1
|
Katagiri J, Homma J, Takagi R, Sekine H, Shinkawa T, Niinami H, Shimizu T. Intravenous mesenchymal stem cell transplantation mitigates pulmonary vascular remodeling but poses dose related risks in a pulmonary veno-occlusive disease model. Stem Cell Res Ther 2025; 16:258. [PMID: 40437633 PMCID: PMC12121274 DOI: 10.1186/s13287-025-04400-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 05/16/2025] [Indexed: 06/01/2025] Open
Abstract
BACKGROUND Pulmonary veno-occlusive disease (PVOD) is a rare subtype of disease that causes pulmonary hypertension with vascular involvement of postcapillary structures of pulmonary vasculature. The disease has a poor prognosis with no effective therapy. The study aimed to determine whether adipose-derived mesenchymal stem cells (ASCs) alleviate pulmonary hypertension and right ventricular hypertrophy in a rat model of PVOD. METHODS Allogeneic ASCs were intravenously administered to a rat model of PVOD induced by mitomycin C. Then, muscularization in pulmonary microvessels, right ventricular systolic pressure (RVSP), and right ventricular hypertrophy were assessed using immunohistochemistry, right heart catheterization, heart weight, and hematoxylin-eosin (HE) staining. Body weight over time and survival rates were assessed. RESULTS ASC transplantation substantially contributed to the reduction of pulmonary microvascular muscularization in the PVOD rat model but not to the decrease in RVSP. Furthermore, it led to the attenuation of right ventricular hypertrophy and a considerable decrease in wall thickness. However, repeated ASC administration increased the mortality rate in the PVOD rat models. CONCLUSIONS To the best of our knowledge, this is the first study to analyze the effects of ASC transplantation in a rat model of PVOD. While intravenous ASC transplantation exerts beneficial effects on the lungs and right ventricle, adverse events may occur depending on the administration method. Therefore, intravenous ASC transplantation should be performed with caution.
Collapse
Affiliation(s)
- Junko Katagiri
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
- Department of Cardiovascular Surgery, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Jun Homma
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Ryo Takagi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Hidekazu Sekine
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Takeshi Shinkawa
- Department of Cardiovascular Surgery, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroshi Niinami
- Department of Cardiovascular Surgery, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
2
|
Das BB. Mechanism and Treatment of Right Ventricular Failure Due to Pulmonary Hypertension in Children. CHILDREN (BASEL, SWITZERLAND) 2025; 12:476. [PMID: 40310168 PMCID: PMC12025609 DOI: 10.3390/children12040476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 05/02/2025]
Abstract
Pulmonary hypertension (PH) is a progressive disorder characterized by obstructive changes in the pulmonary vasculature, leading to increased pulmonary vascular resistance (PVR), right ventricular (RV) strain, and eventual RV failure (RVF). Despite advancements in medical therapy, PH remains associated with significant morbidity and mortality, particularly in children. RVF is a clinical syndrome resulting from complex structural and functional remodeling of the right heart, leading to inadequate pulmonary circulation, reduced cardiac output, and elevated venous pressure. Management paradigms for pediatric PH diverge significantly from those in adults, particularly due to the predominance of congenital heart disease (CHD) and the dynamic nature of pediatric cardiovascular and pulmonary development. CHD remains a principal driver of PH in children, and its associated pathophysiology demands a nuanced approach. In patients with unrepaired left-to-right shunts, elevated pulmonary blood flow can lead to progressive pulmonary vascular remodeling and increased PVR. The postoperative persistence or progression of PH may occur if irreversible vascular changes have already developed. Current PH treatments primarily focus on reducing PVR, yet distinguishing between therapeutic approaches that target the pulmonary vasculature and those aimed at improving RV function remain challenging. In pediatric patients with progressive PH despite optimal therapy, additional targeted interventions may be necessary to mitigate RV dysfunction and disease progression. This review provides a comprehensive analysis of the mechanisms underlying RVF in PH, incorporating insights from clinical studies in adults and experimental models, while highlighting the unique considerations in children. Furthermore, it explores current pharmacological and interventional treatment strategies, emphasizing the need for novel therapeutic approaches aimed at directly reversing RV remodeling. Given the complexities of RV adaptation in pediatric PH, further research into disease-modifying treatments and innovative interventions is crucial to improving long-term outcomes in affected children.
Collapse
Affiliation(s)
- Bibhuti B Das
- Department of Pediatrics, Division of Pediatric Cardiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
3
|
Sharma M, Paudyal V, Syed SK, Thapa R, Kassam N, Surani S. Management of Pulmonary Arterial Hypertension: Current Strategies and Future Prospects. Life (Basel) 2025; 15:430. [PMID: 40141775 PMCID: PMC11943839 DOI: 10.3390/life15030430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Primary pulmonary hypertension (PPH), now known as pulmonary arterial hypertension (PAH), has induced significant treatment breakthroughs in the past decade. Treatment has focused on improving patient survival and quality of life, and delaying disease progression. Current therapies are categorized based on targeting different pathways known to contribute to PAH, including endothelin receptor antagonists (ERAs), phosphodiesterase-5 inhibitors (PDE-5 inhibitors), prostacyclin analogs, soluble guanylate cyclase stimulators, and activin signaling inhibitors such as Sotatercept. The latest addition to treatment options is soluble guanylate cyclase stimulators, such as Riociguat, which directly stimulates the nitric oxide pathway, facilitating vasodilation. Looking to the future, advancements in PAH treatment focus on precision medicine involving the sub-stratification of patients through a deep characterization of altered Transforming Growth Factor-β(TGF-β) signaling and molecular therapies. Gene therapy, targeting specific genetic mutations linked to PAH, and cell-based therapies, such as mesenchymal stem cells, are under investigation. Besides prevailing therapies, emerging PH treatments target growth factors and inflammation-modulating pathways, with ongoing trials assessing their long-term benefits and safety. Hence, this review explores current therapies that delay progression and improve survival, as well as future treatments with curative potential.
Collapse
Affiliation(s)
- Munish Sharma
- Division of Pulmonary, Critical Care and Sleep Medicine, Baylor Scott and White, Temple, TX 76508, USA;
| | - Vivek Paudyal
- Department of General Practice and Emergency Medicine, Karnali Academy of Health Sciences, Chandannath 21200, Jumla, Nepal; (V.P.); (R.T.)
| | - Saifullah Khalid Syed
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Rubi Thapa
- Department of General Practice and Emergency Medicine, Karnali Academy of Health Sciences, Chandannath 21200, Jumla, Nepal; (V.P.); (R.T.)
| | - Nadeem Kassam
- Department of Medicine, Aga Khan University, Nairobi 30270, Kenya;
| | - Salim Surani
- Department of Medicine and Pharmacy, Texas A&M, College Station, TX 77840, USA
| |
Collapse
|
4
|
Mahmod AI, Govindaraju K, Lokanathan Y, Said NABM, Ibrahim B. Exploring the Potential of Stem Cells in Modulating Gut Microbiota and Managing Hypertension. Stem Cells Dev 2025; 34:99-116. [PMID: 39836384 DOI: 10.1089/scd.2024.0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Hypertension, commonly known as high blood pressure, is a significant health issue that increases the risk of cardiovascular diseases, stroke, and renal failure. This condition broadly encompasses both primary and secondary forms. Despite extensive research, the underlying mechanisms of systemic arterial hypertension-particularly primary hypertension, which has no identifiable cause and is affected by genetic and lifestyle agents-remain complex and not fully understood. Recent studies indicate that an imbalance in gut microbiota, referred to as dysbiosis, may promote hypertension, affecting blood pressure regulation through metabolites such as short-chain fatty acids and trimethylamine N-oxide. Current antihypertensive medications face limitations, including resistance and adherence issues, highlighting the need for novel therapeutic approaches. Stem cell therapy, an emerging field in regenerative medicine, shows promise in addressing these challenges. Stem cells, with mesenchymal stem cells being a prime example, have regenerative, anti-inflammatory, and immunomodulatory properties. Emerging research indicates that stem cells can modulate gut microbiota, reduce inflammation, and improve vascular health, potentially aiding in blood pressure management. Research has shown the positive impact of stem cells on gut microbiota in various disorders, suggesting their potential therapeutic role in treating hypertension. This review synthesizes the recent studies on the complex interactions between gut microbiota, stem cells, and systemic arterial hypertension. By offering a thorough analysis of the current literature, it highlights key insights, uncovers critical gaps, and identifies emerging trends that will inform and guide future investigations in this rapidly advancing field.
Collapse
Affiliation(s)
- Asma Ismail Mahmod
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia
| | - Kayatri Govindaraju
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia
| | - Yogeswaran Lokanathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Nur Akmarina B M Said
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia
| | - Baharudin Ibrahim
- Department of Clinical Pharmacy and Pharmacy Practices, Faculty of Pharmacy, University Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Wang S, Zhuo D, Lin J, Zhang C. Key Genes and Biological Pathways in Pulmonary Arterial Hypertension Related to Endoplasmic Reticulum Stress Identified by Bioinformatics. J Cardiovasc Pharmacol 2025; 85:108-119. [PMID: 39907642 DOI: 10.1097/fjc.0000000000001651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/30/2024] [Indexed: 02/06/2025]
Abstract
ABSTRACT Pulmonary arterial hypertension (PAH) is a cardiopulmonary vascular condition with an unclear pathogenesis. Targeting endoplasmic reticulum (ER) stress has been suggested as a novel treatment approach for PAH, but the mechanisms involving ER stress-related genes in PAH are not well understood. Microarray data for PAH and ER stress-related genes were analyzed. Differential and Venn analyses identified 17 differentially expressed ER stress-related genes in PAH. Candidate drugs targeting these genes were predicted using the CMap database. A protein-protein interaction (PPI) network was constructed, and hub genes (LCN2, IGF1, VCAM1, EDN1, HMOX1, TLR4) with complex interplays were identified using the STRING database and Cytoscape plugins. The clinical diagnostic performance of the hub genes was evaluated using ROC curves. The GeneMANIA Web site was utilized to predict enriched pathways associated with the hub genes and their functionally similar genes. MiRNAs and transcription factors targeting the hub genes were predicted using the Networkanalyst Web site. The immune levels in control samples and PAH samples were assessed using various algorithms. Nine drug candidates were found to potentially target the identified ER stress-related genes. The hub genes and their correlated genes were significantly enriched in immune-related pathways. The PAH group showed increased immune cell infiltration, indicating a heightened immune response. This study sheds light on the role of ER stress-associated hub genes in PAH and proposes potential drugs targeting these genes. These findings provide valuable insights into PAH mechanisms and support the exploration of ER stress as a therapeutic target.
Collapse
Affiliation(s)
| | - Debin Zhuo
- Respiratory and Critical Care Medicine, The Affiliated Hospital of Putian University, Putian City, China
| | - Juan Lin
- Respiratory and Critical Care Medicine, The Affiliated Hospital of Putian University, Putian City, China
| | - Chunxia Zhang
- Respiratory and Critical Care Medicine, The Affiliated Hospital of Putian University, Putian City, China
| |
Collapse
|
6
|
Hu X, Liu J, Song X, Yuan P. Stem cells in pulmonary hypertension: Current understanding and future challenges. Animal Model Exp Med 2024; 7:961-963. [PMID: 39439226 DOI: 10.1002/ame2.12482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/23/2024] [Indexed: 10/25/2024] Open
Abstract
Stem cells possess the unique ability to develop into different cell types within the body. Researchers are exploring the use of different types of stem cells to potentially repair damaged blood vessels, reduce inflammation, and improve overall vascular function, all of which are crucial factors in pulmonary hypertension (PH). While it is important to acknowledge that further clinical studies and trials are necessary to fully understand the efficacy and safety of stem cell therapy for PH, ongoing research and initial findings present promising avenues for potentially developing new treatments or therapeutic strategies for PH.
Collapse
Affiliation(s)
- Xiaoyi Hu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinming Liu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiao Song
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ping Yuan
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
7
|
Deng ZH, Chen YX, Xue-Gao, Yang JY, Wei XY, Zhang GX, Qian JX. Mesenchymal stem cell-derived exosomes ameliorate hypoxic pulmonary hypertension by inhibiting the Hsp90aa1/ERK/pERK pathway. Biochem Pharmacol 2024; 226:116382. [PMID: 38909785 DOI: 10.1016/j.bcp.2024.116382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Hypoxic pulmonary hypertension (HPH) is a serious and life-threatening chronic cardiopulmonary disease characterized by progressive elevation of pulmonary artery pressure and pulmonary vascular remodeling. Mesenchymal stem cell- derived exosomes (MSC-Exos) can relieve HPH by reversing pulmonary vascular remodeling. The HPH model was established in healthy male Sprague-Dawley (SD) rats aged 6 to 8 weeks. The rats were placed in a room with oxygen concentration of (10 ± 1) % for 8 hours a day over 28 days, were then injected intravenously with MSC-Exos (100 ug protein/kg) or equal-volume phosphate buffer saline (PBS) once a day over 1 week. Right ventricular systolic pressure (RVSP), right ventricular hypertrophy index (RVHI) and pulmonary vascular remodeling were observed after anesthesia. In addition, platelet-derived growth factor BB (PDGF-BB) was used to stimulate rat pulmonary artery smooth muscle cells (PASMCs) to construct HPH pathological cell models. The results showed that MSC-Exos could not only reduce the elevation of RVSP, right ventricular hypertrophy and the degree of pulmonary vascular remodeling in HPH rats, but also reduce the proliferation, migration and apoptosis resistance of PASMCs. Finally, GSE53408 and GSE113439 datasets were analyzed and showed that the expression of Hsp90aa1 and pERK/ERK were significantly increased in HPH, also could be inhibited by MSC-Exos. Meanwhile, inhibition of Hsp90aa1 also reduced PASMCs migration and pERK/ERK protein level. In conclusion, MSC-Exos alleviated HPH by suppressing PASMCs proliferation, migration and apoptosis resistance through inhibiting the Hsp90aa1/ERK/pERK pathway.
Collapse
Affiliation(s)
- Zhi-Hua Deng
- Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Yao-Xin Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Xue-Gao
- Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Jing-Yu Yang
- Department of Endocrinology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Xia-Ying Wei
- Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Guo-Xing Zhang
- Department of Physiology and Neurosciences, Medical College of Soochow University, Suzhou 215000, China
| | - Jin-Xian Qian
- Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China.
| |
Collapse
|
8
|
Crosswhite P, Sun Z. TNFα Induces DNA and Histone Hypomethylation and Pulmonary Artery Smooth Muscle Cell Proliferation Partly via Excessive Superoxide Formation. Antioxidants (Basel) 2024; 13:677. [PMID: 38929115 PMCID: PMC11200563 DOI: 10.3390/antiox13060677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Objective: The level of tumor necrosis factor-α (TNF-α) is upregulated during the development of pulmonary vascular remodeling and pulmonary hypertension. A hallmark of pulmonary arterial (PA) remodeling is the excessive proliferation of PA smooth muscle cells (PASMCs). The purpose of this study is to investigate whether TNF-α induces PASMC proliferation and explore the potential mechanisms. Methods: PASMCs were isolated from 8-week-old male Sprague-Dawley rats and treated with 0, 20, or 200 ng/mL TNF-α for 24 or 48 h. After treatment, cell number, superoxide production, histone acetylation, DNA methylation, and histone methylation were assessed. Results: TNF-α treatment increased NADPH oxidase activity, superoxide production, and cell numbers compared to untreated controls. TNF-α-induced PASMC proliferation was rescued by a superoxide dismutase mimetic tempol. TNF-α treatment did not affect histone acetylation at either dose but did significantly decrease DNA methylation. DNA methyltransferase 1 activity was unchanged by TNF-α treatment. Further investigation using QRT-RT-PCR revealed that GADD45-α, a potential mediator of DNA demethylation, was increased after TNF-α treatment. RNAi inhibition of GADD45-α alone increased DNA methylation. TNF-α impaired the epigenetic mechanism leading to DNA hypomethylation, which can be abolished by a superoxide scavenger tempol. TNF-α treatment also decreased H3-K4 methylation. TNF-α-induced PASMC proliferation may involve the H3-K4 demethylase enzyme, lysine-specific demethylase 1 (LSD1). Conclusions: TNF-α-induced PASMC proliferation may be partly associated with excessive superoxide formation and histone and DNA methylation.
Collapse
Affiliation(s)
- Patrick Crosswhite
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Human Physiology, Gonzaga University, Spokane, WA 99205, USA
| | - Zhongjie Sun
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Physiology, College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| |
Collapse
|
9
|
Goecke T, Ius F, Ruhparwar A, Martin U. Unlocking the Future: Pluripotent Stem Cell-Based Lung Repair. Cells 2024; 13:635. [PMID: 38607074 PMCID: PMC11012168 DOI: 10.3390/cells13070635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
The human respiratory system is susceptible to a variety of diseases, ranging from chronic obstructive pulmonary disease (COPD) and pulmonary fibrosis to acute respiratory distress syndrome (ARDS). Today, lung diseases represent one of the major challenges to the health care sector and represent one of the leading causes of death worldwide. Current treatment options often focus on managing symptoms rather than addressing the underlying cause of the disease. The limitations of conventional therapies highlight the urgent clinical need for innovative solutions capable of repairing damaged lung tissue at a fundamental level. Pluripotent stem cell technologies have now reached clinical maturity and hold immense potential to revolutionize the landscape of lung repair and regenerative medicine. Meanwhile, human embryonic (HESCs) and human-induced pluripotent stem cells (hiPSCs) can be coaxed to differentiate into lung-specific cell types such as bronchial and alveolar epithelial cells, or pulmonary endothelial cells. This holds the promise of regenerating damaged lung tissue and restoring normal respiratory function. While methods for targeted genetic engineering of hPSCs and lung cell differentiation have substantially advanced, the required GMP-grade clinical-scale production technologies as well as the development of suitable preclinical animal models and cell application strategies are less advanced. This review provides an overview of current perspectives on PSC-based therapies for lung repair, explores key advances, and envisions future directions in this dynamic field.
Collapse
Affiliation(s)
- Tobias Goecke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Lower Saxony Center for Biomedical Engineering, Implant Research and Development /Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (F.I.); (A.R.)
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Fabio Ius
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Lower Saxony Center for Biomedical Engineering, Implant Research and Development /Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (F.I.); (A.R.)
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Arjang Ruhparwar
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Lower Saxony Center for Biomedical Engineering, Implant Research and Development /Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (F.I.); (A.R.)
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Lower Saxony Center for Biomedical Engineering, Implant Research and Development /Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (F.I.); (A.R.)
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
10
|
Ostasevicius V, Jurenas V, Venslauskas M, Kizauskiene L, Zigmantaite V, Stankevicius E, Bubulis A, Vezys J, Mikuckyte S. Low-frequency ultrasound for pulmonary hypertension therapy. Respir Res 2024; 25:70. [PMID: 38317182 PMCID: PMC10840147 DOI: 10.1186/s12931-024-02713-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/28/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Currently, there are no reliable clinical tools that allow non-invasive therapeutic support for patients with pulmonary arterial hypertension. This study aims to propose a low-frequency ultrasound device for pulmonary hypertension therapy and to demonstrate its potential. METHODS A novel low-frequency ultrasound transducer has been developed. Due to its structural properties, it is excited by higher vibrational modes, which generate a signal capable of deeply penetrating biological tissues. A methodology for the artificial induction of pulmonary hypertension in sheep and for the assessment of lung physiological parameters such as blood oxygen concentration, pulse rate, and pulmonary blood pressure has been proposed. RESULTS The results showed that exposure of the lungs to low-frequency ultrasound changed physiological parameters such as blood oxygen concentration, pulse rate and blood pressure. These parameters are most closely related to indicators of pulmonary hypertension (PH). The ultrasound exposure increased blood oxygen concentration over a 7-min period, while pulse rate and pulmonary blood pressure decreased over the same period. In anaesthetised sheep exposed to low-frequency ultrasound, a 10% increase in SpO2, a 10% decrease in pulse rate and an approximate 13% decrease in blood pressure were observed within 7 min. CONCLUSIONS The research findings demonstrate the therapeutic efficiency of low-frequency ultrasound on hypertensive lungs, while also revealing insights into the physiological aspects of gas exchange within the pulmonary system.
Collapse
Affiliation(s)
- Vytautas Ostasevicius
- Institute of Mechatronics, Kaunas University of Technology, Studentu Street 56, 51424, Kaunas, Lithuania.
| | - Vytautas Jurenas
- Institute of Mechatronics, Kaunas University of Technology, Studentu Street 56, 51424, Kaunas, Lithuania
| | - Mantas Venslauskas
- Institute of Mechatronics, Kaunas University of Technology, Studentu Street 56, 51424, Kaunas, Lithuania
| | - Laura Kizauskiene
- Department of Computer Sciences, Kaunas University of Technology, Studentu Street 50, 51368, Kaunas, Lithuania
| | - Vilma Zigmantaite
- Biological Research Center Lithuanian, University of Health Sciences, Tilžės Street 18, 47181, Kaunas, Lithuania
- Laboratory of Membrane Biophysics, Cardiology Department, Lithuanian University of Health Sciences, Sukilėlių Street 15, 50103, Kaunas, Lithuania
| | - Edgaras Stankevicius
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, A. Mickevicius Street 9, 44307, Kaunas, Lithuania
| | - Algimantas Bubulis
- Institute of Mechatronics, Kaunas University of Technology, Studentu Street 56, 51424, Kaunas, Lithuania
| | - Joris Vezys
- Department of Mechanical Engineering, Kaunas University of Technology, Kaunas University of Technology, Studentu Street 56, 51424, Kaunas, Lithuania
| | - Sandra Mikuckyte
- Institute of Mechatronics, Kaunas University of Technology, Studentu Street 56, 51424, Kaunas, Lithuania
| |
Collapse
|
11
|
Wu C, Liu H, Ba M, Zha J, Gao Z, Li L, Xu P, Li M, Cai F, Chen M, Wu X, Guo L, Zhang H. Angiotensin-converting enzyme - human amniotic mesenchymal stem cells improve pulmonary vascular remodeling in rats with pulmonary hypertension by promoting angiogenesis and counteracting inflammation. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2023; 16:282-293. [PMID: 37970332 PMCID: PMC10641367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 06/05/2023] [Indexed: 11/17/2023]
Abstract
OBJECTIVES Human Amniotic Mesenchymal Stem Cells (hAMSCs) have strong multidirectional differentiation ability. Studies have found that transfection of target genes into target cells by lentivirus can enhance the differentiation potential of the cells. Angiotensin-Converting Enzyme 2 (ACE2) was found to improve vascular remodeling. Research is lacking on ACE2-hAMSCs. Therefore, this study aimed to investigate the ability to improve pulmonary arterial hypertension using ACE2-hAMSCs. METHODS Lentiviruses overexpressing ACE2 were mixed with hAMSCs. Then, ACE2-hAMSCs and hAMSCs with good growth in logarithmic growth phase were collected. We detected their migration and angiogenesis. RT-qPCR technology was used to detect the expression levels of genes related to angiogenesis, and inflammation in the two cell lines, and western-blotting was used to detect the expression levels of ACE2. As an animal study, 21 rats were randomly divided into four different groups. Right heart hypertrophy, pulmonary angiogenesis, and serum inflammatory factors were measured before dissection. H&E staining was used to observe the inflammatory infiltration of lung tissues. RESULTS The migration and angiogenesis of ACE2-hAMSCs were strongerthan that of hAMSCs alone. The expressions of genes in ACE2-hAMSCs were higher, and the expression of ACE2 protein in ACE2-hAMSCs was less. H&E staining showed that the inflammatory infilration of lung tissue in ACE2-hAMSCs groups was significantly improved. In addition, the ACE2-hAMSCs group had stronger pro-angiogenesis and anti-inflammatory effects. CONCLUSION These results suggest that ACE2-hAMSCs can repair pulmonary vascular endothelial cell injury caused by pulmonary hypertension by promoting angiogenesis and anti-inflammatory ability. This shows that ACE2-hAMSCs have stronger ability to improve pulmonary vascular remodeling than hAMSCs alone.
Collapse
Affiliation(s)
- Changfang Wu
- Department of Cardiovascular Medicine, The Second People’s Hospital of GuiyangGuiyang, Guizhou, China
| | - Hao Liu
- Department of Cardiology, The Seventh Affiliated Hospital of Southern Medical UniversityFoshan, Guangdong, China
| | - Mingchuan Ba
- Department of Cardiology, The Seventh Affiliated Hospital of Southern Medical UniversityFoshan, Guangdong, China
| | - Jie Zha
- The Graduate School, Guizhou Medical UniversityGuiyang, Guizhou, China
| | - Zhen Gao
- The Graduate School, Guizhou Medical UniversityGuiyang, Guizhou, China
| | - Lijun Li
- Department of Cardiology, The Seventh Affiliated Hospital of Southern Medical UniversityFoshan, Guangdong, China
| | - Peiyuan Xu
- Department of Cardiology, The Seventh Affiliated Hospital of Southern Medical UniversityFoshan, Guangdong, China
| | - Minfei Li
- Department of Cardiology, The Seventh Affiliated Hospital of Southern Medical UniversityFoshan, Guangdong, China
| | - Fusheng Cai
- Department of Cardiology, The Seventh Affiliated Hospital of Southern Medical UniversityFoshan, Guangdong, China
| | - Mingjie Chen
- Department of Cardiology, The Seventh Affiliated Hospital of Southern Medical UniversityFoshan, Guangdong, China
| | - Xiaona Wu
- Department of Cardiology, The Seventh Affiliated Hospital of Southern Medical UniversityFoshan, Guangdong, China
| | - Lin Guo
- Department of Cardiology, The Seventh Affiliated Hospital of Southern Medical UniversityFoshan, Guangdong, China
| | - Hongzhe Zhang
- Department of Cardiology, The Seventh Affiliated Hospital of Southern Medical UniversityFoshan, Guangdong, China
- The Graduate School, Guizhou Medical UniversityGuiyang, Guizhou, China
| |
Collapse
|
12
|
Zheng R, Xu T, Wang X, Yang L, Wang J, Huang X. Stem cell therapy in pulmonary hypertension: current practice and future opportunities. Eur Respir Rev 2023; 32:230112. [PMID: 37758272 PMCID: PMC10523152 DOI: 10.1183/16000617.0112-2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/13/2023] [Indexed: 09/30/2023] Open
Abstract
Pulmonary hypertension (PH) is a progressive disease characterised by elevated pulmonary arterial pressure and right-sided heart failure. While conventional drug therapies, including prostacyclin analogues, endothelin receptor antagonists and phosphodiesterase type 5 inhibitors, have been shown to improve the haemodynamic abnormalities of patients with PH, the 5-year mortality rate remains high. Thus, novel therapies are urgently required to prolong the survival of patients with PH. Stem cell therapies, including mesenchymal stem cells, endothelial progenitor cells and induced pluripotent stem cells, have shown therapeutic potential for the treatment of PH and clinical trials on stem cell therapies for PH are ongoing. This review aims to present the latest preclinical achievements of stem cell therapies, focusing on the therapeutic effects of clinical trials and discussing the challenges and future perspectives of large-scale applications.
Collapse
Affiliation(s)
- Ruixuan Zheng
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- These authors contributed equally to this work
| | - Tingting Xu
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- These authors contributed equally to this work
| | - Xinghong Wang
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lehe Yang
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Xiaoying Huang
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Urzì O, Gasparro R, Costanzo E, De Luca A, Giavaresi G, Fontana S, Alessandro R. Three-Dimensional Cell Cultures: The Bridge between In Vitro and In Vivo Models. Int J Mol Sci 2023; 24:12046. [PMID: 37569426 PMCID: PMC10419178 DOI: 10.3390/ijms241512046] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Although historically, the traditional bidimensional in vitro cell system has been widely used in research, providing much fundamental information regarding cellular functions and signaling pathways as well as nuclear activities, the simplicity of this system does not fully reflect the heterogeneity and complexity of the in vivo systems. From this arises the need to use animals for experimental research and in vivo testing. Nevertheless, animal use in experimentation presents various aspects of complexity, such as ethical issues, which led Russell and Burch in 1959 to formulate the 3R (Replacement, Reduction, and Refinement) principle, underlying the urgent need to introduce non-animal-based methods in research. Considering this, three-dimensional (3D) models emerged in the scientific community as a bridge between in vitro and in vivo models, allowing for the achievement of cell differentiation and complexity while avoiding the use of animals in experimental research. The purpose of this review is to provide a general overview of the most common methods to establish 3D cell culture and to discuss their promising applications. Three-dimensional cell cultures have been employed as models to study both organ physiology and diseases; moreover, they represent a valuable tool for studying many aspects of cancer. Finally, the possibility of using 3D models for drug screening and regenerative medicine paves the way for the development of new therapeutic opportunities for many diseases.
Collapse
Affiliation(s)
- Ornella Urzì
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Roberta Gasparro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Elisa Costanzo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Angela De Luca
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Simona Fontana
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| |
Collapse
|
14
|
Liu P, Gao S, Li Z, Pan S, Luo G, Ji Z. Endothelial progenitor cell-derived exosomes inhibit pulmonary artery smooth muscle cell in vitro proliferation and resistance to apoptosis by modulating the Mitofusin-2 and Ras-Raf-ERK1/2 signaling pathway. Eur J Pharmacol 2023; 949:175725. [PMID: 37068578 DOI: 10.1016/j.ejphar.2023.175725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023]
Abstract
Pulmonary arterial hypertension (PAH) mainly occurs as a result of abnormal proliferation and apoptosis resistance of pulmonary artery smooth muscle cells (PASMCs). Endothelial progenitor cell (EPC)-derived exosomes (Exos) (EPC-Exos) relieve PAH. However, there is still insufficient knowledge of whether EPC-Exos contribute to the pathological process of PAH, especially for PASMC repair. This study aimed to determine the effects of EPC-Exos on the proliferation, migration, and apoptosis of PASMCs and explore the possible underlying molecular mechanisms through bioinformatics analysis and in vitro testing. Bioinformatics analysis showed that the Ras signaling pathway and Exos were crucial in PAH. The PAH differential microRNAs (miRNAs) and miRNAs identified in EPC-Exos were intersected to obtain miR-21-5p. A target gene prediction program predicted mitofusin-2 (Mfn2) as a potential target of miR-21-5p. Cellular experiments demonstrated that EPC-Exos attenuated the viability, proliferation, migration, and apoptosis resistance of PASMCs under hypoxia. Mechanistically, EPC-Exos significantly upregulated Mfn2 expression and attenuated Ras-Raf-ERK1/2 signaling pathway activity. In conclusion, EPC-Exos suppress cell viability, proliferation, and migration and promote apoptosis in PASMCs under hypoxic conditions. It is possible to transport miR-21-5p to improve the expression of Mfn2 and inhibit the Ras-Raf-ERK1/2 signaling pathway directly or by targeting the expression of Mfn2. EPC-Exos are a potential therapeutic candidate for the treatment of PAH.
Collapse
Affiliation(s)
- Panpan Liu
- Heart center, Women and Children's Hospital, Qingdao University, Qingdao, 266034, China
| | - Shuai Gao
- Heart center, Women and Children's Hospital, Qingdao University, Qingdao, 266034, China
| | - Zhixin Li
- Heart center, Women and Children's Hospital, Qingdao University, Qingdao, 266034, China
| | - Silin Pan
- Heart center, Women and Children's Hospital, Qingdao University, Qingdao, 266034, China.
| | - Gang Luo
- Heart center, Women and Children's Hospital, Qingdao University, Qingdao, 266034, China
| | - Zhixian Ji
- Heart center, Women and Children's Hospital, Qingdao University, Qingdao, 266034, China
| |
Collapse
|