaluation of the regenerated nerve using the grasping test showed that PHA-NGCs displayed similar motor recovery as the autograft, starting from week 7. Additionally, nerve cross-sectional area, density and number of myelinated cells, as well as axon diameter, fiber diameter, myelin thickness and g-ratio obtained using the PHA-NGCs were found comparable to an autograft. This preclinical data confirmed that the PHA-NGCs are indeed highly promising candidates for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Lorena R. Lizarraga‐Valderrama
- School of Life Sciences, College of Liberal Arts and SciencesUniversity of WestminsterLondonUK
- School of Life Sciences, Queen's Medical CentreUniversity of NottinghamNottinghamUK
| | - Giulia Ronchi
- Department of Clinical and Biological SciencesUniversity of TurinTurinItaly
- Neuroscience Institute of the Cavalieri Ottolenghi Foundation (NICO)University of TurinTurinItaly
| | - Rinat Nigmatullin
- School of Life Sciences, College of Liberal Arts and SciencesUniversity of WestminsterLondonUK
- Bristol Composites Institute (ACCIS)University of BristolBristolUK
| | - Federica Fregnan
- Department of Clinical and Biological SciencesUniversity of TurinTurinItaly
- Neuroscience Institute of the Cavalieri Ottolenghi Foundation (NICO)University of TurinTurinItaly
| | - Pooja Basnett
- School of Life Sciences, College of Liberal Arts and SciencesUniversity of WestminsterLondonUK
| | - Alexandra Paxinou
- School of Life Sciences, College of Liberal Arts and SciencesUniversity of WestminsterLondonUK
| | - Stefano Geuna
- Department of Clinical and Biological SciencesUniversity of TurinTurinItaly
- Neuroscience Institute of the Cavalieri Ottolenghi Foundation (NICO)University of TurinTurinItaly
| | - Ipsita Roy
- Department of Materials Science and Engineering, Faculty of EngineeringUniversity of SheffieldSheffieldUK
| |
Collapse
|
11
|
Development and Assist-As-Needed Control of an End-Effector Upper Limb Rehabilitation Robot. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196684] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Robot-assisted rehabilitation therapy has been proven to effectively improve upper limb motor function and daily behavior of patients with motor dysfunction, and the demand has increased at every stage of the rehabilitation recovery. According to the motor relearning program theory, upper limb motor dysfunction can be restored by a certain amount of repetitive training. Robotics devices can be an approach to accelerate the rehabilitation process by maximizing the patients’ training intensity. This paper develops a new end-effector upper limb rehabilitation robot (EULRR) first and then presents a controller that is suitable for the assist-as-needed (AAN) training of the patients when performing the rehabilitation training. The AAN controller is a strategy that helps the patient’s arm to stay close to the given trajectory while allowing for spatial freedom. This controller enables the patient’s arm to have spatial freedom by constructing a virtual channel around the predetermined training trajectory. Patients could move their arm freely in the allowed virtual channel during rehabilitation training while the robot provides assistance when deviating from the virtual channel. The AAN controller is preliminarily tested with a healthy male subject in different conditions based on the EULRR. The experimental results demonstrate that the proposed AAN controller could provide assistance when moving out of the virtual channel and provide no assistance when moving along the trajectory within the virtual channel. In the close future, the controller is planned to be used in elderly volunteers and help to increase the intensity of the rehabilitation therapy by assisting the arm movement and by provoking active participation.
Collapse
|
12
|
Yang L, Wang P. Somatic Nerve Reconstruction and Reinnervation. Somatosens Mot Res 2020. [DOI: 10.5772/intechopen.91755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Customized Scaffold Design Based on Natural Peripheral Nerve Fascicle Characteristics for Biofabrication in Tissue Regeneration. BIOMED RESEARCH INTERNATIONAL 2020; 2019:3845780. [PMID: 31915690 PMCID: PMC6935460 DOI: 10.1155/2019/3845780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/21/2019] [Accepted: 08/31/2019] [Indexed: 12/21/2022]
Abstract
Objective The use of a biofabrication nerve scaffold, which mimics the nerve microstructure, as an alternative for autologous nerve transplantation is a promising strategy for treating peripheral nerve defects. This study aimed to design a customized biofabrication scaffold model with the characteristics of human peripheral nerve fascicles. Methods We used Micro-MRI technique to obtain different nerve fascicles. A full-length 28 cm tibial nerve specimen was obtained and was divided into 14 two-centimetre nerve segments. 3D models of the nerve fascicles were obtained by three-dimensional reconstruction after image segmentation. The central line of the nerve fascicles was fitted, and the aggregation of nerve fascicles was analysed quantitatively. The nerve scaffold was designed by simulating the clinical nerve defect and extracting information from the acquired nerve fascicle data; the scaffold design was displayed by 3D printing to verify the accuracy of the model. Result The microstructure of the sciatic nerve, tibial nerve, and common peroneal nerve in the nerve fascicles could be obtained by three-dimensional reconstruction. The number of cross fusions of tibial nerve fascicles from proximal end to distal end decreased gradually. By designing the nerve graft in accordance with the microstructure of the nerve fascicles, the 3D printed model demonstrated that the two ends of the nerve defect can be well matched. Conclusion The microstructure of the nerve fascicles is complicated and changeable, and the spatial position of each nerve fascicle and the long segment of the nerve fascicle aggregation show great changes at different levels. Under the premise of the stability of the existing imaging techniques, a large number of scanning nerve samples can be used to set up a three-dimensional database of the peripheral nerve fascicle microstructure, integrating the gross imaging information, and provide a template for the design of the downstream nerve graft model.
Collapse
|
14
|
González Porto SA, Domenech N, Blanco FJ, Centeno Cortés A, Rivadulla Fernández C, Álvarez Jorge Á, Sánchez Ibáñez J, Rendal Vázquez E. Intraneural IFG-1 in Cryopreserved Nerve Isografts Increase Neural Regeneration and Functional Recovery in the Rat Sciatic Nerve. Neurosurgery 2019; 85:423-431. [PMID: 30060164 DOI: 10.1093/neuros/nyy339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/25/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Insulin-like growth factor 1 (IGF-1) was found to stimulate Schwann cell mitosis. Exogenous IGF-1 may improve nerve regeneration after cryopreservation. OBJECTIVE To evaulate the effect of intraneural administration of IGF-1 in cryopreserved nerve isografts. METHODS Eighteen millimeter grafts were used for bridging an 18-mm defect in the rat sciatic nerve. A total of 57 rats were randomly divided into three groups: (1) autograft (Group 1); (2) cryopreserved isograft (Group 2); (3) cryopreserved isograft with intraneural IGF-1 administration (Group 3). 12 weeks after surgery, functional recovery (Sciatic functional index [SFI], Swing speed [SS], nerve conduction velocity [NCV], amplitude of compound motor action potentials [CMAP], and gastrocnemius muscle index [GMI]) and nerve regeneration (myelin sheath area, total fiber counts, fiber density, and fiber width) were all evaluated. RESULTS The intraneural injection of IGF-1 significantly improved SFI and SS at weeks 10 and 12. There were no statistical differences between Groups 1 and 3 in any of the SFI or SS evaluations. CMAP and NCV in Group 1 were significantly higher than in Groups 2 and 3, and Group 3 had significantly higher CMAP and NCV compared to Group 2. No significant differences were found in fiber width. The number of nerve fibers, percentage of myelinated fibers, fiber density, and GMI was significantly higher in Group 1 compared to Group 2, but no significant differences were found between Groups 1 and 3. CONCLUSION The results show that intraneural injection of IGF-1 in an 18 mm cryopreserved isograft improve axonal regeneration and functional recovery.
Collapse
Affiliation(s)
| | - Nieves Domenech
- Biobanco A Coruña, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servicio Galego de Saúde (SERGAS), A Coruña, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Francisco J Blanco
- Grupo de Investigación de Proteómica-PBR2-ProteoRed/ISCIII-Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servicio Galego de Saúde (SERGAS), Universidade da Coruña (UDC), A Coruña, Spain
| | - Alberto Centeno Cortés
- Centro Tecnológico de Formación XXIAC, Instituto de Investigacións Biomédicas de A Coruña (INIBIC), Servicio Galego de Saúde (SERGAS), A Coruña, Spain
| | - Casto Rivadulla Fernández
- Grupo de Neurociencia e Control Motor, NEUROcom, Facultade de Ciencias da Saúde, Departamento de Ciencias Biomédicas, Fisioterapia e Medicina, Instituto de Investigacións Biomédicas de A Coruña (INIBIC), A Coruña, Spain
| | - Ángel Álvarez Jorge
- Servicio de Cirugía Plástica, Complexo Hospitalario Universitario de A Coruña (CHUAC), Servicio Galego de Saúde (SERGAS), A Coruña, Spain
| | - Jacinto Sánchez Ibáñez
- Unidad de Criobiología, Banco de Tejidos, Complexo Hospitalario Universitario de A Coruña (CHUAC), Servicio Galego de Saúde (SERGAS), A Coruña, Spain
| | - Esther Rendal Vázquez
- Unidad de Criobiología, Banco de Tejidos, Complexo Hospitalario Universitario de A Coruña (CHUAC), Servicio Galego de Saúde (SERGAS), A Coruña, Spain
| |
Collapse
|
15
|
Li X, Sha R, Bao B, Gao T, Lin J, Zheng X. [Experimental study of the effect of the sciatic nerve elongation on pain in rats]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2019; 33:894-900. [PMID: 31298010 PMCID: PMC8337425 DOI: 10.7507/1002-1892.2018120912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 05/24/2019] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To investigate the effect of the sciatic nerve elongation on pain in rats. METHODS Thirty-six adult male Wistar rats of SPF grade, weighing 250-300 g. Eighteen of them were randomly divided into 3 groups, 6 rats in each group. They were sciatic nerve elongation group (group A), nerve no-elongation group (group B), and nerve ligation group (group C). The model of 10-mm sciatic nerve defect was established in all 3 groups. The sciatic nerve was extended at a speed of 1 mm/d for 14 days in group A. The group B was only installed with external fixation. The nerve stumps were ligated in the group C. At 3, 7, 10, and 14 days after operation, the foot injury was evaluated by the autotomy scoring scale. At 14 days after operation, the dorsal root ganglia (DRG) of L 4-S 1 spinal cord of rats in each group was observed by tumor necrosis factor α (TNF-α) immunohistochemical staining, and the primary antibodies were replaced by pure serum as negative control group. Another 18 rats were randomly divided into 3 groups, 6 rats in each group. They were sciatic nerve elongation group (group A1), nerve no-elongation group (group B1), positive control group (group C1). In groups A1 and B1, the 10-mm long sciatic nerve defect model was established by the same method as groups A and B, and then fixed with external fixation. Nerve elongation was done or not done without anesthesia at 3 days after operation. In group C1, no modeling was done and 20 μL 2.5% formaldehyde was injected into the toes. After 90 minutes, the dorsal horn of spinal cord of L 4-S 1 segment of rats was cutting for c-Fos immunohistochemical staining and the number of positive cells was counted. Primary antibodies were replaced with pure serum as negative control group. RESULTS The autotomy scores of rats in groups B and C gradually increased postoperatively, and group A remained stable at 0.25±0.50. The scores of group C were significantly higher than those of group A and group B at each time point postoperatively ( P<0.05). The scores of group A were significantly lower than those of group B at 10 and 14 days postoperatively ( P<0.05). TNF-α immunohistochemical staining showed that the TNF-α expression in group A was weak, slightly positive (+/-); in group B was positive (+); in group C was strongly positive (++); and the negative control group had no TNF-α expression (-). c-Fos immunohistochemical staining showed that the c-Fos expressions in groups A1 and B1 were weak positive, in group C1 was strong positive, and negative control group had no c-Fos positive expression. The number of c-Fos positive cells in groups A1, B1, C1, and negative control group were (21.5±6.6), (19.3±8.1), (95.6±7.4), and 0 cells/field, respectively, and group C1 was significantly higher than groups A1 and B1 ( P<0.05), there was no significant difference between group A1 and group B1 ( P>0.05). CONCLUSION Nerve elongation does not cause obvious pain neither during the operation of elongation nor throughout the whole elongation.
Collapse
Affiliation(s)
- Xingwei Li
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P.R.China
| | - Rula Sha
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P.R.China
| | - Bingbo Bao
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P.R.China
| | - Tao Gao
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P.R.China
| | - Junqing Lin
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P.R.China
| | - Xianyou Zheng
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233,
| |
Collapse
|
16
|
Yang JT, Fang JT, Li L, Chen G, Qin BG, Gu LQ. Contralateral C7 transfer combined with acellular nerve allografts seeded with differentiated adipose stem cells for repairing upper brachial plexus injury in rats. Neural Regen Res 2019; 14:1932-1940. [PMID: 31290451 PMCID: PMC6676869 DOI: 10.4103/1673-5374.259626] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nerve grafting has always been necessary when the contralateral C7 nerve root is transferred to treat brachial plexus injury. Acellular nerve allograft is a promising alternative for the treatment of nerve defects, and results were improved by grafts laden with differentiated adipose stem cells. However, use of these tissue-engineered nerve grafts has not been reported for the treatment of brachial plexus injury. The aim of the present study was to evaluate the outcome of acellular nerve allografts seeded with differentiated adipose stem cells to improve nerve regeneration in a rat model in which the contralateral C7 nerve was transferred to repair an upper brachial plexus injury. Differentiated adipose stem cells were obtained from Sprague-Dawley rats and transdifferentiated into a Schwann cell-like phenotype. Acellular nerve allografts were prepared from 15-mm bilateral sections of rat sciatic nerves. Rats were randomly divided into three groups: acellular nerve allograft, acellular nerve allograft + differentiated adipose stem cells, and autograft. The upper brachial plexus injury model was established by traction applied away from the intervertebral foramen with micro-hemostat forceps. Acellular nerve allografts with or without seeded cells were used to bridge the gap between the contralateral C7 nerve root and C5–6 nerve. Histological staining, electrophysiology, and neurological function tests were used to evaluate the effect of nerve repair 16 weeks after surgery. Results showed that the onset of discernible functional recovery occurred earlier in the autograft group first, followed by the acellular nerve allograft + differentiated adipose stem cells group, and then the acellular nerve allograft group; moreover, there was a significant difference between autograft and acellular nerve allograft groups. Compared with the acellular nerve allograft group, compound muscle action potential, motor conduction velocity, positivity for neurofilament and S100, diameter of regenerating axons, myelin sheath thickness, and density of myelinated fibers were remarkably increased in autograft and acellular nerve allograft + differentiated adipose stem cells groups. These findings confirm that acellular nerve allografts seeded with differentiated adipose stem cells effectively promoted nerve repair after brachial plexus injuries, and the effect was better than that of acellular nerve repair alone. This study was approved by the Animal Ethics Committee of the First Affiliated Hospital of Sun Yat-sen University of China (approval No. 2016-150) in June 2016.
Collapse
Affiliation(s)
- Jian-Tao Yang
- Department of Microsurgery & Orthopedic Trauma, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jin-Tao Fang
- Department of Microsurgery & Orthopedic Trauma, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Liang Li
- Department of Microsurgery & Orthopedic Trauma, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Gang Chen
- Department of Microsurgery & Orthopedic Trauma, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ben-Gang Qin
- Department of Microsurgery & Orthopedic Trauma, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Li-Qiang Gu
- Department of Microsurgery & Orthopedic Trauma, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
17
|
Beris A, Gkiatas I, Gelalis I, Papadopoulos D, Kostas-Agnantis I. Current concepts in peripheral nerve surgery. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY 2018; 29:263-269. [PMID: 30483968 DOI: 10.1007/s00590-018-2344-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/25/2018] [Indexed: 12/11/2022]
Abstract
The injuries of the peripheral nerves are relatively frequent. Some of them may lead to defects which cannot be repaired with direct end-to-end repair without tension. These injuries may cause function loss to the patient, and they consist a challenge for the treating microsurgeon. Autologous nerve grafts remain the gold standard for bridging the peripheral nerve defects. Nevertheless, there are selected cases where alternative types of nerve reconstruction can be performed in order to cover the peripheral nerve defects. In all these types of reconstruction, the basic principles of microsurgery are necessary and the surgeon should be aware of them in order to achieve a successful reconstruction. The purpose of the present review was to present the most current data concerning the surgical options available for bridging such defects.
Collapse
Affiliation(s)
| | - Ioannis Gkiatas
- Department of Orthopaedic Surgery, School of Medicine, University of Ioannina, Ioannina, Greece.
| | - Ioannis Gelalis
- Department of Orthopaedic Surgery, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Dimitrios Papadopoulos
- Department of Orthopaedic Surgery, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Ioannis Kostas-Agnantis
- Department of Orthopaedic Surgery, School of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
18
|
Riccio M, Marchesini A, Pugliese P, Francesco F. Nerve repair and regeneration: Biological tubulization limits and future perspectives. J Cell Physiol 2018; 234:3362-3375. [DOI: 10.1002/jcp.27299] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 08/01/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Michele Riccio
- Department of Reconstructive Surgery and Hand Surgery AOU “Ospedali Riuniti,” Ancona Italy
| | - Andrea Marchesini
- Department of Reconstructive Surgery and Hand Surgery AOU “Ospedali Riuniti,” Ancona Italy
| | - Pierfrancesco Pugliese
- Department of Reconstructive Surgery and Hand Surgery AOU “Ospedali Riuniti,” Ancona Italy
| | - Francesco Francesco
- Department of Reconstructive Surgery and Hand Surgery AOU “Ospedali Riuniti,” Ancona Italy
| |
Collapse
|
19
|
Peng Y, Li KY, Chen YF, Li XJ, Zhu S, Zhang ZY, Wang X, Duan LN, Luo ZJ, Du JJ, Wang JC. Beagle sciatic nerve regeneration across a 30 mm defect bridged by chitosan/PGA artificial nerve grafts. Injury 2018; 49:1477-1484. [PMID: 29921534 DOI: 10.1016/j.injury.2018.03.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 02/02/2023]
Abstract
Longitudinally oriented microstructures are essential for a nerve scaffold to promote the significant regeneration of injured peripheral axons across nerve gaps. In the current study, we present a novel nerve-guiding collagen-chitosan (CCH) scaffold that facilitated the repair of 30 mm-long sciatic nerve defects in beagles. The CCH scaffolds were observed with a scanning electron microscope. Eighteen beagles were equally divided into CCH group, autograft group and non-graft group. The posture and gait of each dog was recorded at 12 and 24 weeks after surgery. Electrophysiological tests, Fluoro-Gold retrograde tracing test, Histological assessment of gastrocnemius and immunofluorescent staining of nerve regeneration were performed. Our investigation of regenerated sciatic nerves indicated that a CCH scaffold strongly supported directed axon regeneration in a manner similar to that achieved by autologous nerve transplantation. In vivo animal experiments showed that the CCH scaffold achieved nerve regeneration and functional recovery equivalent to that achieved by an autograft but without requiring the exogenous delivery of regenerative agents or cell transplantation. We conclude that CCH nerve guides show great promise as a method for repairing peripheral nerve defects.
Collapse
Affiliation(s)
- Ye Peng
- Department of Orthopaedics, Air Force General Hospital of PLA, Beijing, 100142, China
| | - Kai-Yuan Li
- Department of Emergency, Chinese PLA General Hospital, Beijing 100853, China
| | - Yu-Fei Chen
- Department of Orthopaedics, Air Force General Hospital of PLA, Beijing, 100142, China
| | - Xiao-Jie Li
- Department of Orthopaedics, Air Force General Hospital of PLA, Beijing, 100142, China
| | - Shu Zhu
- Department of Orthopaedics, Air Force General Hospital of PLA, Beijing, 100142, China
| | - Zheng-Yu Zhang
- Department of Orthopaedics, Air Force General Hospital of PLA, Beijing, 100142, China
| | - Xiao Wang
- Department of Orthopaedics, Air Force General Hospital of PLA, Beijing, 100142, China
| | - Li-Na Duan
- Department of Orthopaedics, Air Force General Hospital of PLA, Beijing, 100142, China
| | - Zhuo-Jing Luo
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jun-Jie Du
- Department of Orthopaedics, Air Force General Hospital of PLA, Beijing, 100142, China.
| | - Jian-Chang Wang
- Department of Orthopaedics, Air Force General Hospital of PLA, Beijing, 100142, China.
| |
Collapse
|
20
|
Patel NP, Lyon KA, Huang JH. An update-tissue engineered nerve grafts for the repair of peripheral nerve injuries. Neural Regen Res 2018; 13:764-774. [PMID: 29862995 PMCID: PMC5998615 DOI: 10.4103/1673-5374.232458] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2018] [Indexed: 01/04/2023] Open
Abstract
Peripheral nerve injuries (PNI) are caused by a range of etiologies and result in a broad spectrum of disability. While nerve autografts are the current gold standard for the reconstruction of extensive nerve damage, the limited supply of autologous nerve and complications associated with harvesting nerve from a second surgical site has driven groups from multiple disciplines, including biomedical engineering, neurosurgery, plastic surgery, and orthopedic surgery, to develop a suitable or superior alternative to autografting. Over the last couple of decades, various types of scaffolds, such as acellular nerve grafts (ANGs), nerve guidance conduits, and non-nervous tissues, have been filled with Schwann cells, stem cells, and/or neurotrophic factors to develop tissue engineered nerve grafts (TENGs). Although these have shown promising effects on peripheral nerve regeneration in experimental models, the autograft has remained the gold standard for large nerve gaps. This review provides a discussion of recent advances in the development of TENGs and their efficacy in experimental models. Specifically, TENGs have been enhanced via incorporation of genetically engineered cells, methods to improve stem cell survival and differentiation, optimized delivery of neurotrophic factors via drug delivery systems (DDS), co-administration of platelet-rich plasma (PRP), and pretreatment with chondroitinase ABC (Ch-ABC). Other notable advancements include conduits that have been bioengineered to mimic native nerve structure via cell-derived extracellular matrix (ECM) deposition, and the development of transplantable living nervous tissue constructs from rat and human dorsal root ganglia (DRG) neurons. Grafts composed of non-nervous tissues, such as vein, artery, and muscle, will be briefly discussed.
Collapse
Affiliation(s)
| | - Kristopher A. Lyon
- Texas A&M College of Medicine, Temple, TX, USA
- Department of Neurosurgery, Baylor Scott & White Healthcare, Temple, TX, USA
| | - Jason H. Huang
- Texas A&M College of Medicine, Temple, TX, USA
- Department of Neurosurgery, Baylor Scott & White Healthcare, Temple, TX, USA
| |
Collapse
|
21
|
Genipin-Cross-Linked Chitosan Nerve Conduits Containing TNF-α Inhibitors for Peripheral Nerve Repair. Ann Biomed Eng 2018; 46:1013-1025. [PMID: 29603044 DOI: 10.1007/s10439-018-2011-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/21/2018] [Indexed: 01/23/2023]
Abstract
Tissue engineered nerve grafts (TENGs) are considered a promising alternative to autologous nerve grafting, which is considered the "gold standard" clinical strategy for peripheral nerve repair. Here, we immobilized tumor necrosis factor-α (TNF-α) inhibitors onto a nerve conduit, which was introduced into a chitosan (CS) matrix scaffold utilizing genipin (GP) as the crosslinking agent, to fabricate CS-GP-TNF-α inhibitor nerve conduits. The in vitro release kinetics of TNF-α inhibitors from the CS-GP-TNF-α inhibitor nerve conduits were investigated using high-performance liquid chromatography. The in vivo continuous release profile of the TNF-α inhibitors released from the CS-GP-TNF-α inhibitor nerve conduits was measured using an enzyme-linked immunosorbent assay over 14 days. We found that the amount of TNF-α inhibitors released decreased with time after the bridging of the sciatic nerve defects in rats. Moreover, 4 and 12 weeks after surgery, histological analyses and functional evaluations were carried out to assess the influence of the TENG on regeneration. Immunochemistry performed 4 weeks after grafting to assess early regeneration outcomes revealed that the TENG strikingly promoted axonal outgrowth. Twelve weeks after grafting, the TENG accelerated myelin sheath formation, as well as functional restoration. In general, the regenerative outcomes following TENG more closely paralleled findings observed with autologous grafting than the use of the CS matrix scaffold. Collectively, our data indicate that the CS-GP-TNF-α inhibitor nerve conduits comprised an elaborate system for sustained release of TNF-α inhibitors in vitro, while studies in vivo demonstrated that the TENG could accelerate regenerating axonal outgrowth and functional restoration. The introduction of CS-GP-TNF-α-inhibitor nerve conduits into a scaffold may contribute to an efficient and adaptive immune microenvironment that can be used to facilitate peripheral nerve repair.
Collapse
|
22
|
Huang J, Patel N, Lyon K. An update–tissue engineered nerve grafts for the repair of peripheral nerve injuries. Neural Regen Res 2018. [DOI: 10.4103/1673-5374.232458
expr 973353844 + 912195704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
|