1
|
Chen YJJ, Vogt D, Wang Y, Visel A, Silberberg SN, Nicholas CR, Danjo T, Pollack JL, Pennacchio LA, Anderson S, Sasai Y, Baraban SC, Kriegstein AR, Alvarez-Buylla A, Rubenstein JLR. Use of "MGE enhancers" for labeling and selection of embryonic stem cell-derived medial ganglionic eminence (MGE) progenitors and neurons. PLoS One 2013; 8:e61956. [PMID: 23658702 PMCID: PMC3641041 DOI: 10.1371/journal.pone.0061956] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 03/15/2013] [Indexed: 12/21/2022] Open
Abstract
The medial ganglionic eminence (MGE) is an embryonic forebrain structure that generates the majority of cortical interneurons. MGE transplantation into specific regions of the postnatal central nervous system modifies circuit function and improves deficits in mouse models of epilepsy, Parkinson's disease, pain, and phencyclidine-induced cognitive deficits. Herein, we describe approaches to generate MGE-like progenitor cells from mouse embryonic stem (ES) cells. Using a modified embryoid body method, we provided gene expression evidence that mouse ES-derived Lhx6(+) cells closely resemble immature interneurons generated from authentic MGE-derived Lhx6(+) cells. We hypothesized that enhancers that are active in the mouse MGE would be useful tools in detecting when ES cells differentiate into MGE cells. Here we demonstrate the utility of enhancer elements [422 (DlxI12b), Lhx6, 692, 1056, and 1538] as tools to mark MGE-like cells in ES cell differentiation experiments. We found that enhancers DlxI12b, 692, and 1538 are active in Lhx6-GFP(+) cells, while enhancer 1056 is active in Olig2(+) cells. These data demonstrate unique techniques to follow and purify MGE-like derivatives from ES cells, including GABAergic cortical interneurons and oligodendrocytes, for use in stem cell-based therapeutic assays and treatments.
Collapse
Affiliation(s)
- Ying-Jiun J. Chen
- Department of Psychiatry and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, California, United States of America
| | - Daniel Vogt
- Department of Psychiatry and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, California, United States of America
| | - Yanling Wang
- Department of Psychiatry and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, California, United States of America
| | - Axel Visel
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, and Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Shanni N. Silberberg
- Department of Psychiatry and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, California, United States of America
| | - Cory R. Nicholas
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California, United States of America
| | - Teruko Danjo
- Neurogenesis and Organogenesis Group, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Joshua L. Pollack
- Lung Biology Center, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Len A. Pennacchio
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, and Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Stewart Anderson
- 3Children's Hospital of Philadelphia, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Yoshiki Sasai
- Neurogenesis and Organogenesis Group, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Scott C. Baraban
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Arnold R. Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California, United States of America
| | - Arturo Alvarez-Buylla
- Department of Neurosurgery and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California, United States of America
| | - John L. R. Rubenstein
- Department of Psychiatry and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
3
|
Chronic reduction in inhibition reduces receptive field size in mouse auditory cortex. Proc Natl Acad Sci U S A 2012; 109:13829-34. [PMID: 22753490 DOI: 10.1073/pnas.1205909109] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Inhibitory interneurons regulate the responses of cortical circuits. In auditory cortical areas, inhibition from these neurons narrows spectral tuning and shapes response dynamics. Acute disruptions of inhibition expand spectral receptive fields. However, the effects of long-term perturbations of inhibitory circuitry on auditory cortical responses are unknown. We ablated ~30% of dendrite-targeting cortical inhibitory interneurons after the critical period by studying mice with a conditional deletion of Dlx1. Following the loss of interneurons, baseline firing rates rose and tone-evoked responses became less sparse in auditory cortex. However, contrary to acute blockades of inhibition, the sizes of spectral receptive fields were reduced, demonstrating both higher thresholds and narrower bandwidths. Furthermore, long-latency responses at the edge of the receptive field were absent. On the basis of changes in response dynamics, the mechanism for the reduction in receptive field size appears to be a compensatory loss of cortico-cortically (CC) driven responses. Our findings suggest chronic conditions that feature changes in inhibitory circuitry are not likely to be well modeled by acute network manipulations, and compensation may be a critical component of chronic neuronal conditions.
Collapse
|
4
|
Rubenstein JLR. Annual Research Review: Development of the cerebral cortex: implications for neurodevelopmental disorders. J Child Psychol Psychiatry 2011; 52:339-55. [PMID: 20735793 PMCID: PMC3429600 DOI: 10.1111/j.1469-7610.2010.02307.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cerebral cortex has a central role in cognitive and emotional processing. As such, understanding the mechanisms that govern its development and function will be central to understanding the bases of severe neuropsychiatric disorders, particularly those that first appear in childhood. In this review, I highlight recent progress in elucidating genetic, molecular and cellular mechanisms that control cortical development. I discuss basic aspects of cortical developmental anatomy, and mechanisms that regulate cortical size and area formation, with an emphasis on the roles of fibroblast growth factor (Fgf) signaling and specific transcription factors. I then examine how specific types of cortical excitatory projection neurons are generated, and how their axons grow along stereotyped pathways to their targets. Next, I address how cortical inhibitory (GABAergic) neurons are generated, and point out the role of these cells in controlling cortical plasticity and critical periods. The paper concludes with an examination of four possible developmental mechanisms that could contribute to some forms of neurodevelopmental disorders, such as autism.
Collapse
Affiliation(s)
- John L R Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Center for Neurobiology and Psychiatry, Department of Psychiatry, University of California at San Francisco, CA 94158-2324, USA.
| |
Collapse
|
5
|
Three hypotheses for developmental defects that may underlie some forms of autism spectrum disorder. Curr Opin Neurol 2010; 23:118-23. [PMID: 20087182 DOI: 10.1097/wco.0b013e328336eb13] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Molecular and genetic insights into the etiology of autism spectrum disorders are now available. The field now needs to understand how these perturbations affect development and function of the brain. RECENT FINDINGS Herein I review the genetic mechanisms known to predispose to autism spectrum disorders, and attempt to consolidate many of these within cellular/molecular pathways that regulate development of neural systems that underlie cognition and social behaviors. In addition to the clear relationship of many susceptibility genes to activity-dependent neural responses, I propose the existence of three additional mechanisms that may contribute to autism spectrum disorders: evolutionary-driven expansion of cerebrum and cerebellar size; imbalance in the excitatory/inhibitory ratio in local and extended circuits; the hormonal effects of the male genotype. SUMMARY Understanding these mechanisms opens the possibility to therapeutic interventions.
Collapse
|
6
|
Mao R, Page DT, Merzlyak I, Kim C, Tecott LH, Janak PH, Rubenstein JLR, Sur M. Reduced conditioned fear response in mice that lack Dlx1 and show subtype-specific loss of interneurons. J Neurodev Disord 2009; 1:224-36. [PMID: 19816534 PMCID: PMC2758250 DOI: 10.1007/s11689-009-9025-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Accepted: 06/23/2009] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED The inhibitory GABAergic system has been implicated in multiple neuropsychiatric diseases such as schizophrenia and autism. The Dlx homeobox transcription factor family is essential for development and function of GABAergic interneurons. Mice lacking the Dlx1 gene have postnatal subtype-specific loss of interneurons and reduced IPSCs in their cortex and hippocampus. To ascertain consequences of these changes in the GABAergic system, we performed a battery of behavioral assays on the Dlx1 mutant mice, including zero maze, open field, locomotor activity, food intake, rotarod, tail suspension, fear conditioning assays (context and trace), prepulse inhibition, and working memory related tasks (spontaneous alteration task and spatial working memory task). Dlx1 mutant mice displayed elevated activity levels in open field, locomotor activity, and tail suspension tests. These mice also showed deficits in contextual and trace fear conditioning, and possibly in prepulse inhibition. Their learning deficits were not global, as the mutant mice did not differ from the wild-type controls in tests of working memory. Our findings demonstrate a critical role for the Dlx1 gene, and likely the subclasses of interneurons that are affected by the lack of this gene, in behavioral inhibition and associative fear learning. These observations support the involvement of particular components of the GABAergic system in specific behavioral phenotypes related to complex neuropsychiatric diseases. ELECTRONIC SUPPLEMENTARY MATERIAL The online version of this article (doi:10.1007/s11689-009-9025-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rong Mao
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Damon T. Page
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Irina Merzlyak
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, CA 94608 USA
| | - Carol Kim
- Nina Ireland Laboratory of Developmental Neurobiology, Center for Neurobiology and Psychiatry, Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158 USA
| | - Laurence H. Tecott
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158-2822 USA
| | - Patricia H. Janak
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, CA 94608 USA
- Department of Neurology, University of California, San Francisco, CA 94143 USA
- Wheeler Center for the Neurobiology of Addiction, University of California, San Francisco, CA 94143 USA
| | - John L. R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Center for Neurobiology and Psychiatry, Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158 USA
| | - Mriganka Sur
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| |
Collapse
|
7
|
Miko IJ, Henkemeyer M, Cramer KS. Auditory brainstem responses are impaired in EphA4 and ephrin-B2 deficient mice. Hear Res 2008; 235:39-46. [PMID: 17967521 PMCID: PMC3250224 DOI: 10.1016/j.heares.2007.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 09/20/2007] [Accepted: 09/21/2007] [Indexed: 11/15/2022]
Abstract
The Eph receptor tyrosine kinases and their membrane-anchored ligands, ephrins, are signaling proteins that act as axon guidance molecules during chick auditory brainstem development. We recently showed that Eph proteins also affect patterns of neural activation in the mammalian brainstem. However, functional deficits in the brainstems of mutant mice have not been assessed physiologically. The present study characterizes neural activation in Eph protein deficient mice in the auditory brainstem response (ABR). We recorded the ABR of EphA4 and ephrin-B2 mutant mice, aged postnatal day 18-20, and compared them to wild type controls. The peripheral hearing threshold of EphA4(-/-) mice was 75% higher than that of controls. Waveform amplitudes of peak 1 (P1) were 54% lower in EphA4(-/-) mice than in controls. The peripheral hearing thresholds in ephrin-B2(lacZ/)(+) mice were also elevated, with a mean value 20% higher than that of controls. These ephrin-B2(lacZ/)(+) mice showed a 38% smaller P1 amplitude. Significant differences in latency to waveform peaks were also observed. These elevated thresholds and reduced peak amplitudes provide evidence for hearing deficits in both of these mutant mouse lines, and further emphasize an important role for Eph family proteins in the formation of functional auditory circuitry.
Collapse
Affiliation(s)
- Ilona J. Miko
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA
| | - Mark Henkemeyer
- Department of Developmental Biology, UT Southwestern Medical Center, Dallas, TX
| | - Karina S. Cramer
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA
| |
Collapse
|