1
|
Barry KM, Redmond SL, Mulders WHAM, Valente F. Silk Devices for Tympanic Membrane Repair Show No Ototoxicity in a Rat Model. Otol Neurotol 2025; 46:460-469. [PMID: 39965238 DOI: 10.1097/mao.0000000000004456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
HYPOTHESIS Implantation of ClearDrum ® , a biodegradable silk fibroin device, into the middle ear (ME) cavity in a rat model will not affect hearing thresholds as measured by auditory brainstem response. BACKGROUND Chronic otitis media (COM) is a recurrent middle ear infection often accompanied by tympanic membrane perforation. Our laboratory has developed a biodegradable silk fibroin device (ClearDrum®) designed to treat tympanic membrane perforations in COM. ClearDrum ® acts as a prosthetic eardrum, providing a substrate on which tympanic membrane cells can grow and acts as a long-lasting implant. METHODS Two formulations were tested based on silk/glycerol and silk/polyurethane blends. Animals were anesthetized, and either a ClearDrum ® formulation or an autologous cartilage graft was surgically implanted into the middle ear. Thresholds of the auditory brainstem response (ABR) were measured at the time of implantation and at 4 and 12 weeks post-implantation to assess hearing after the implantation. After the final measurements at 12 weeks, middle ear and cochlea were harvested for histological assessment. RESULTS No significant differences in ABR thresholds between male and female animals were found at any timepoint. Results showed that there were no detrimental effects of either Cleardrum ® formulation on ABR thresholds as compared with implantation of autologous cartilage and no presence of inflammation within the middle ear or cochlea. CONCLUSION Our ABR data suggest no substantial ototoxic effects on outer or inner hair cells and provides some support toward clinical translation of ClearDrum devices.
Collapse
Affiliation(s)
| | | | - Wilhelmina H A M Mulders
- The Auditory Laboratory, School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | | |
Collapse
|
2
|
Barry KM, Jimena JCJ, Tarawneh HY, Johnsen W, Osmanbasic A, Rodger J, Mulders WHAM. Conductive hearing loss does not affect spatial learning and memory in middle-aged guinea pigs. Sci Rep 2024; 14:31103. [PMID: 39730908 DOI: 10.1038/s41598-024-82408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/05/2024] [Indexed: 12/29/2024] Open
Abstract
Hearing loss (HL) in mid-life has been suggested as a risk factor for cognitive decline. It is unclear whether this relationship is due to deprivation of auditory input alone, degenerative processes, or a combination. Animal models are useful to investigate underlying neural mechanisms as human studies can be confounded by various factors. However, most animal studies use young animals and often exclude females. We used middle-aged guinea pigs of both sexes to investigate whether 8 weeks of auditory deprivation due to conductive HL caused spatial learning and memory impairments. Forty guinea pigs (20 M, 20 F, ~ 12 months) were tested in the Morris Water Maze (MWM) to assess baseline spatial learning and memory. In 20 of these animals (10 M, 10 F) the ear canal was plugged and 8 weeks later, animals were again assessed in MWM. No deficits in spatial learning or memory were observed in either sex. HL caused a small decline in body weight suggesting some stress associated with conductive HL, although adrenal weight, corrected for body weight, did not change. Our data suggest that auditory input deprivation alone does not affect spatial cognition in middle-age, in line with recent human data suggesting that additional risk factors need to be present.
Collapse
Affiliation(s)
- K M Barry
- School of Human Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- Ear Science Institute Australia, Subiaco, WA, Australia
| | - J C J Jimena
- School of Human Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - H Y Tarawneh
- School of Human Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - W Johnsen
- School of Human Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - A Osmanbasic
- School of Human Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - J Rodger
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- Perron Institute for Neurological and Translational Research, Crawley, WA, 6009, Australia
| | - W H A M Mulders
- School of Human Sciences, University of Western Australia, Crawley, WA, 6009, Australia.
| |
Collapse
|
3
|
Zare A, van Zwieten G, Kotz SA, Temel Y, Almasabi F, Schultz BG, Schwartze M, Janssen MLF. Sensory gating functions of the auditory thalamus: adaptation and modulations through noise-exposure and high-frequency stimulation in rats. Behav Brain Res 2023; 450:114498. [PMID: 37201892 DOI: 10.1016/j.bbr.2023.114498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/20/2023]
Abstract
The medial geniculate body (MGB) of the thalamus is an obligatory relay for auditory processing. A breakdown of adaptive filtering and sensory gating at this level may lead to multiple auditory dysfunctions, while high-frequency stimulation (HFS) of the MGB might mitigate aberrant sensory gating. To further investigate the sensory gating functions of the MGB, this study (i) recorded electrophysiological evoked potentials in response to continuous auditory stimulation, and (ii) assessed the effect of MGB HFS on these responses in noise-exposed and control animals. Pure-tone sequences were presented to assess differential sensory gating functions associated with stimulus pitch, grouping (pairing), and temporal regularity. Evoked potentials were recorded from the MGB and acquired before and after HFS (100Hz). All animals (unexposed and noise-exposed, pre- and post-HFS) showed gating for pitch and grouping. Unexposed animals also showed gating for temporal regularity not found in noise-exposed animals. Moreover, only noise-exposed animals showed restoration comparable to the typical EP amplitude suppression pattern following MGB HFS. The current findings confirm adaptive thalamic sensory gating based on different sound characteristics and provide evidence that temporal regularity affects MGB auditory signaling.
Collapse
Affiliation(s)
- Aryo Zare
- School for Mental Health and Neuroscience, Faculty of Health Medicine, and Life Sciences, Maastricht University, Maastricht, the Netherlands; Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Gusta van Zwieten
- School for Mental Health and Neuroscience, Faculty of Health Medicine, and Life Sciences, Maastricht University, Maastricht, the Netherlands; Department of Ear, Nose and Throat/Head and Neck Surgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Sonja A Kotz
- Department of Neuropsychology and Psychopharmacology, Maastricht University, the Netherlands; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Yasin Temel
- School for Mental Health and Neuroscience, Faculty of Health Medicine, and Life Sciences, Maastricht University, Maastricht, the Netherlands; Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Faris Almasabi
- School for Mental Health and Neuroscience, Faculty of Health Medicine, and Life Sciences, Maastricht University, Maastricht, the Netherlands; Physiology Department, Faculty of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Benjamin G Schultz
- Department of Neuropsychology and Psychopharmacology, Maastricht University, the Netherlands
| | - Michael Schwartze
- Department of Neuropsychology and Psychopharmacology, Maastricht University, the Netherlands.
| | - Marcus L F Janssen
- School for Mental Health and Neuroscience, Faculty of Health Medicine, and Life Sciences, Maastricht University, Maastricht, the Netherlands; Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht, the Netherlands.
| |
Collapse
|
4
|
The Effect of Noise Trauma and Deep Brain Stimulation of the Medial Geniculate Body on Tissue Activity in the Auditory Pathway. Brain Sci 2022; 12:brainsci12081099. [PMID: 36009162 PMCID: PMC9405782 DOI: 10.3390/brainsci12081099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Tinnitus is defined as the phantom perception of sound. To date, there is no curative treatment, and contemporary treatments have failed to show beneficial outcomes. Deep brain stimulation has been suggested as a potential therapy for refractory tinnitus. However, the optimal target and stimulation regimens remain to be defined. Herein, we investigated metabolic and neuronal activity changes using cytochrome C oxidase histochemistry and c-Fos immunohistochemistry in a noise trauma-induced rat model of tinnitus. We also assessed changes in neuronal activity following medial geniculate body (MGB) high-frequency stimulation (HFS). Metabolic activity was reduced in the primary auditory cortex, MGB and CA1 region of the hippocampus in noise-exposed rats. Additionally, c-Fos expression was increased in the primary auditory cortex of those animals. Furthermore, MGB-HFS enhanced c-Fos expression in the thalamic reticular nucleus. We concluded that noise trauma alters tissue activity in multiple brain areas including the auditory and limbic regions. MGB-HFS resulted in higher neuronal activity in the thalamic reticular nucleus. Given the prominent role of the auditory thalamus in tinnitus, these data provide more rationales towards targeting the MGB with HFS as a symptom management tool in tinnitus.
Collapse
|
5
|
De Vis C, Barry KM, Mulders WHAM. Hearing Loss Increases Inhibitory Effects of Prefrontal Cortex Stimulation on Sound Evoked Activity in Medial Geniculate Nucleus. Front Synaptic Neurosci 2022; 14:840368. [PMID: 35300310 PMCID: PMC8921694 DOI: 10.3389/fnsyn.2022.840368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/08/2022] [Indexed: 11/21/2022] Open
Abstract
Sensory gating is the process whereby irrelevant sensory stimuli are inhibited on their way to higher cortical areas, allowing for focus on salient information. Sensory gating circuitry includes the thalamus as well as several cortical regions including the prefrontal cortex (PFC). Defective sensory gating has been implicated in a range of neurological disorders, including tinnitus, a phantom auditory perception strongly associated with cochlear trauma. Recently, we have shown in rats that functional connectivity between PFC and auditory thalamus, i.e., the medial geniculate nucleus (MGN), changes following cochlear trauma, showing an increased inhibitory effect from PFC activation on the spontaneous firing rate of MGN neurons. In this study, we further investigated this phenomenon using a guinea pig model, in order to demonstrate the validity of our finding beyond a single species and extend data to include data on sound evoked responses. Effects of PFC electrical stimulation on spontaneous and sound-evoked activity of single neurons in MGN were recorded in anaesthetised guinea pigs with normal hearing or hearing loss 2 weeks after acoustic trauma. No effect, inhibition and excitation were observed following PFC stimulation. The proportions of these effects were not different in animals with normal hearing and hearing loss but the magnitude of effect was. Indeed, hearing loss significantly increased the magnitude of inhibition for sound evoked responses, but not for spontaneous activity. The findings support previous observations that PFC can modulate MGN activity and that functional changes occur within this pathway after cochlear trauma. These data suggest hearing loss can alter sensory gating which may be a contributing factor toward tinnitus development.
Collapse
|
6
|
Zimdahl JW, Thomas H, Bolland SJ, Leggett K, Barry KM, Rodger J, Mulders WHAM. Excitatory Repetitive Transcranial Magnetic Stimulation Over Prefrontal Cortex in a Guinea Pig Model Ameliorates Tinnitus. Front Neurosci 2021; 15:693935. [PMID: 34366777 PMCID: PMC8339289 DOI: 10.3389/fnins.2021.693935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/01/2021] [Indexed: 11/13/2022] Open
Abstract
Tinnitus, a phantom auditory perception that can seriously affect quality of life, is generally triggered by cochlear trauma and associated with aberrant activity throughout the auditory pathways, often referred to as hyperactivity. Studies suggest that non-auditory structures, such as prefrontal cortex (PFC), may be involved in tinnitus generation, by affecting sensory gating in auditory thalamus, allowing hyperactivity to reach the cortex and lead to perception. Indeed, human studies have shown that repetitive transcranial magnetic stimulation (rTMS) of PFC can alleviate tinnitus. The current study investigated whether this therapeutic effect is achieved through inhibition of thalamic hyperactivity, comparing effects of two common clinical rTMS protocols with sham treatment, in a guinea pig tinnitus model. Animals underwent acoustic trauma and once tinnitus developed were treated with either intermittent theta burst stimulation (iTBS), 20 Hz rTMS, or sham rTMS (10 days, 10 min/day; weekdays only). Tinnitus was reassessed and extracellular recordings of spontaneous tonic and burst firing rates in auditory thalamus made. To verify effects in PFC, densities of neurons positive for calcium-binding proteins, calbindin and parvalbumin, were investigated using immunohistochemistry. Both rTMS protocols significantly reduced tinnitus compared to sham. However, spontaneous tonic firing decreased following 20 Hz stimulation and increased following iTBS in auditory thalamus. Burst rate was significantly different between 20 Hz and iTBS stimulation, and burst duration was increased only after 20 Hz treatment. Density of calbindin, but not parvalbumin positive neurons, was significantly increased in the most dorsal region of PFC indicating that rTMS directly affected PFC. Our results support the involvement of PFC in tinnitus modulation, and the therapeutic benefit of rTMS on PFC in treating tinnitus, but indicate this is not achieved solely by suppression of thalamic hyperactivity.
Collapse
Affiliation(s)
- Jack W Zimdahl
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Harrison Thomas
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Samuel J Bolland
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia.,Perron Institute for Neurological and Translational Research, Crawley, WA, Australia
| | - Kerry Leggett
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Kristin M Barry
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Jennifer Rodger
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia.,Perron Institute for Neurological and Translational Research, Crawley, WA, Australia
| | | |
Collapse
|
7
|
Brinkmann P, Kotz SA, Smit JV, Janssen MLF, Schwartze M. Auditory thalamus dysfunction and pathophysiology in tinnitus: a predictive network hypothesis. Brain Struct Funct 2021; 226:1659-1676. [PMID: 33934235 PMCID: PMC8203542 DOI: 10.1007/s00429-021-02284-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 04/21/2021] [Indexed: 01/12/2023]
Abstract
Tinnitus is the perception of a 'ringing' sound without an acoustic source. It is generally accepted that tinnitus develops after peripheral hearing loss and is associated with altered auditory processing. The thalamus is a crucial relay in the underlying pathways that actively shapes processing of auditory signals before the respective information reaches the cerebral cortex. Here, we review animal and human evidence to define thalamic function in tinnitus. Overall increased spontaneous firing patterns and altered coherence between the thalamic medial geniculate body (MGB) and auditory cortices is observed in animal models of tinnitus. It is likely that the functional connectivity between the MGB and primary and secondary auditory cortices is reduced in humans. Conversely, there are indications for increased connectivity between the MGB and several areas in the cingulate cortex and posterior cerebellar regions, as well as variability in connectivity between the MGB and frontal areas regarding laterality and orientation in the inferior, medial and superior frontal gyrus. We suggest that these changes affect adaptive sensory gating of temporal and spectral sound features along the auditory pathway, reflecting dysfunction in an extensive thalamo-cortical network implicated in predictive temporal adaptation to the auditory environment. Modulation of temporal characteristics of input signals might hence factor into a thalamo-cortical dysrhythmia profile of tinnitus, but could ultimately also establish new directions for treatment options for persons with tinnitus.
Collapse
Affiliation(s)
- Pia Brinkmann
- Department of Neuropsychology and Psychopharmacology, University of Maastricht, Universiteitssingel 40, 6229, Maastricht, The Netherlands.
| | - Sonja A Kotz
- Department of Neuropsychology and Psychopharmacology, University of Maastricht, Universiteitssingel 40, 6229, Maastricht, The Netherlands
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jasper V Smit
- Department of Ear Nose and Throat/Head and Neck Surgery, Zuyderland Medical Center, Sittard/Heerlen, the Netherlands
| | - Marcus L F Janssen
- Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Michael Schwartze
- Department of Neuropsychology and Psychopharmacology, University of Maastricht, Universiteitssingel 40, 6229, Maastricht, The Netherlands
| |
Collapse
|
8
|
Koops EA, Eggermont JJ. The thalamus and tinnitus: Bridging the gap between animal data and findings in humans. Hear Res 2021; 407:108280. [PMID: 34175683 DOI: 10.1016/j.heares.2021.108280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/26/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022]
Abstract
The neuronal mechanisms underlying tinnitus are yet to be revealed. Tinnitus, an auditory phantom sensation, used to be approached as a purely auditory domain symptom. More recently, the modulatory impact of non-auditory brain regions on the percept and burden of tinnitus are explored. The thalamus is uniquely situated to facilitate the communication between auditory and non-auditory subcortical and cortical structures. Traditionally, animal models of tinnitus have focussed on subcortical auditory structures, and research with human participants has been concerned with cortical activity in auditory and non-auditory areas. Recently, both research fields have investigated the connectivity between subcortical and cortical regions and between auditory and non-auditory areas. We show that even though the different fields employ different methods to investigate the activity and connectivity of brain areas, there is consistency in the results on tinnitus between these different approaches. This consistency between human and animals research is observed for tinnitus with peripherally instigated hearing damage, and for results obtained with salicylate and noise-induced tinnitus. The thalamus integrates input from limbic and prefrontal areas and modulates auditory activity via its connections to both subcortical and cortical auditory areas. Reported altered activity and connectivity of the auditory, prefrontal, and limbic regions suggest a more systemic approach is necessary to understand the origins and impact of tinnitus.
Collapse
Affiliation(s)
- Elouise A Koops
- Department of Otorhinolaryngology/Head and Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Jos J Eggermont
- Departments of Physiology and Pharmacology, and Psychology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
9
|
Barry KM, Robertson D, Mulders WHAM. Changes in Prefrontal Cortex-Thalamic Circuitry after Acoustic Trauma. Biomedicines 2021; 9:biomedicines9010077. [PMID: 33466899 PMCID: PMC7829915 DOI: 10.3390/biomedicines9010077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
In the adult auditory system, loss of input resulting from peripheral deafferentation is well known to lead to plasticity in the central nervous system, manifested as reorganization of cortical maps and altered activity throughout the central auditory pathways. The auditory system also has strong afferent and efferent connections with cortico-limbic circuitry including the prefrontal cortex and the question arises whether this circuitry is also affected by loss of peripheral input. Recent studies in our laboratory showed that PFC activation can modulate activity of the auditory thalamus or medial geniculate nucleus (MGN) in normal hearing rats. In addition, we have shown in rats that cochlear trauma resulted in altered spontaneous burst firing in MGN. However, whether the PFC influence on MGN is changed after cochlear trauma is unknown. We investigated the effects of electrical stimulation of PFC on single neuron activity in the MGN in anaesthetized Wistar rats 2 weeks after acoustic trauma or sham surgery. Electrical stimulation of PFC showed a variety of effects in MGN neurons both in sham and acoustic trauma groups but inhibitory responses were significantly larger in the acoustic trauma animals. These results suggest an alteration in functional connectivity between PFC and MGN after cochlear trauma. This change may be a compensatory mechanism increasing sensory gating after the development of altered spontaneous activity in MGN, to prevent altered activity reaching the cortex and conscious perception.
Collapse
|
10
|
van Zwieten G, Roberts MJ, Schaper FLVW, Smit JV, Temel Y, Janssen MLF. Noise-induced neurophysiological alterations in the rat medial geniculate body and thalamocortical desynchronization by deep brain stimulation. J Neurophysiol 2021; 125:661-671. [PMID: 33405997 DOI: 10.1152/jn.00752.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The thalamic medial geniculate body (MGB) is uniquely positioned within the neural tinnitus networks. Deep brain stimulation (DBS) of the MGB has been proposed as a possible novel treatment for tinnitus, yet mechanisms remain elusive. The aim of this study was to characterize neurophysiologic hallmarks in the MGB after noise exposure and to assess the neurophysiological effects of electrical stimulation of the MGB. Fourteen male Sprague-Dawley rats were included. Nine subjects were unilaterally exposed to a 16-kHz octave-band noise at 115 dB for 90 min, five received sham exposure. Single units were recorded from the contralateral MGB where spontaneous firing, coefficient of variation, response type, rate-level functions, and thresholds were determined. Local field potentials and electroencephalographical (EEG) recordings were performed before and after high-frequency DBS of the MGB. Thalamocortical synchronization and power were analyzed. In total, 214 single units were identified (n = 145 in noise-exposed group, n = 69 in control group). After noise exposure, fast-responding neurons become less responsive or nonresponsive without change to their spontaneous rate, whereas sustained- and suppressed-type neurons exhibit enhanced spontaneous activity without change to their stimulus-driven activity. MGB DBS suppressed thalamocortical synchronization in the β and γ bands, supporting suppression of thalamocortical synchronization as an underlying mechanism of tinnitus suppression by high frequency DBS. These findings contribute to our understanding of the neurophysiologic consequences of noise exposure and the mechanism of potential DBS therapy for tinnitus.NEW & NOTEWORTHY Separate functional classes of MGB neurons might have distinct roles in tinnitus pathophysiology. After noise exposure, fast-responding neurons become less responsive or nonresponsive without change to their spontaneous firing, whereas sustained and suppressed neurons exhibit enhanced spontaneous activity without change to their stimulus-driven activity. Furthermore, results suggest desynchronization of thalamocortical β and γ oscillations as a mechanism of tinnitus suppression by MGB DBS.
Collapse
Affiliation(s)
- Gusta van Zwieten
- Department of Ear Nose and Throat/Head and Neck Surgery, Maastricht University Medical Center, Maastricht, The Netherlands.,School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Mark J Roberts
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Frédéric L V W Schaper
- School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jasper V Smit
- School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Ear Nose and Throat/Head and Neck Surgery, Zuyderland Hospital, Heerlen, The Netherlands
| | - Yasin Temel
- School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marcus L F Janssen
- School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
11
|
Zhang J, Firestone E, Elattma A. Animal Models of Tinnitus Treatment: Cochlear and Brain Stimulation. Curr Top Behav Neurosci 2021; 51:83-129. [PMID: 34282563 DOI: 10.1007/7854_2021_227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neuromodulation, via stimulation of a variety of peripheral and central structures, is used to suppress tinnitus. However, investigative limitations in humans due to ethical reasons have made it difficult to decipher the mechanisms underlying treatment-induced tinnitus relief, so a number of animal models have arisen to address these unknowns. This chapter reviews animal models of cochlear and brain stimulation and assesses their modulatory effects on behavioral evidence of tinnitus and its related neural correlates. When a structure is stimulated, localized modulation, often presenting as downregulation of spontaneous neuronal spike firing rate, bursting and neurosynchrony, occurs within the brain area. Through anatomical projections and transmitter pathways, the interventions activate both auditory- and non-auditory structures by taking bottom-up ascending and top-down descending modes to influence their target brain structures. Furthermore, it is the brain oscillations that cochlear or brain stimulation evoke and connect the prefrontal cortex, striatal systems, and other limbic structures to refresh neural networks and relieve auditory, attentive, conscious, as well as emotional reactive aspects of tinnitus. This oscillatory neural network connectivity is achieved via the thalamocorticothalamic circuitry including the lemniscal and non-lemniscal auditory brain structures. Beyond existing technologies, the review also reveals opportunities for developing advanced animal models using new modalities to achieve precision neuromodulation and tinnitus abatement, such as optogenetic cochlear and/or brain stimulation.
Collapse
Affiliation(s)
- Jinsheng Zhang
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Communication Sciences and Disorders, Wayne State University College of Liberal Arts and Sciences, Detroit, MI, USA.
| | - Ethan Firestone
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ahmed Elattma
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
12
|
Eggermont JJ. Separate auditory pathways for the induction and maintenance of tinnitus and hyperacusis? PROGRESS IN BRAIN RESEARCH 2020; 260:101-127. [PMID: 33637214 DOI: 10.1016/bs.pbr.2020.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tinnitus and hyperacusis often occur together, however tinnitus may occur without hyperacusis or hyperacusis without tinnitus. Based on animal research one could argue that hyperacusis results from noise exposures that increase central gain in the lemniscal, tonotopically organized, pathways, whereas tinnitus requires increased burst firing and neural synchrony in the extra-lemniscal pathway. However, these substrates are not sufficient and require involvement of the central nervous system. The dominant factors in changing cortical networks in tinnitus patients are foremost the degree and type of hearing loss, and comorbidities such as distress and mood. So far, no definite changes have been established for tinnitus proper, albeit that changes in connectivity between the dorsal attention network and the parahippocampal area, as well as the default-mode network-precuneus decoupling, appear to be strong candidates. I conclude that there is still a strong need for further integrating animal and human research into tinnitus and hyperacusis.
Collapse
Affiliation(s)
- Jos J Eggermont
- Department of Psychology, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|