1
|
Liu M, Xie F, Dai J, Zhang J, Yuan K, Wang N. Brain-wide inputs to the non-lemniscal inferior colliculus in mice. Neurosci Lett 2023; 793:136976. [PMID: 36427816 DOI: 10.1016/j.neulet.2022.136976] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/27/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
The inferior colliculus (IC) is the hub along the auditory pathway. Although it is fundamentally an auditory structure, the neurons in the IC, especially its non-lemniscal part also respond to multimodal stimuli. However, the sources of these non-auditory inputs are unclear. In this study, we injected the rAAV2-retro virus, a virus with efficient retrograde function, into the non-lemniscal IC of the Ai14 reporter line. The majority of cortical and subcortical brain areas, including cognitive, motor, somatosensory, auditory, and visual-related regions were revealed. The quantified whole brain input data have showed that the non-lemniscal IC received a higher proportion of inputs from ipsilateral cortical brain regions. The non-lemniscal IC integrates different multimodal patterns, for the dorsal cortex (ICD) receives primarily auditory inputs, and the external cortex (ICE) receives primarily auditory and somatosensory inputs. These findings demonstrate that auditory integration is shaped by a network of multi-sensory connections in the non-lemniscal IC subregions.
Collapse
Affiliation(s)
- Mengting Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Fenghua Xie
- Department of Biomedical Engineering, School of Medicine, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Jinsheng Dai
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Juan Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Kexin Yuan
- Department of Biomedical Engineering, School of Medicine, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
| | - Ningyu Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Opoku-Baah C, Schoenhaut AM, Vassall SG, Tovar DA, Ramachandran R, Wallace MT. Visual Influences on Auditory Behavioral, Neural, and Perceptual Processes: A Review. J Assoc Res Otolaryngol 2021; 22:365-386. [PMID: 34014416 PMCID: PMC8329114 DOI: 10.1007/s10162-021-00789-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/07/2021] [Indexed: 01/03/2023] Open
Abstract
In a naturalistic environment, auditory cues are often accompanied by information from other senses, which can be redundant with or complementary to the auditory information. Although the multisensory interactions derived from this combination of information and that shape auditory function are seen across all sensory modalities, our greatest body of knowledge to date centers on how vision influences audition. In this review, we attempt to capture the state of our understanding at this point in time regarding this topic. Following a general introduction, the review is divided into 5 sections. In the first section, we review the psychophysical evidence in humans regarding vision's influence in audition, making the distinction between vision's ability to enhance versus alter auditory performance and perception. Three examples are then described that serve to highlight vision's ability to modulate auditory processes: spatial ventriloquism, cross-modal dynamic capture, and the McGurk effect. The final part of this section discusses models that have been built based on available psychophysical data and that seek to provide greater mechanistic insights into how vision can impact audition. The second section reviews the extant neuroimaging and far-field imaging work on this topic, with a strong emphasis on the roles of feedforward and feedback processes, on imaging insights into the causal nature of audiovisual interactions, and on the limitations of current imaging-based approaches. These limitations point to a greater need for machine-learning-based decoding approaches toward understanding how auditory representations are shaped by vision. The third section reviews the wealth of neuroanatomical and neurophysiological data from animal models that highlights audiovisual interactions at the neuronal and circuit level in both subcortical and cortical structures. It also speaks to the functional significance of audiovisual interactions for two critically important facets of auditory perception-scene analysis and communication. The fourth section presents current evidence for alterations in audiovisual processes in three clinical conditions: autism, schizophrenia, and sensorineural hearing loss. These changes in audiovisual interactions are postulated to have cascading effects on higher-order domains of dysfunction in these conditions. The final section highlights ongoing work seeking to leverage our knowledge of audiovisual interactions to develop better remediation approaches to these sensory-based disorders, founded in concepts of perceptual plasticity in which vision has been shown to have the capacity to facilitate auditory learning.
Collapse
Affiliation(s)
- Collins Opoku-Baah
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Adriana M Schoenhaut
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Sarah G Vassall
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - David A Tovar
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Ramnarayan Ramachandran
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
- Department of Hearing and Speech, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Vision Research Center, Nashville, TN, USA
| | - Mark T Wallace
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
- Department of Psychology, Vanderbilt University, Nashville, TN, USA.
- Department of Hearing and Speech, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Vision Research Center, Nashville, TN, USA.
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
3
|
Cheng L, Guo ZY, Qu YL. Cross-modality modulation of auditory midbrain processing of intensity information. Hear Res 2020; 395:108042. [PMID: 32810721 DOI: 10.1016/j.heares.2020.108042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/12/2020] [Accepted: 07/08/2020] [Indexed: 02/03/2023]
Abstract
In nature, animals constantly receive a multitude of sensory stimuli, such as visual, auditory, and somatosensory. The integration across sensory modalities is advantageous for the precise processing of sensory inputs which is essential for animals to survival. Although some principles of cross-modality integration have been revealed by many studies, little insight has been gained into its functional potentials. In this study, the functional influence of cross-modality modulation on auditory processing of intensity information was investigated via recording neuronal activity in the auditory midbrain (i.e., inferior colliculus, IC) under the conditions of visual, auditory, and audiovisual stimuli, respectively. Results demonstrated that combined audiovisual stimuli either enhanced or suppressed the responses of IC neurons compared to auditory stimuli alone, even though the same visual stimuli alone induced no response. Audiovisual modulation appeared to be strongest when the combined audiovisual stimuli were located at the best auditory azimuth of neurons as well as when presented with intensity at near-threshold levels. Additionally, the rate-intensity function of IC neurons to auditory stimuli was expanded or compressed by audiovisual modulation, which was highly dependent on the minimal threshold (MT) of neurons. Lowering of the MT and greater audiovisual modulation for the neuron indicated an intensity-specific enhancement of auditory intensity sensitivity by cross-modality modulation. Overall, evidence suggests a potential functional role of cross-modality modulation in IC that serves to instruct adaptive plasticity to enhance the auditory perception of intensity information.
Collapse
Affiliation(s)
- Liang Cheng
- School of Psychology & Key Laboratory of Adolescent Cyberpsycology and Behavior (CCNU) of Ministry of Education, Central China Normal University, Wuhan, 430079, China; School of Life Sciences & Hubei Key Lab of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, China.
| | - Zhao-Yang Guo
- School of Psychology & Key Laboratory of Adolescent Cyberpsycology and Behavior (CCNU) of Ministry of Education, Central China Normal University, Wuhan, 430079, China
| | - Yi-Li Qu
- School of Psychology & Key Laboratory of Adolescent Cyberpsycology and Behavior (CCNU) of Ministry of Education, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|