1
|
Tran P, Lau C, Joshi M, Kuehl M, Maddock H, Banerjee P. Exploring Changes in Myocyte Structure, Contractility, and Energetics From Mechanical Unloading in Patients With Heart Failure Undergoing Ventricular Assist Device Implantation: A Systematic Review and Meta-Analysis. Heart Lung Circ 2024; 33:1097-1116. [PMID: 38704332 DOI: 10.1016/j.hlc.2024.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 05/06/2024]
Abstract
AIMS Recent reports of myocardial recovery after mechanical unloading with left ventricular assist devices (LVADs) have challenged the prevailing notion that end-stage heart failure (HF) is irreversible. To improve our understanding of this phenomenon, we comprehensively analysed the structural, functional, and energetic changes in failing human cardiomyocytes after LVAD implantation. METHODS Based on a prospectively registered protocol (PROSPERO-CRD42022380214), 30 eligible studies were identified from 940 records with a pooled population of 648 patients predominantly with non-ischaemic cardiomyopathy. RESULTS LVAD led to a substantial regression in myocyte size similar to that of donor hearts (standardised mean difference, -1.29; p<0.001). The meta-regression analysis revealed that HF duration was a significant modifier on the changes in myocyte size. There were some suggestions of fibrosis reversal (-5.17%; p=0.009); however, this was insignificant after sensitivity analysis. Developed force did not improve in cardiac trabeculae (n=5 studies); however, non-physiological isometric contractions were tested. At the myocyte level (n=4 studies), contractile kinetics improved where the time-to-peak force reduced by 41.7%-50.7% and time to 50% relaxation fell by 47.4%-62.1% (p<0.05). Qualitatively, LVAD enhanced substrate utilisation and mitochondrial function (n=6 studies). Most studies were at a high risk of bias. CONCLUSION The regression of maladaptive hypertrophy, partial fibrosis reversal, and normalisation in metabolic pathways after LVAD may be a testament to the heart's remarkable plasticity, even in the advanced stages of HF. However, inconsistencies exist in force-generating capabilities. Using more physiological force-length work-loop assays, addressing the high risks of bias and clinical heterogeneity are crucial to better understand the phenomenon of reverse remodelling.
Collapse
Affiliation(s)
- Patrick Tran
- Centre for Health & Life Sciences, Coventry University, Coventry, UK; Cardiology Department, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK.
| | - Clement Lau
- Cardiology Department, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Mithilesh Joshi
- Cardiology Department, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK; Warwick Medical School, University of Warwick, Coventry, UK
| | - Michael Kuehl
- Cardiology Department, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK; Warwick Medical School, University of Warwick, Coventry, UK
| | - Helen Maddock
- Centre for Health & Life Sciences, Coventry University, Coventry, UK
| | - Prithwish Banerjee
- Centre for Health & Life Sciences, Coventry University, Coventry, UK; Cardiology Department, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK; Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
2
|
Basma H, Tatineni S, Dhar K, Qiu F, Rennard S, Lowes BD. Electronic cigarette extract induced toxic effect in iPS-derived cardiomyocytes. BMC Cardiovasc Disord 2020; 20:357. [PMID: 32758132 PMCID: PMC7409492 DOI: 10.1186/s12872-020-01629-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
Background Cigarette smoking is an important risk factor for cardiac diseases. In the current study, we sought to assess the effect of electronic cigarette extract (ECE) and conventional cigarette smoke extract (CSE) on cardiomyocytes. Methods iPSCs-derived cardiomyocytes were used in the study to evaluate cellular toxicities. Cells were exposed to either ECE or CSE for two consecutive days as an acute exposure or every other day for 14 days. Concentration of nicotine in both ECE and CSE were measured by Mass-Spectrometry and Q-Exactive-HF was used to identify other ingredients in both extracts. Fluorescent microscopy was used to measure the oxidative stress after ECE and CSE exposure. Motility and beat frequency of cardiomyocytes were determined using the Sisson-Ammons Video Analysis system. Heart failure target panel genes of exposed cardiomyocytes were compared to control unexposed cells. Results Despite nicotine concentration in CSE being six-fold higher than ECE (50 μg in CSE and 8 μg in ECE), ECE had similar toxic effect on cardiomyocytes. Both CSE and ECE generate significant cellular reactive oxygen species. The Sisson-Ammons Video Analysis (SAVA) analysis showed significant changes in myocyte function with both CSE and ECE slowing beating and increasing cell death. Chronic exposure of both ECE and CSE significantly decreased cardiomyocytes viability long term at all doses. Target panel gene expression profiles of both ECE and CSE exposed cardiomyocytes were different from controls with distinct pattern of genes that involved cell proliferation, inflammation, and apoptosis. Conclusion ECE and CSE produce similar cardiomyocyte toxicities which include generating oxidative stress, negative chronotropic effects, adverse changes in myocardial gene expression and ultimately cell death.
Collapse
Affiliation(s)
- Hesham Basma
- University of Nebraska Medical Center, Omaha, NE, USA.
| | | | - Kajari Dhar
- University of Nebraska Medical Center, Omaha, NE, USA
| | - Fang Qiu
- University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Brian D Lowes
- University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
3
|
Basma H, Johanson AN, Dhar K, Anderson D, Qiu F, Rennard S, Lowes BD. TGF-β induces a heart failure phenotype via fibroblasts exosome signaling. Heliyon 2019; 5:e02633. [PMID: 31687497 PMCID: PMC6820308 DOI: 10.1016/j.heliyon.2019.e02633] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/25/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose The mechanisms for persistent and progressive loss of myocardial function in advanced heart failure (HF) remain incompletely characterized. In the current study, we sought to determine the impact of TGF-β on fibroblasts transcriptional profiles and assess if exosomes from TGF-β treated fibroblasts could induce a heart failure phenotype in co-cultured cardiomyocytes. Method Normal heart fibroblasts were treated with TGF-β with a final conc. of 2.5 ng/ml in serum free media. HF fibroblasts were also obtained from patients undergoing implantation of left ventricular assist devices. Exosomes were collected using three-step ultracentrifugation. Cardiomyocytes were co-cultured with exosomes from TGF-β-treated, HF and control fibroblasts. RNA was extracted from the fibroblasts, exosomes, and the cardiomyocytes for a targeted panel of genes using Ion AmpliSeq. Fibroblast function was evaluated by collagen gel contraction. Results Fibroblasts treated with TGF-β differentially express 21 of the 140 genes in our targeted panel. These fibroblasts exhibit enhanced collagen gel contraction similar to HF fibroblasts. Fifty of these targeted genes were also differentially expressed in fibroblast exosomes. Pathway analysis of these transcriptional changes suggest hypertrophic signaling to cardiac muscle. Cardiomyocytes, co-cultured with exosomes from TGF- β treated fibroblasts or heart failure patients, differentially expressed 40 genes compared to controls. Cardiomyocytes co-cultured with exosomes of TGF-β treated fibroblasts induced a molecular phenotype similar to cardiomyocytes co-cultured with exosomes from HF fibroblasts. These changes involve contractile proteins, adrenergic receptors, calcium signaling, metabolism and cell renewal. Conclusion TGF-β induces broad transcriptional changes in fibroblasts as well as their exosomes. These exosomes induce a heart failure phenotype in cardiomyocytes. Exosome signaling from fibroblasts likely contributes to disease progression in heart failure.
Collapse
Affiliation(s)
| | | | | | | | - Fang Qiu
- University of Nebraska Medical Center, USA
| | - Stephen Rennard
- University of Nebraska Medical Center, USA.,Early Clinical Development, AstraZeneca, Cambridge, UK
| | | |
Collapse
|
4
|
Pepin ME, Drakos S, Ha CM, Tristani-Firouzi M, Selzman CH, Fang JC, Wende AR, Wever-Pinzon O. DNA methylation reprograms cardiac metabolic gene expression in end-stage human heart failure. Am J Physiol Heart Circ Physiol 2019; 317:H674-H684. [PMID: 31298559 PMCID: PMC6843013 DOI: 10.1152/ajpheart.00016.2019] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/15/2019] [Accepted: 06/13/2019] [Indexed: 12/24/2022]
Abstract
Heart failure (HF) is a leading cause of morbidity and mortality in the United States and worldwide. As a multifactorial syndrome with unpredictable clinical outcomes, identifying the common molecular underpinnings that drive HF pathogenesis remains a major focus of investigation. Disruption of cardiac gene expression has been shown to mediate a common final cascade of pathological hallmarks wherein the heart reactivates numerous developmental pathways. Although the central regulatory mechanisms that drive this cardiac transcriptional reprogramming remain unknown, epigenetic contributions are likely. In the current study, we examined whether the epigenome, specifically DNA methylation, is reprogrammed in HF to potentiate a pathological shift in cardiac gene expression. To accomplish this, we used paired-end whole genome bisulfite sequencing and next-generation RNA sequencing of left ventricle tissue obtained from seven patients with end-stage HF and three nonfailing donor hearts. We found that differential methylation was localized to promoter-associated cytosine-phosphate-guanine islands, which are established regulatory regions of downstream genes. Hypermethylated promoters were associated with genes involved in oxidative metabolism, whereas promoter hypomethylation enriched glycolytic pathways. Overexpression of plasmid-derived DNA methyltransferase 3A in vitro was sufficient to lower the expression of numerous oxidative metabolic genes in H9c2 rat cardiomyoblasts, further supporting the importance of epigenetic factors in the regulation of cardiac metabolism. Last, we identified binding-site competition via hypermethylation of the nuclear respiratory factor 1 (NRF1) motif, an established upstream regulator of mitochondrial biogenesis. These preliminary observations are the first to uncover an etiology-independent shift in cardiac DNA methylation that corresponds with altered metabolic gene expression in HF.NEW & NOTEWORTHY The failing heart undergoes profound metabolic changes because of alterations in cardiac gene expression, reactivating glycolytic genes and suppressing oxidative metabolic genes. In the current study, we discover that alterations to cardiac DNA methylation encode this fetal-like metabolic gene reprogramming. We also identify novel epigenetic interference of nuclear respiratory factor 1 via hypermethylation of its downstream promoter targets, further supporting a novel contribution of DNA methylation in the metabolic remodeling of heart failure.
Collapse
Affiliation(s)
- Mark E Pepin
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Stavros Drakos
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Chae-Myeong Ha
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Martin Tristani-Firouzi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Craig H Selzman
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah, Salt Lake City, Utah
| | - James C Fang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Omar Wever-Pinzon
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| |
Collapse
|
5
|
Bowen ME, Liu X, Sundwall PM, Drakos SG, Li DY, Selzman CH, McKellar SH. Right ventricular involution: What can we learn from nature's model of compensated hypertrophy? J Thorac Cardiovasc Surg 2017; 155:2024-2028.e1. [PMID: 29370905 DOI: 10.1016/j.jtcvs.2017.12.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 11/24/2017] [Accepted: 12/06/2017] [Indexed: 11/26/2022]
Abstract
BACKGROUND Right ventricular (RV) failure (RVF) is a vexing problem facing patients with various disease processes and carries a high mortality. RVF is a poorly understood phenomenon with limited treatment options. In mammalian fetal circulation, the right ventricle is the systemic ventricle. In neonates, however, the left ventricle assumes that role and gradually thickens compared with the right ventricle. This process, known as right ventricular involution (RVI), is poorly understood. We sought to define the time course and identify mechanisms involved in RVI. METHODS Wild-type mice were bred and sacrificed on day of life (DOL) 1, 4, 8, 16, and 30 to evaluate left ventricular (LV) and RV wall thickness and apoptosis. A terminal deoxynucleotidyl transferase nick-end labeling assay and RNA sequencing were performed to measure changes during RVI. RESULTS Morphometric analysis demonstrated the changes in RV and LV wall thickness occurring between DOL 1 and DOL 16 (RV:LV, 0.53:0.44; P = .03). In addition, apoptosis was most active early, with the highest percentage of apoptotic cells on DOL 1 (1.0%) and a significant decrease by DOL 30 (0.23%) (P = .02). Similarly, expression of the proapoptotic genes BCL2l11 and Pawr were increased at DOL 1, and the antiapoptotic genes Nol3 and Naip2 were significantly increased at DOL 30. CONCLUSIONS RVI is a misnomer, but significant changes occur early (by DOL 16) in neonatal mouse hearts. Apoptosis plays a role in RVI, but whether manipulation of apoptotic pathways can prevent or reverse RVI is unknown and warrants further investigation.
Collapse
Affiliation(s)
- Megan E Bowen
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Xiaoqing Liu
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Peter M Sundwall
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Stavros G Drakos
- Department of Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Dean Y Li
- Department of Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Craig H Selzman
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Stephen H McKellar
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah.
| |
Collapse
|
6
|
Ito E, Miyagawa S, Fukushima S, Yoshikawa Y, Saito S, Saito T, Harada A, Takeda M, Kashiyama N, Nakamura Y, Shiozaki M, Toda K, Sawa Y. Histone Modification Is Correlated With Reverse Left Ventricular Remodeling in Nonischemic Dilated Cardiomyopathy. Ann Thorac Surg 2017; 104:1531-1539. [DOI: 10.1016/j.athoracsur.2017.04.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
|
7
|
Binó L, Procházková J, Radaszkiewicz KA, Kučera J, Kudová J, Pacherník J, Kubala L. Hypoxia favors myosin heavy chain beta gene expression in an Hif-1alpha-dependent manner. Oncotarget 2017; 8:83684-83697. [PMID: 29137374 PMCID: PMC5663546 DOI: 10.18632/oncotarget.19016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 06/18/2017] [Indexed: 11/25/2022] Open
Abstract
The potentiation of the naturally limited regenerative capacity of the heart is dependent on an understanding of the mechanisms that are activated in response to pathological conditions such as hypoxia. Under these conditions, the expression of genes suggested to support cardiomyocyte survival and heart adaptation is triggered. Particularly important are changes in the expression of myosin heavy chain (MHC) isoforms. We propose here that alterations in the expression profiles of MHC genes are induced in response to hypoxia and are primarily mediated by hypoxia inducible factor (HIF). In in vitro models of mouse embryonic stem cell-derived cardiomyocytes, we showed that hypoxia (1% O2) or the pharmacological stabilization of HIFs significantly increased MHCbeta (Myh7) gene expression. The key role of HIF-1alpha is supported by the absence of these effects in HIF-1alpha-deficient cells, even in the presence of HIF-2alpha. Interestingly, ChIP analysis did not confirm the direct interaction of HIF-1alpha with putative HIF response elements predicted in the MHCalpha and beta encoding DNA region. Further analyses showed the significant effect of the mTOR signaling inhibitor rapamycin in inducing Myh7 expression and a hypoxia-triggered reduction in the levels of antisense RNA transcripts associated with the Myh7 gene locus. Overall, the recognized and important role of HIF in the regulation of heart regenerative processes could be highly significant for the development of novel therapeutic interventions in heart failure.
Collapse
Affiliation(s)
- Lucia Binó
- Institute of Biophysics of the CAS, Brno, Czech Republic.,Institute of Experimental Biology, Department of Physiology and Immunology of Animals, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jiřina Procházková
- Institute of Biophysics of the CAS, Brno, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Katarzyna Anna Radaszkiewicz
- Institute of Experimental Biology, Department of Physiology and Immunology of Animals, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Kučera
- Institute of Experimental Biology, Department of Physiology and Immunology of Animals, Faculty of Science, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, Center of Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Jana Kudová
- Institute of Biophysics of the CAS, Brno, Czech Republic.,Institute of Experimental Biology, Department of Physiology and Immunology of Animals, Faculty of Science, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, Center of Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Jiří Pacherník
- Institute of Experimental Biology, Department of Physiology and Immunology of Animals, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lukáš Kubala
- Institute of Biophysics of the CAS, Brno, Czech Republic.,Institute of Experimental Biology, Department of Physiology and Immunology of Animals, Faculty of Science, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, Center of Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
8
|
Marinescu KK, Uriel N, Mann DL, Burkhoff D. Left ventricular assist device-induced reverse remodeling: it's not just about myocardial recovery. Expert Rev Med Devices 2016; 14:15-26. [PMID: 27871197 DOI: 10.1080/17434440.2017.1262762] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The abnormal structure, function and molecular makeup of dilated cardiomyopathic hearts can be partially normalized in patients supported by a left ventricular assist device (LVAD), a process called reverse remodeling. This leads to recovery of function in many patients, though the rate of full recovery is low and in many cases is temporary, leading to the concept of heart failure remission, rather than recovery. Areas covered: We summarize data indicative of ventricular reverse remodeling, recovery and remission during LVAD support. These terms were used in searches performed in Pubmed. Duplication of topics covered in depth in prior review articles were avoided. Expert commentary: Although most patients undergoing mechanical circulatory support (MCS) show a significant degree of reverse remodeling, very few exhibit sufficiently improved function to justify device explantation, and many from whom LVADs have been explanted have relapsed back to the original heart failure phenotype. Future research has the potential to clarify the ideal combination of pharmacological, cell, gene, and mechanical therapies that would maximize recovery of function which has the potential to improve exercise tolerance of patients while on support, and to achieve a higher degree of myocardial recovery that is more likely to persist after device removal.
Collapse
Affiliation(s)
- Karolina K Marinescu
- a Department of Medicine, Division of Cardiology, Advanced Heart Failure , Rush University Medical Center , Chicago , IL , USA
| | - Nir Uriel
- b Department of Medicine, Division of Cardiology , University of Chicago , Chicago , IL , USA
| | - Douglas L Mann
- c Department of Medicine, Division of Cardiology , Washington University School of Medicine/Barnes Jewish Hospital , St. Louis , MO , USA
| | - Daniel Burkhoff
- d Department of Medicine, Division of Cardiology , Columbia University Medical Center/New York-Presbyterian Hospital , New York , NY , USA
| |
Collapse
|
9
|
Dhar K, Moulton AM, Rome E, Qiu F, Kittrell J, Raichlin E, Zolty R, Um JY, Moulton MJ, Basma H, Anderson DR, Eudy JD, Lowes BD. Targeted myocardial gene expression in failing hearts by RNA sequencing. J Transl Med 2016; 14:327. [PMID: 27884156 PMCID: PMC5123412 DOI: 10.1186/s12967-016-1083-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/14/2016] [Indexed: 11/20/2022] Open
Abstract
Background Myocardial recovery with left ventricular assist device (LVAD) therapy is highly variable and difficult to predict. Next generation ribonucleic acid (RNA) sequencing is an innovative, rapid, and quantitative approach to gene expression profiling in small amounts of tissue. Our primary goal was to identify baseline transcriptional profiles in non-ischemic cardiomyopathies that predict myocardial recovery in response to LVAD therapy. We also sought to verify transcriptional differences between failing and non-failing human hearts. Methods RNA was isolated from failing (n = 16) and non-failing (n = 8) human hearts. RNA from each patient was reverse transcribed and quantitatively sequenced on the personal genome machine (PGM) sequencer (Ion torrent) for 95 heart failure candidate genes. Coverage analysis as well as mapping the reads and alignment was done using the Ion Torrent Browser Suite™. Differential expression analyses were conducted by empirical analysis of digital gene expression data in R (edgeR) to identify differential expressed genes between failing and non-failing groups, and between responder and non-responder groups respectively. Targeted cardiac gene messenger RNA (mRNA) expression was analyzed in proportion to the total number of reads. Gene expression profiles from the PGM sequencer were validated by performing RNA sequencing (RNAseq) with the Illumina Hiseq2500 sequencing system. Results The failing sample population was 75% male with an average age of 50 and a left ventricular ejection fraction (LVEF) of 16%. Myosin light chain kinase (MYLK) and interleukin (IL)-6 genes expression were significantly higher in LVAD responders compared to non-responders. Thirty-six cardiac genes were expressed differentially between failing and non-failing hearts (23 decreased, 13 elevated). MYLK, Beta-1 adrenergic receptor (ADRB1) and myosin heavy chain (MYH)-6 expression were among those significantly decreased in failing hearts compared to non-failing hearts. Natriuretic peptide B (NPPB) and IL-6 were significantly elevated. Targeted gene expression profiles obtained from the Ion torrent PGM sequencer were consistent with those obtained from Illumina HiSeq2500 sequencing system. Conclusions Heart failure is associated with a network of transcriptional changes involving contractile proteins, metabolism, adrenergic receptors, protein phosphorylation, and signaling factors. Myocardial MYLK and IL-6 expression are positively correlated with ejection fraction (EF) response to LVAD placement. Targeted RNA sequencing of myocardial gene expression can be utilized to predict responders to LVAD therapy and to better characterize transcriptional changes in human heart failure.
Collapse
Affiliation(s)
- Kajari Dhar
- Department of Internal Medicine, University of Nebraska Medical Center, 982265 Nebraska Medical Center, Omaha, NE, 68198-2265, USA
| | - Alexandra M Moulton
- Department of Internal Medicine, University of Nebraska Medical Center, 982265 Nebraska Medical Center, Omaha, NE, 68198-2265, USA
| | - Eric Rome
- Department of Internal Medicine, University of Nebraska Medical Center, 982265 Nebraska Medical Center, Omaha, NE, 68198-2265, USA
| | - Fang Qiu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, USA
| | - Jeff Kittrell
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, USA
| | - Eugenia Raichlin
- Department of Internal Medicine, University of Nebraska Medical Center, 982265 Nebraska Medical Center, Omaha, NE, 68198-2265, USA
| | - Ronald Zolty
- Department of Internal Medicine, University of Nebraska Medical Center, 982265 Nebraska Medical Center, Omaha, NE, 68198-2265, USA
| | - John Y Um
- Department of Cardiothoracic Surgery, University of Nebraska Medical Center, Omaha, USA
| | - Michael J Moulton
- Department of Cardiothoracic Surgery, University of Nebraska Medical Center, Omaha, USA
| | - Hesham Basma
- Department of Internal Medicine, University of Nebraska Medical Center, 982265 Nebraska Medical Center, Omaha, NE, 68198-2265, USA
| | - Daniel R Anderson
- Department of Internal Medicine, University of Nebraska Medical Center, 982265 Nebraska Medical Center, Omaha, NE, 68198-2265, USA
| | - James D Eudy
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, USA
| | - Brian D Lowes
- Department of Internal Medicine, University of Nebraska Medical Center, 982265 Nebraska Medical Center, Omaha, NE, 68198-2265, USA.
| |
Collapse
|
10
|
Rizzo P, Mele D, Caliceti C, Pannella M, Fortini C, Clementz AG, Morelli MB, Aquila G, Ameri P, Ferrari R. The role of notch in the cardiovascular system: potential adverse effects of investigational notch inhibitors. Front Oncol 2015; 4:384. [PMID: 25629006 PMCID: PMC4292456 DOI: 10.3389/fonc.2014.00384] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/22/2014] [Indexed: 12/17/2022] Open
Abstract
Targeting the Notch pathway is a new promising therapeutic approach for cancer patients. Inhibition of Notch is effective in the oncology setting because it causes a reduction of highly proliferative tumor cells and it inhibits survival of cancer stem cells, which are considered responsible for tumor recurrence and metastasis. Additionally, since Delta-like ligand 4 (Dll4)-activated Notch signaling is a major modulator of angiogenesis, anti-Dll4 agents are being investigated to reduce vascularization of the tumor. Notch plays a major role in the heart during the development and, after birth, in response to cardiac damage. Therefore, agents used to inhibit Notch in the tumors (gamma secretase inhibitors and anti-Dll4 agents) could potentially affect myocardial repair. The past experience with trastuzumab and other tyrosine kinase inhibitors used for cancer therapy demonstrates that the possible cardiotoxicity of agents targeting shared pathways between cancer and heart and the vasculature should be considered. To date, Notch inhibition in cancer patients has resulted only in mild gastrointestinal toxicity. Little is known about the potential long-term cardiotoxicity associated to Notch inhibition in cancer patients. In this review, we will focus on mechanisms through which inhibition of Notch signaling could lead to cardiomyocytes and endothelial dysfunctions. These adverse effects could contrast with the benefits of therapeutic responses in cancer cells during times of increased cardiac stress and/or in the presence of cardiovascular risk factor.
Collapse
Affiliation(s)
- Paola Rizzo
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy ; Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara , Ferrara , Italy ; GVM Hospitals , Cotignola , Italy
| | - Donato Mele
- Azienda Ospedaliero-Universitaria di Ferrara , Cona , Italy
| | | | - Micaela Pannella
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Cinzia Fortini
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | | | | | - Giorgio Aquila
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Pietro Ameri
- Research Center of Cardiovascular Biology, Department of Internal Medicine, University of Genova , Genova , Italy
| | - Roberto Ferrari
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy ; Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara , Ferrara , Italy ; Azienda Ospedaliero-Universitaria di Ferrara , Cona , Italy
| |
Collapse
|
11
|
Abstract
Pathological ventricle remodelling, which follows a cardiac insult, causes heart failure. Despite the existence of multiple pharmaceutical approaches, heart failure is one of the leading causes of death worldwide and there is an urgent need to explore new therapeutic avenues. The Notch pathway is an evolutionary conserved fundamental pathway that regulates cell fate during development as well as throughout postnatal life in self-renewing tissues. In the myocardium, Notch signalling is involved in the modulation of cardiomyocytes survival, cardiac stem cells differentiation, and angiogenesis which are factors known to determine the extent of pathological cardiac remodelling. Modulation of the Notch pathway could become a tool to limit ventricle remodelling and the associated inexorable deterioration of cardiac performance.
Collapse
Affiliation(s)
- Roberto Ferrari
- Department of Cardiology and LTTA Centre, University Hospital of Ferrara, Ferrara, Italy
| | - Paola Rizzo
- GVM Care and Research, E.S: Health Science Foundation, Maria Cecilia Hospital, Cotignola, Italy
| |
Collapse
|
12
|
|
13
|
López JE, Myagmar BE, Swigart PM, Montgomery MD, Haynam S, Bigos M, Rodrigo MC, Simpson PC. β-myosin heavy chain is induced by pressure overload in a minor subpopulation of smaller mouse cardiac myocytes. Circ Res 2011; 109:629-38. [PMID: 21778428 DOI: 10.1161/circresaha.111.243410] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Induction of the fetal hypertrophic marker gene β-myosin heavy chain (β-MyHC) is a signature feature of pressure overload hypertrophy in rodents. β-MyHC is assumed present in all or most enlarged myocytes. OBJECTIVE To quantify the number and size of myocytes expressing endogenous β-MyHC by a flow cytometry approach. METHODS AND RESULTS Myocytes were isolated from the left ventricle of male C57BL/6J mice after transverse aortic constriction (TAC), and the fraction of cells expressing endogenous β-MyHC was quantified by flow cytometry on 10,000 to 20,000 myocytes with use of a validated β-MyHC antibody. Side scatter by flow cytometry in the same cells was validated as an index of myocyte size. β-MyHC-positive myocytes constituted 3 ± 1% of myocytes in control hearts (n=12), increasing to 25 ± 10% at 3 days to 6 weeks after TAC (n=24, P<0.01). β-MyHC-positive myocytes did not enlarge with TAC and were smaller at all times than myocytes without β-MyHC (≈70% as large, P<0.001). β-MyHC-positive myocytes arose by addition of β-MyHC to α-MyHC and had more total MyHC after TAC than did the hypertrophied myocytes that had α-MyHC only. Myocytes positive for β-MyHC were found in discrete regions of the left ventricle in 3 patterns: perivascular, in areas with fibrosis, and in apparently normal myocardium. CONCLUSIONS β-MyHC protein is induced by pressure overload in a minor subpopulation of smaller cardiac myocytes. The hypertrophied myocytes after TAC have α-MyHC only. These data challenge the current paradigm of the fetal hypertrophic gene program and identify a new subpopulation of smaller working ventricular myocytes with more myosin.
Collapse
Affiliation(s)
- Javier E López
- VA Medical Center (111-C-8), 4150 Clement St, San Francisco, CA 94121, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Ambardekar AV, Buttrick PM. Reverse remodeling with left ventricular assist devices: a review of clinical, cellular, and molecular effects. Circ Heart Fail 2011; 4:224-33. [PMID: 21406678 DOI: 10.1161/circheartfailure.110.959684] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Amrut V Ambardekar
- Division of Cardiology, University of Colorado Denver, Aurora, CO 80045, USA.
| | | |
Collapse
|
15
|
Duration of left ventricular assist device support: Effects on abnormal calcium cycling and functional recovery in the failing human heart. J Heart Lung Transplant 2010; 29:554-61. [DOI: 10.1016/j.healun.2009.10.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 10/22/2009] [Accepted: 10/26/2009] [Indexed: 11/18/2022] Open
|
16
|
McGaffin KR, Mctiernan CF. Response to Letter Regarding Article, “Leptin Signaling in the Failing and Mechanically Unloaded Human Heart”. Circ Heart Fail 2010. [DOI: 10.1161/circheartfailure.110.950626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Kenneth R. McGaffin
- The Cardiovascular Institute
University of Pittsburgh Medical Center
Pittsburgh, PA
| | - Charles F. Mctiernan
- The Cardiovascular Institute
University of Pittsburgh Medical Center
Pittsburgh, PA
| |
Collapse
|
17
|
Terenzi F, Brimacombe KR, Penn MS, Ladd AN. CELF-mediated alternative splicing is required for cardiac function during early, but not later, postnatal life. J Mol Cell Cardiol 2008; 46:395-404. [PMID: 19073192 DOI: 10.1016/j.yjmcc.2008.10.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 10/11/2008] [Accepted: 10/30/2008] [Indexed: 11/19/2022]
Abstract
During the transition from juvenile to adult life, the heart undergoes programmed remodeling at the levels of transcription and alternative splicing. Members of the CUG-BP and ETR-3-like factor (CELF) family have been implicated in driving developmental transitions in alternative splicing of cardiac transcripts during maturation of the heart. Here, we investigated the timing of the requirement for CELF activity in the postnatal heart using a previously described transgenic mouse model (MHC-CELFDelta). In MHC-CELFDelta mice, nuclear CELF activity has been disrupted specifically in the heart by cardiac-specific expression of a dominant negative CELF protein. Longitudinal analyses of two lines of MHC-CELFDelta mice with differing levels of dominant negative protein expression demonstrate that CELF splicing activity is required for healthy cardiac function during juvenile, but not adult, life. Cardiac function, chamber dilation, and heart size all recover with age in the mild line of MHC-CELFDelta mice without a loss of dominant negative protein expression or change in expression of endogenous CELF proteins or known CELF antagonists. This is the first example of a mouse model with genetically induced cardiomyopathy that spontaneously recovers without intervention. Our results suggest that CELF proteins are key players in the integrated gene expression program involved in postnatal cardiac remodeling and maturation.
Collapse
Affiliation(s)
- Fulvia Terenzi
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Ave. NC10, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|