1
|
Kwon J, Eom S, Kong JS, Cho DW, Kim DS, Kim J. Engineered Regenerative Isolated Peripheral Nerve Interface for Targeted Reinnervation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406652. [PMID: 39051516 DOI: 10.1002/adma.202406652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/24/2024] [Indexed: 07/27/2024]
Abstract
A regenerative peripheral nerve interface (RPNI) offers a therapeutic solution for nerve injury through reconstruction of the target muscle. However, implanting a transected peripheral nerve into an autologous skeletal muscle graft in RPNI causes donor-site morbidity, highlighting the need for tissue-engineered skeletal muscle constructs. Here, an engineered regenerative isolated peripheral nerve interface (eRIPEN) is developed using 3D skeletal cell printing combined with direct electrospinning to create a nanofiber membrane envelop for host nerve implantation. In this in vivo study, after over 8 months of RPNI surgery, the eRIPEN exhibits a minimum Feret diameter of 15-20 µm with a cross-sectional area of 100-500 µm2, representing the largest distribution of myofibers. Furthermore, neuromuscular junction formation and muscle contraction with a force of ≈28 N are observed. Notably, the decreased hypersensitivity to mechanical/thermal stimuli and an improved tibial functional index from -77 to -56 are found in the eRIPEN group. The present novel concept of eRIPEN paves the way for the utilization and application of tissue-engineered constructs in RPNI, ultimately realizing neuroprosthesis control through synaptic connections.
Collapse
Affiliation(s)
- Jinju Kwon
- Department of Health Science, Graduate School, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seongsu Eom
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jeong Sik Kong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
- POSTECH-Catholic Biomedical Engineering Institute, POSTECH, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
- POSTECH-Catholic Biomedical Engineering Institute, POSTECH, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Junesun Kim
- Department of Health Science, Graduate School, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Department of Health and Environmental Science, Undergraduate School, College of Health Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
2
|
Best CSW, Kung TA. Current and Future Directions for Upper Extremity Amputations: Comparisons Between Regenerative Peripheral Nerve Interface and Targeted Muscle Reinnervation Surgeries. Clin Plast Surg 2024; 51:583-592. [PMID: 39216944 DOI: 10.1016/j.cps.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Upper extremity amputation can lead to significant functional morbidity. The main goals after amputation are to minimize pain and maintain or improve functional status while optimizing the quality of life. Postamputation pain is common and can be addressed with regenerative peripheral nerve interface surgery or targeted muscle reinnervation surgery. Both modalities are effective in treating residual limb pain and phantom limb pain, as well as improving prosthetic use. Differences in surgical technique between the 2 approaches need to be weighed when deciding what strategy may be most appropriate for the patient.
Collapse
Affiliation(s)
- Christine S W Best
- Department of Surgery, Section of Plastic Surgery, University of Michigan, 1500 East Medical Center Drive, 2110 Taubman Center, SPC 5346, Ann Arbor, MI 48109-5346, USA
| | - Theodore A Kung
- Department of Surgery, Section of Plastic Surgery, University of Michigan, 1500 East Medical Center Drive, 2130 Taubman Center, Ann Arbor, MI 48109-5231, USA.
| |
Collapse
|
3
|
Hanwright PJ, Suresh V, Shores JT, Souza JM, Tuffaha SH. Current Concepts in Lower Extremity Amputation: A Primer for Plastic Surgeons. Plast Reconstr Surg 2023; 152:724e-736e. [PMID: 37768220 DOI: 10.1097/prs.0000000000010664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
LEARNING OBJECTIVES After studying this article, the participant should be able to: 1. Understand the goals of lower extremity reconstruction and identify clinical scenarios favoring amputation. 2. Understand lower extremity amputation physiology and biomechanics. 3. Review soft-tissue considerations to achieve durable coverage. 4. Appreciate the evolving management of transected nerves. 5. Highlight emerging applications of osseointegration and strategies to improve myoelectric prosthetic control. SUMMARY Plastic surgeons are well versed in lower extremity reconstruction for traumatic, oncologic, and ischemic causes. Limb amputation is an increasingly sophisticated component of the reconstructive algorithm and is indicated when the residual limb is predicted to be more functional than a salvaged limb. Although plastic surgeons have traditionally focused on limb salvage, they play an increasingly vital role in optimizing outcomes from amputation. This warrants a review of core concepts and an update on emerging reconstructive techniques in amputee care.
Collapse
Affiliation(s)
- Philip J Hanwright
- From the Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine
| | - Visakha Suresh
- From the Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine
| | - Jaimie T Shores
- From the Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine
| | - Jason M Souza
- Department of Plastic and Reconstructive Surgery, The Ohio State University Wexner Medical Center
| | - Sami H Tuffaha
- From the Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine
| |
Collapse
|
4
|
Leach GA, Dean RA, Kumar NG, Tsai C, Chiarappa FE, Cederna PS, Kung TA, Reid CM. Regenerative Peripheral Nerve Interface Surgery: Anatomic and Technical Guide. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2023; 11:e5127. [PMID: 37465283 PMCID: PMC10351954 DOI: 10.1097/gox.0000000000005127] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 07/20/2023]
Abstract
Regenerative peripheral nerve interface (RPNI) surgery has been demonstrated to be an effective tool as an interface for neuroprosthetics. Additionally, it has been shown to be a reproducible and reliable strategy for the active treatment and for prevention of neuromas. The purpose of this article is to provide a comprehensive review of RPNI surgery to demonstrate its simplicity and empower reconstructive surgeons to add this to their armamentarium. This article discusses the basic science of neuroma formation and prevention, as well as the theory of RPNI. An anatomic review and discussion of surgical technique for each level of amputation and considerations for other etiologies of traumatic neuromas are included. Lastly, the authors discuss the future of RPNI surgery and compare this with other active techniques for the treatment of neuromas.
Collapse
Affiliation(s)
- Garrison A. Leach
- From the Department of General Surgery, Division of Plastic Surgery, University of California San Diego, La Jolla, Calif
| | - Riley A. Dean
- From the Department of General Surgery, Division of Plastic Surgery, University of California San Diego, La Jolla, Calif
| | - Nishant Ganesh Kumar
- Section of Plastic and Reconstructive Surgery and the Department of Biomedical Engineering, University of Michigan, Ann Arbor, Mich
| | - Catherine Tsai
- From the Department of General Surgery, Division of Plastic Surgery, University of California San Diego, La Jolla, Calif
| | - Frank E. Chiarappa
- Department of Orthopedic Surgery, University of California San Diego, La Jolla, Calif
| | - Paul S. Cederna
- Section of Plastic and Reconstructive Surgery and the Department of Biomedical Engineering, University of Michigan, Ann Arbor, Mich
| | - Theodore A. Kung
- Section of Plastic and Reconstructive Surgery and the Department of Biomedical Engineering, University of Michigan, Ann Arbor, Mich
| | - Chris M. Reid
- From the Department of General Surgery, Division of Plastic Surgery, University of California San Diego, La Jolla, Calif
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW To review advances in the diagnostic evaluation and management of traumatic peripheral nerve injuries. RECENT FINDINGS Serial multimodal assessment of peripheral nerve injuries facilitates assessment of spontaneous axonal regeneration and selection of appropriate patients for early surgical intervention. Novel surgical and rehabilitative approaches have been developed to complement established strategies, particularly in the area of nerve grafting, targeted rehabilitation strategies and interventions to promote nerve regeneration. However, several management challenges remain, including incomplete reinnervation, traumatic neuroma development, maladaptive central remodeling and management of fatigue, which compromise functional recovery. SUMMARY Innovative approaches to the assessment and treatment of peripheral nerve injuries hold promise in improving the degree of functional recovery; however, this remains a complex and evolving area.
Collapse
|
6
|
Hoellwarth JS, Tetsworth K, Oomatia A, Akhtar MA, Xu H, Al Muderis M. Association Between Osseointegration of Lower Extremity Amputation and Mortality Among Adults. JAMA Netw Open 2022; 5:e2235074. [PMID: 36227599 PMCID: PMC9561949 DOI: 10.1001/jamanetworkopen.2022.35074] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
IMPORTANCE Transcutaneous osseointegration post amputation (TOPA) creates a direct linkage between residual bone and an external prosthetic limb, providing superior mobility and quality of life compared with a socket prosthesis. The causes and potential risks of mortality after TOPA have not been investigated. OBJECTIVE To investigate the association between TOPA and mortality and assess the potential risk factors. DESIGN, SETTING, AND PARTICIPANTS This observational cohort study included all patients with amputation of a lower extremity who underwent TOPA between November 1, 2010, and October 31, 2021, at a specialty orthopedic practice and tertiary referral hospital in a major urban center. Patients lived on several continents and were followed up as long as 10 years. EXPOSURES Transcutaneous osseointegration post amputation, consisting of a permanent intramedullary implant passed transcutaneously through a stoma and connected to an external prosthetic limb. MAIN OUTCOMES AND MEASURES Death due to any cause. The hypotheses tested-that patient variables (sex, age, level of amputation, postosseointegration infection, and amputation etiology) may be associated with subsequent mortality-were formulated after initial data collection identifying which patients had died. RESULTS A total of 485 patients were included in the analysis (345 men [71.1%] and 140 women [28.9%]), with a mean (SD) age at osseointegration of 49.1 (14.6) years among living patients or 61.2 (12.4) years among patients who had died. Nineteen patients (3.9%) died a mean (SD) of 2.2 (1.7) years (range, 58 days to 5 years) after osseointegration, including 17 (3.5%) who died of causes unrelated to osseointegration (most commonly cardiac issues) and 2 (0.4%) who died of direct osseointegration-related complications (infectious complications), of which 1 (0.2%) was coclassified as a preexisting health problem exacerbated by osseointegration (myocardial infarction after subsequent surgery to manage infection). No deaths occurred intraoperatively or during inpatient recuperation or acute recovery after index osseointegration (eg, cardiopulmonary events). Kaplan-Meier survival analysis with log-rank comparison and Cox proportional hazards regression modeling identified increased age (hazard ratio, 1.06 [95% CI, 1.02-1.09]) and vascular (odds ratio [OR], 4.73 [95% CI, 1.35-16.56]) or infectious (OR, 3.87 [95% CI, 1.31-11.40]) amputation etiology as risk factors. Notable factors not associated with mortality risk included postosseointegration infection and male sex. CONCLUSIONS AND RELEVANCE These findings suggest that patients who have undergone TOPA rarely die of problems associated with the procedure but instead usually die of unrelated causes.
Collapse
Affiliation(s)
- Jason Shih Hoellwarth
- Limb Salvage and Amputation Reconstruction Center, Hospital for Special Surgery, New York, New York
| | - Kevin Tetsworth
- Department of Orthopaedic Surgery, Royal Brisbane and Women’s Hospital, Queensland, Australia
| | - Atiya Oomatia
- Limb Reconstruction Centre, Macquarie University Hospital, Macquarie University, Macquarie Park, Australia
| | - Muhammad Adeel Akhtar
- Trauma and Orthopaedic Department, Victoria Hospital Kirkcaldy, NHS (National Health Service) Fife, Kirkcaldy, Scotland
| | - Haikun Xu
- Inter-American Tropical Tuna Commission, La Jolla, California
| | - Munjed Al Muderis
- Limb Reconstruction Centre, Macquarie University Hospital, Macquarie University, Macquarie Park, Australia
| |
Collapse
|
7
|
Suresh V, Schaefer EJ, Calotta NA, Giladi AM, Tuffaha SH. Use of Vascularized, Denervated Muscle Targets for Prevention and Treatment of Upper-Extremity Neuromas. JOURNAL OF HAND SURGERY GLOBAL ONLINE 2022; 5:92-96. [PMID: 36704382 PMCID: PMC9870797 DOI: 10.1016/j.jhsg.2022.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/01/2022] [Indexed: 01/29/2023] Open
Abstract
Purpose Neuroma formation following upper-extremity peripheral nerve injury often results in persistent, debilitating neuropathic pain with a limited response to medical management. Vascularized, denervated muscle targets (VDMTs) offer a newly described surgical approach to address this challenging problem. Like targeted muscle reinnervation and regenerative peripheral nerve targets, VDMTs are used to redirect regenerating axons from an injured nerve into denervated muscle to prevent neuroma formation. By providing a vascularized muscle target that is reinnervated via direct neurotization, VDMTs offer some theoretical advantages in comparison with the other contemporary surgical options. In this study, we followed the short-term pain outcomes of patients who underwent VDMT surgery for neuroma prevention or treatment. Methods We performed a retrospective chart review of 9 patients (2 pediatric and 7 adult) who underwent VDMTs either for symptomatic upper-extremity neuromas or as a prophylactic measure to prevent primary neuroma formation. In-person and/or telephone interviews were conducted to assess their postoperative clinical outcomes, including the visual analog pain scale simple pain score. Results Of the 9 patients included in this study, 7 underwent VDMT surgery as a prophylactic measure against neuroma formation, and 2 presented with symptomatic neuromas that were treated with VDMTs. The average follow-up was 5.6 ± 4.1 months (range, 0.5-13.2 months). The average postoperative pain score of the 7 adult patients was 1.1 (range, 0-8). Conclusions This study demonstrated favorable short-term outcomes in a small cohort of patients treated with VDMTs in the upper extremity. Larger, prospective, and comparative studies with validated patient-reported and objective outcome measures and longer-term follow-ups are needed to further evaluate the benefits of VDMTs in upper-extremity neuroma management and prevention. Type of study/level of evidence Therapeutic III.
Collapse
Affiliation(s)
- Visakha Suresh
- Department of Plastic and Reconstructive Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Eliana J. Schaefer
- The Curtis National Hand Center, MedStar Union Memorial Hospital, Baltimore, MD,Department of Orthopedics, Georgetown University School of Medicine, Washington, DC
| | - Nicholas A. Calotta
- Department of Plastic and Reconstructive Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Aviram M. Giladi
- The Curtis National Hand Center, MedStar Union Memorial Hospital, Baltimore, MD,Corresponding author: Sami H. Tuffaha, MD, and Aviram M.Giladi, MD, MS, The Curtis National Hand Center, MedStar Union Memorial Hospital, 3333 North Calvert Street, JPB #200, Baltimore, MD 21218.
| | - Sami H. Tuffaha
- Department of Plastic and Reconstructive Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD,The Curtis National Hand Center, MedStar Union Memorial Hospital, Baltimore, MD,Corresponding author: Sami H. Tuffaha, MD, and Aviram M.Giladi, MD, MS, The Curtis National Hand Center, MedStar Union Memorial Hospital, 3333 North Calvert Street, JPB #200, Baltimore, MD 21218.
| |
Collapse
|