2
|
Ahn JM, Zimmermann FM, Arora S, Solberg OG, Angerås O, Rolid K, Rafique M, Aaberge L, Karason K, Okada K, Luikart H, Khush KK, Honda Y, Pijls NHJ, Lee SE, Kim JJ, Park SJ, Gullestad L, Fearon WF. Prognostic value of comprehensive intracoronary physiology assessment early after heart transplantation. Eur Heart J 2021; 42:4918-4929. [PMID: 34665224 PMCID: PMC8691805 DOI: 10.1093/eurheartj/ehab568] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/01/2021] [Accepted: 08/05/2021] [Indexed: 12/23/2022] Open
Abstract
AIMS We evaluated the long-term prognostic value of invasively assessing coronary physiology after heart transplantation in a large multicentre registry. METHODS AND RESULTS Comprehensive intracoronary physiology assessment measuring fractional flow reserve (FFR), the index of microcirculatory resistance (IMR), and coronary flow reserve (CFR) was performed in 254 patients at baseline (a median of 7.2 weeks) and in 240 patients at 1 year after transplantation (199 patients had both baseline and 1-year measurement). Patients were classified into those with normal physiology, reduced FFR (FFR ≤ 0.80), and microvascular dysfunction (either IMR ≥ 25 or CFR ≤ 2.0 with FFR > 0.80). The primary outcome was the composite of death or re-transplantation at 10 years. At baseline, 5.5% had reduced FFR; 36.6% had microvascular dysfunction. Baseline reduced FFR [adjusted hazard ratio (aHR) 2.33, 95% confidence interval (CI) 0.88-6.15; P = 0.088] and microvascular dysfunction (aHR 0.88, 95% CI 0.44-1.79; P = 0.73) were not predictors of death and re-transplantation at 10 years. At 1 year, 5.0% had reduced FFR; 23.8% had microvascular dysfunction. One-year reduced FFR (aHR 2.98, 95% CI 1.13-7.87; P = 0.028) and microvascular dysfunction (aHR 2.33, 95% CI 1.19-4.59; P = 0.015) were associated with significantly increased risk of death or re-transplantation at 10 years. Invasive measures of coronary physiology improved the prognostic performance of clinical variables (χ2 improvement: 7.41, P = 0.006). However, intravascular ultrasound-derived changes in maximal intimal thickness were not predictive of outcomes. CONCLUSION Abnormal coronary physiology 1 year after heart transplantation was common and was a significant predictor of death or re-transplantation at 10 years.
Collapse
Affiliation(s)
- Jung-Min Ahn
- Department of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford Cardiovascular Institute, 300 Pasteur Drive, Room H2103, Stanford, CA 94305-5218, USA
| | - Frederik M Zimmermann
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford Cardiovascular Institute, 300 Pasteur Drive, Room H2103, Stanford, CA 94305-5218, USA
- Catharina Hospital, Eindhoven, the Netherlands
| | - Satish Arora
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Ole-Geir Solberg
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Oskar Angerås
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, Gothenburg, Sweden
| | - Katrine Rolid
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Muzammil Rafique
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Lars Aaberge
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Kristjan Karason
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, Gothenburg, Sweden
| | - Kozo Okada
- Division of Cardiology, Yokohama City University Medical Center, Yokohama, Japan
| | - Helen Luikart
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford Cardiovascular Institute, 300 Pasteur Drive, Room H2103, Stanford, CA 94305-5218, USA
| | - Kiran K Khush
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford Cardiovascular Institute, 300 Pasteur Drive, Room H2103, Stanford, CA 94305-5218, USA
| | - Yasuhiro Honda
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford Cardiovascular Institute, 300 Pasteur Drive, Room H2103, Stanford, CA 94305-5218, USA
| | | | - Sang Eun Lee
- Department of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae-Joong Kim
- Department of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung-Jung Park
- Department of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Lars Gullestad
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - William F Fearon
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford Cardiovascular Institute, 300 Pasteur Drive, Room H2103, Stanford, CA 94305-5218, USA
- Division of Cardiovascular Medicine, VA Palo Alto Health Care System, CA, USA
| |
Collapse
|
4
|
Abstract
Traditionally, invasive coronary physiological assessment has focused on the epicardial coronary artery. More recently, appreciation of the importance of the coronary microvasculature in determining patient outcomes has grown. Several invasive modalities for interrogating microvascular function have been proposed. Angiographic techniques have been limited by their qualitative and subjective nature. Doppler wire-derived coronary flow reserve has been applied in research studies, but its clinical role has been limited by its lack of reproducibility, its lack of a clear normal value, and the fact that it is not specific for the microvasculature but interrogates the entire coronary circulation. The index of microcirculatory resistance—a thermodilution-derived measure of the minimum achievable microvascular resistance—is relatively easy to measure, more reproducible, has a clearer normal value, and is independent of epicardial coronary artery stenosis. The index of microcirculatory resistance has been shown to have prognostic value in patients with ST-segment–elevation myocardial infarction and cardiac allograft vasculopathy after heart transplantation. Emerging data demonstrate its role in evaluating patients with chest pain and nonobstructive coronary artery disease. Increasingly, the index of microcirculatory resistance is used as a reference standard for invasively assessing the microvasculature in clinical trials.
Collapse
Affiliation(s)
- William F. Fearon
- From the Division of Cardiovascular Medicine, Stanford University, CA
| | - Yuhei Kobayashi
- From the Division of Cardiovascular Medicine, Stanford University, CA
| |
Collapse
|
5
|
Everolimus immunosuppression for renal protection, reduction of allograft vasculopathy and prevention of allograft rejection in de-novo heart transplant recipients: could we have it all? Curr Opin Organ Transplant 2017; 22:198-206. [PMID: 28463861 DOI: 10.1097/mot.0000000000000409] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW De-novo introduction of everolimus (Eve) in heart transplant recipients opens for early reduction of calcineurin inhibitors (CNI) and potential of preserving renal function, attenuate progression of coronary allograft vasculopathy (CAV) and maintain rejection efficacy. RECENT FINDINGS The first trials demonstrated adequate rejection prophylaxis and favorable outcomes on CAV, but observed enhanced nephrotoxicity because of insufficient CNI reduction. The SCHEDULE trial compared de-novo Eve with significantly reduced CNI exposure and conversion to CNI-free treatment week 7-11 postheart transplant, with standard CNI immunosuppression. Improved renal function and attenuation of CAV was found among Eve patients, with higher numbers of treated acute rejections observed. With sustained superior renal and CAV related data also after 36 months with the Eve protocol, cardiac function was equally well preserved in both groups. According to the International Society of Heart and Lunge Transplantation registry, mammalian target of rapamycin inhibitor treatment is uncommon during the first postoperative year, with a prevalence of 20% in patients after 5 years. SUMMARY Current evidence suggests a greater benefit from these immunosuppressives if introduced at an earlier timepoint. Immunosuppressive protocols based on Eve treatment in de-novo patients should be further investigated and developed, enabling CNI avoidance before accelerating side-effects lead to irreversible damage.
Collapse
|
6
|
Bürker BS, Gullestad L, Gude E, Relbo Authen A, Grov I, Hol PK, Andreassen AK, Arora S, Dew MA, Fiane AE, Haraldsen IR, Malt UF, Andersson S. Cognitive function after heart transplantation: Comparing everolimus-based and calcineurin inhibitor-based regimens. Clin Transplant 2017; 31. [PMID: 28185318 DOI: 10.1111/ctr.12927] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Studies have shown conflicting results concerning the occurrence of cognitive impairment after successful heart transplantation (HTx). Another unresolved issue is the possible differential impact of immunosuppressants on cognitive function. In this study, we describe cognitive function in a cohort of HTx recipients and subsequently compare cognitive function between subjects on either everolimus- or calcineurin inhibitor (CNI)-based immunosuppression. METHODS Cognitive function, covering attention, processing speed, executive functions, memory, and language functions, was assessed with a neuropsychological test battery. Thirty-seven subjects were included (everolimus group: n=20; CNI group: n=17). The extent of cerebrovascular pathology was assessed with magnetic resonance imaging. RESULTS About 40% of subjects had cognitive impairment, defined as performance at least 1.5 standard deviations below normative mean in one or several cognitive domains. Cerebrovascular pathology was present in 33.3%. There were no statistically significant differences between treatment groups across cognitive domains. CONCLUSIONS Given the high prevalence of cognitive impairment in the sample, plus the known negative impact of cognitive impairment on clinical outcome, our results indicate that cognitive assessment should be an integrated part of routine clinical follow-up after HTx. However, everolimus- and CNI-based immunosuppressive regimens did not show differential impacts on cognitive function.
Collapse
Affiliation(s)
- Britta S Bürker
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Research and Education, Oslo University Hospital - Rikshospitalet, Oslo, Norway.,Department of Psychosomatic Medicine, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Lars Gullestad
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Cardiology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Einar Gude
- Department of Cardiology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Anne Relbo Authen
- Department of Cardiology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Ingelin Grov
- Department of Cardiology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Per K Hol
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,The Intervention Centre, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Arne K Andreassen
- Department of Cardiology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Satish Arora
- Department of Cardiology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Mary Amanda Dew
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Arnt E Fiane
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Cardiothoracic Surgery, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Ira R Haraldsen
- Department of Psychosomatic Medicine, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Ulrik F Malt
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Research and Education, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | | |
Collapse
|