1
|
Shehabi S, Comstock DC, Mankel K, Bormann BM, Das S, Brodie H, Sagiv D, Miller LM. Individual Differences in Cognition and Perception Predict Neural Processing of Speech in Noise for Audiometrically Normal Listeners. eNeuro 2025; 12:ENEURO.0381-24.2025. [PMID: 40101960 PMCID: PMC12042997 DOI: 10.1523/eneuro.0381-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/27/2025] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Individuals with normal hearing exhibit considerable variability in their capacity to understand speech in noisy environments. Previous research suggests the cause of this variance may be due to individual differences in cognition and auditory perception. To investigate the impact of cognitive and perceptual differences on speech comprehension, 25 adult human participants with normal hearing completed numerous cognitive and psychoacoustic tasks including the Flanker, Stroop, Trail Making, reading span, and temporal fine structure tests. They also completed a continuous multitalker spatial attention task while neural activity was recorded using electroencephalography. The auditory cortical N1 response was extracted as a measure of neural speech encoding during continuous speech listening using an engineered "chirped-speech" (Cheech) stimulus. We compared N1 component morphologies of target and masker speech stimuli to assess neural correlates of attentional gains while listening to concurrently played short story narratives. Performance on cognitive and psychoacoustic tasks was used to predict N1 component amplitude differences between attended and unattended speech using multiple regression. Results show inhibitory control and working memory abilities can predict N1 amplitude differences between the target and masker stories. Interestingly, none of the cognitive and psychoacoustic predictors correlated with behavioral speech-in-noise listening performance in the attention task, suggesting that neural measures may capture different aspects of cognitive and auditory processing compared with behavioral measures alone.
Collapse
Affiliation(s)
- Sana Shehabi
- Center for Mind and Brain, University of California, Davis, Davis, California 95618
| | - Daniel C Comstock
- Center for Mind and Brain, University of California, Davis, Davis, California 95618
| | - Kelsey Mankel
- Center for Mind and Brain, University of California, Davis, Davis, California 95618
- Institute for Intelligent Systems, University of Memphis, Memphis, Tennessee 38152
- School of Communication Sciences & Disorders, University of Memphis, Memphis, Tennessee 38152
| | - Brett M Bormann
- Center for Mind and Brain, University of California, Davis, Davis, California 95618
- Neuroscience Graduate Group, University of California, Davis, Davis, California 95616
| | - Soukhin Das
- Center for Mind and Brain, University of California, Davis, Davis, California 95618
- Psychology Graduate Group, University of California, Davis, Davis, California 95616
| | - Hilary Brodie
- Departments of Otolaryngology | Head and Neck Surgery, University of California, Davis, Davis, California 95616
| | - Doron Sagiv
- Departments of Otolaryngology | Head and Neck Surgery, University of California, Davis, Davis, California 95616
| | - Lee M Miller
- Center for Mind and Brain, University of California, Davis, Davis, California 95618
- Departments of Otolaryngology | Head and Neck Surgery, University of California, Davis, Davis, California 95616
- Neurobiology, Physiology and Behavior, University of California, Davis, Davis, California 95616
| |
Collapse
|
2
|
Dapper K, Wolpert SM, Schirmer J, Fink S, Gaudrain E, Başkent D, Singer W, Verhulst S, Braun C, Dalhoff E, Rüttiger L, Munk MHJ, Knipper M. Age dependent deficits in speech recognition in quiet and noise are reflected in MGB activity and cochlear onset coding. Neuroimage 2025; 305:120958. [PMID: 39622462 DOI: 10.1016/j.neuroimage.2024.120958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
The slowing and reduction of auditory responses in the brain are recognized side effects of increased pure tone thresholds, impaired speech recognition, and aging. However, it remains controversial whether central slowing is primarily linked to brain processes as atrophy, or is also associated with the slowing of temporal neural processing from the periphery. Here we analyzed electroencephalogram (EEG) responses that most likely reflect medial geniculate body (MGB) responses to passive listening of phonemes in 80 subjects ranging in age from 18 to 76 years, in whom the peripheral auditory responses had been analyzed in detail (Schirmer et al., 2024). We observed that passive listening to vowels and phonemes, specifically designed to rely on either temporal fine structure (TFS) for frequencies below the phase locking limit (<1500 Hz), or on the temporal envelope (TENV) for frequencies above phase locking limit, entrained lower or higher neural EEG responses. While previous views predict speech content, particular in noise to be encoded through TENV, here a decreasing phoneme-induced EEG amplitude over age in response to phonemes relying on TENV coding could also be linked to poorer speech-recognition thresholds in quiet. In addition, increased phoneme-evoked EEG delay could be correlated with elevated extended high-frequency threshold (EHF) for phoneme changes that relied on TFS and TENV coding. This may suggest a role of pure-tone threshold averages (PTA) of EHF for TENV and TFS beyond sound localization that is reflected in likely MGB delays. When speech recognition thresholds were normalized for pure-tone thresholds, however, the EEG amplitudes remained insignificant, and thereby became independent of age. Under these conditions, poor speech recognition in quiet was found together with a delay in EEG response for phonemes that relied on TFS coding, while poor speech recognition in ipsilateral noise was observed as a trend of shortened EEG delays for phonemes that relied on TENV coding. Based on previous analyses performed in these same subjects, elevated thresholds in extended high-frequency regions were linked to cochlear synaptopathy and auditory brainstem delays. Also, independent of hearing loss, poor speech-performing groups in quiet or with ipsilateral noise during TFS or TENV coding could be linked to lower or better outer hair cell performance and delayed or steeper auditory nerve responses at stimulus onset. The amplitude and latency of MGB responses to phonemes requiring TFS or TENV coding, dependent or independent of hearing loss, may thus be a new predictor of poor speech recognition in quiet and ipsilateral noise that links deficits in synchronicity at stimulus onset to neocortical activity. Amplitudes and delays of speech EEG responses to syllables should be reconsidered for future hearing-aid studies.
Collapse
Affiliation(s)
- Konrad Dapper
- Department of Otolaryngology, Head and Neck, University of Tübingen, Tübingen 72076, Germany; Department of Biology, Technical University 64287 Darmstadt, Darmstadt, Germany
| | - Stephan M Wolpert
- Department of Otolaryngology, Head and Neck, University of Tübingen, Tübingen 72076, Germany
| | - Jakob Schirmer
- Department of Otolaryngology, Head and Neck, University of Tübingen, Tübingen 72076, Germany
| | - Stefan Fink
- Department of Otolaryngology, Head and Neck, University of Tübingen, Tübingen 72076, Germany
| | - Etienne Gaudrain
- Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, CNRS UMR5292, INSERM U1028, Center Hospitalier Le Vinatier -Bâtiment 462-Neurocampus, 95 boulevard Pinel, Lyon, France
| | - Deniz Başkent
- Department of Otorhinolaryngology, University Medical Center Groningen (UMCG), Hanzeplein 1, BB21, Groningen 9700RB, the Netherlands
| | - Wibke Singer
- Department of Otolaryngology, Head and Neck, University of Tübingen, Tübingen 72076, Germany
| | - Sarah Verhulst
- Department of Information Technology, Ghent University, Zwijnaarde 9052, Belgium
| | - Christoph Braun
- MEG-Center, University of Tübingen, Tübingen 72076, Germany; HIH, Hertie Institute for Clinical Brain Research, Tübingen 72076, Germany; CIMeC, Center for Mind and Brain Research, University of Trento, Rovereto 38068, Italy
| | - Ernst Dalhoff
- Department of Otolaryngology, Head and Neck, University of Tübingen, Tübingen 72076, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck, University of Tübingen, Tübingen 72076, Germany
| | - Matthias H J Munk
- Department of Otolaryngology, Head and Neck, University of Tübingen, Tübingen 72076, Germany; Department of Biology, Technical University 64287 Darmstadt, Darmstadt, Germany
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck, University of Tübingen, Tübingen 72076, Germany.
| |
Collapse
|
3
|
Moore BC. The perception of emotion in music by people with hearing loss and people with cochlear implants. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230258. [PMID: 39005027 PMCID: PMC11444223 DOI: 10.1098/rstb.2023.0258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/02/2023] [Indexed: 07/16/2024] Open
Abstract
Music is an important part of life for many people. It can evoke a wide range of emotions, including sadness, happiness, anger, tension, relief and excitement. People with hearing loss and people with cochlear implants have reduced abilities to discriminate some of the features of musical sounds that may be involved in evoking emotions. This paper reviews these changes in perceptual abilities and describes how they affect the perception of emotion in music. For people with acquired partial hearing loss, it appears that the perception of emotion in music is almost normal, whereas congenital partial hearing loss is associated with impaired perception of music emotion. For people with cochlear implants, the ability to discriminate changes in fundamental frequency (associated with perceived pitch) is much worse than normal and musical harmony is hardly perceived. As a result, people with cochlear implants appear to judge emotion in music primarily using tempo and rhythm cues, and this limits the range of emotions that can be judged. This article is part of the theme issue 'Sensing and feeling: an integrative approach to sensory processing and emotional experience'.
Collapse
Affiliation(s)
- Brian C. J. Moore
- Cambridge Hearing Group, Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK
| |
Collapse
|
4
|
Schirmer J, Wolpert S, Dapper K, Rühle M, Wertz J, Wouters M, Eldh T, Bader K, Singer W, Gaudrain E, Başkent D, Verhulst S, Braun C, Rüttiger L, Munk MHJ, Dalhoff E, Knipper M. Neural Adaptation at Stimulus Onset and Speed of Neural Processing as Critical Contributors to Speech Comprehension Independent of Hearing Threshold or Age. J Clin Med 2024; 13:2725. [PMID: 38731254 PMCID: PMC11084258 DOI: 10.3390/jcm13092725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Background: It is assumed that speech comprehension deficits in background noise are caused by age-related or acquired hearing loss. Methods: We examined young, middle-aged, and older individuals with and without hearing threshold loss using pure-tone (PT) audiometry, short-pulsed distortion-product otoacoustic emissions (pDPOAEs), auditory brainstem responses (ABRs), auditory steady-state responses (ASSRs), speech comprehension (OLSA), and syllable discrimination in quiet and noise. Results: A noticeable decline of hearing sensitivity in extended high-frequency regions and its influence on low-frequency-induced ABRs was striking. When testing for differences in OLSA thresholds normalized for PT thresholds (PTTs), marked differences in speech comprehension ability exist not only in noise, but also in quiet, and they exist throughout the whole age range investigated. Listeners with poor speech comprehension in quiet exhibited a relatively lower pDPOAE and, thus, cochlear amplifier performance independent of PTT, smaller and delayed ABRs, and lower performance in vowel-phoneme discrimination below phase-locking limits (/o/-/u/). When OLSA was tested in noise, listeners with poor speech comprehension independent of PTT had larger pDPOAEs and, thus, cochlear amplifier performance, larger ASSR amplitudes, and higher uncomfortable loudness levels, all linked with lower performance of vowel-phoneme discrimination above the phase-locking limit (/i/-/y/). Conslusions: This study indicates that listening in noise in humans has a sizable disadvantage in envelope coding when basilar-membrane compression is compromised. Clearly, and in contrast to previous assumptions, both good and poor speech comprehension can exist independently of differences in PTTs and age, a phenomenon that urgently requires improved techniques to diagnose sound processing at stimulus onset in the clinical routine.
Collapse
Affiliation(s)
- Jakob Schirmer
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Stephan Wolpert
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Konrad Dapper
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
- Department of Biology, Technical University Darmstadt, 64287 Darmstadt, Germany
| | - Moritz Rühle
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Jakob Wertz
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Marjoleen Wouters
- Department of Information Technology, Ghent University, Technologiepark 126, 9052 Zwijnaarde, Belgium; (M.W.); (S.V.)
| | - Therese Eldh
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Katharina Bader
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Etienne Gaudrain
- Lyon Neuroscience Research Center, Centre National de la Recherche Scientifique UMR5292, Inserm U1028, Université Lyon 1, Centre Hospitalier Le Vinatier-Bâtiment 462–Neurocampus, 95 Boulevard Pinel, 69675 Bron CEDEX, France;
- Department of Otorhinolaryngology, University Medical Center Groningen (UMCG), Hanzeplein 1, BB21, 9700 RB Groningen, The Netherlands;
| | - Deniz Başkent
- Department of Otorhinolaryngology, University Medical Center Groningen (UMCG), Hanzeplein 1, BB21, 9700 RB Groningen, The Netherlands;
| | - Sarah Verhulst
- Department of Information Technology, Ghent University, Technologiepark 126, 9052 Zwijnaarde, Belgium; (M.W.); (S.V.)
| | - Christoph Braun
- Magnetoencephalography-Centre and Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany;
- Center for Mind and Brain Research, University of Trento, Palazzo Fedrigotti-corso Bettini 31, 38068 Rovereto, Italy
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Matthias H. J. Munk
- Department of Biology, Technical University Darmstadt, 64287 Darmstadt, Germany
- Department of Psychiatry & Psychotherapy, University of Tübingen, Calwerstraße 14, 72076 Tübingen, Germany
| | - Ernst Dalhoff
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| |
Collapse
|
5
|
Hu H, Ewert SD, Kollmeier B, Vickers D. Rate dependent neural responses of interaural-time-difference cues in fine-structure and envelope. PeerJ 2024; 12:e17104. [PMID: 38680894 PMCID: PMC11055513 DOI: 10.7717/peerj.17104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/22/2024] [Indexed: 05/01/2024] Open
Abstract
Advancements in cochlear implants (CIs) have led to a significant increase in bilateral CI users, especially among children. Yet, most bilateral CI users do not fully achieve the intended binaural benefit due to potential limitations in signal processing and/or surgical implant positioning. One crucial auditory cue that normal hearing (NH) listeners can benefit from is the interaural time difference (ITD), i.e., the time difference between the arrival of a sound at two ears. The ITD sensitivity is thought to be heavily relying on the effective utilization of temporal fine structure (very rapid oscillations in sound). Unfortunately, most current CIs do not transmit such true fine structure. Nevertheless, bilateral CI users have demonstrated sensitivity to ITD cues delivered through envelope or interaural pulse time differences, i.e., the time gap between the pulses delivered to the two implants. However, their ITD sensitivity is significantly poorer compared to NH individuals, and it further degrades at higher CI stimulation rates, especially when the rate exceeds 300 pulse per second. The overall purpose of this research thread is to improve spatial hearing abilities in bilateral CI users. This study aims to develop electroencephalography (EEG) paradigms that can be used with clinical settings to assess and optimize the delivery of ITD cues, which are crucial for spatial hearing in everyday life. The research objective of this article was to determine the effect of CI stimulation pulse rate on the ITD sensitivity, and to characterize the rate-dependent degradation in ITD perception using EEG measures. To develop protocols for bilateral CI studies, EEG responses were obtained from NH listeners using sinusoidal-amplitude-modulated (SAM) tones and filtered clicks with changes in either fine structure ITD (ITDFS) or envelope ITD (ITDENV). Multiple EEG responses were analyzed, which included the subcortical auditory steady-state responses (ASSRs) and cortical auditory evoked potentials (CAEPs) elicited by stimuli onset, offset, and changes. Results indicated that acoustic change complex (ACC) responses elicited by ITDENV changes were significantly smaller or absent compared to those elicited by ITDFS changes. The ACC morphologies evoked by ITDFS changes were similar to onset and offset CAEPs, although the peak latencies were longest for ACC responses and shortest for offset CAEPs. The high-frequency stimuli clearly elicited subcortical ASSRs, but smaller than those evoked by lower carrier frequency SAM tones. The 40-Hz ASSRs decreased with increasing carrier frequencies. Filtered clicks elicited larger ASSRs compared to high-frequency SAM tones, with the order being 40 > 160 > 80> 320 Hz ASSR for both stimulus types. Wavelet analysis revealed a clear interaction between detectable transient CAEPs and 40-Hz ASSRs in the time-frequency domain for SAM tones with a low carrier frequency.
Collapse
Affiliation(s)
- Hongmei Hu
- SOUND Lab, Cambridge Hearing Group, Department of Clinical Neuroscience, Cambridge University, Cambridge, United Kingdom
- Department of Medical Physics and Acoustics, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Stephan D. Ewert
- Department of Medical Physics and Acoustics, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Birger Kollmeier
- Department of Medical Physics and Acoustics, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Deborah Vickers
- SOUND Lab, Cambridge Hearing Group, Department of Clinical Neuroscience, Cambridge University, Cambridge, United Kingdom
| |
Collapse
|
6
|
Wang X, Nie S, Wen Y, Zhao Z, Li J, Wang N, Zhang J. Age-related differences in auditory spatial processing revealed by acoustic change complex. Front Hum Neurosci 2024; 18:1342931. [PMID: 38681742 PMCID: PMC11045960 DOI: 10.3389/fnhum.2024.1342931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/01/2024] [Indexed: 05/01/2024] Open
Abstract
Objectives The auditory spatial processing abilities mature throughout childhood and degenerate in older adults. This study aimed to compare the differences in onset cortical auditory evoked potentials (CAEPs) and location-evoked acoustic change complex (ACC) responses among children, adults, and the elderly and to investigate the impact of aging and development on ACC responses. Design One hundred and seventeen people were recruited in the study, including 57 typically-developed children, 30 adults, and 30 elderlies. The onset-CAEP evoked by white noise and ACC by sequential changes in azimuths were recorded. Latencies and amplitudes as a function of azimuths were analyzed using the analysis of variance, Pearson correlation analysis, and multiple linear regression model. Results The ACC N1'-P2' amplitudes and latencies in adults, P1'-N1' amplitudes in children, and N1' amplitudes and latencies in the elderly were correlated with angles of shifts. The N1'-P2' and P2' amplitudes decreased in the elderly compared to adults. In Children, the ACC P1'-N1' responses gradually differentiated into the P1'-N1'-P2' complex. Multiple regression analysis showed that N1'-P2' amplitudes (R2 = 0.33) and P2' latencies (R2 = 0.18) were the two most variable predictors in adults, while in the elderly, N1' latencies (R2 = 0.26) explained most variances. Although the amplitudes of onset-CAEP differed at some angles, it could not predict angle changes as effectively as ACC responses. Conclusion The location-evoked ACC responses varied among children, adults, and the elderly. The N1'-P2' amplitudes and P2' latencies in adults and N1' latencies in the elderly explained most variances of changes in spatial position. The differentiation of the N1' waveform was observed in children. Further research should be conducted across all age groups, along with behavioral assessments, to confirm the relationship between aging and immaturity in objective ACC responses and poorer subjective spatial performance. Significance ACCs evoked by location changes were assessed in adults, children, and the elderly to explore the impact of aging and development on these differences.
Collapse
Affiliation(s)
| | | | | | | | | | - Ningyu Wang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Juan Zhang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Benoit C, Carlson RJ, King MC, Horn DL, Rubinstein JT. Behavioral characterization of the cochlear amplifier lesion due to loss of function of stereocilin (STRC) in human subjects. Hear Res 2023; 439:108898. [PMID: 37890241 PMCID: PMC10756798 DOI: 10.1016/j.heares.2023.108898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/12/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
Loss of function of stereocilin (STRC) is the second most common cause of inherited hearing loss. The loss of the stereocilin protein, encoded by the STRC gene, induces the loss of connection between outer hair cells and tectorial membrane. This only affects the outer hair cells (OHCs) function, involving deficits of active cochlear frequency selectivity and amplifier functions despite preservation of normal inner hair cells. Better understanding of cochlear features associated with mutation of STRC will improve our knowledge of normal cochlear function, the pathophysiology of hearing impairment, and potentially enhance hearing aid and cochlear implant signal processing. Nine subjects with homozygous or compound heterozygous loss of function mutations in STRC were included, age 7-24 years. Temporal and spectral modulation perception were measured, characterized by spectral and temporal modulation transfer functions. Speech-in-noise perception was studied with spondee identification in adaptive steady-state noise and AzBio sentences with 0 and -5 dB SNR multitalker babble. Results were compared with normal hearing (NH) and cochlear implant (CI) listeners to place STRC-/- listeners' hearing capacity in context. Spectral ripple discrimination thresholds in the STRC-/- subjects were poorer than in NH listeners (p < 0.0001) but remained better than for CI listeners (p < 0.0001). Frequency resolution appeared impaired in the STRC-/- group compared to NH listeners but did not reach statistical significance (p = 0.06). Compared to NH listeners, amplitude modulation detection thresholds in the STRC-/- group did not reach significance (p= 0.06) but were better than in CI subjects (p < 0.0001). Temporal resolution in STRC-/- subjects was similar to NH (p = 0.98) but better than in CI listeners (p = 0.04). The spondee reception threshold in the STRC-/- group was worse than NH listeners (p = 0.0008) but better than CI listeners (p = 0.0001). For AzBio sentences, performance at 0 dB SNR was similar between the STRC-/- group and the NH group, 88 % and 97 % respectively. For -5 dB SNR, the STRC-/- performance was significantly poorer than NH, 40 % and 85 % respectively, yet much better than with CI who performed at 54 % at +5 dB SNR in children and 53 % at + 10 dB SNR in adults. To our knowledge, this is the first study of the psychoacoustic performance of human subjects lacking cochlear amplification but with normal inner hair cell function. Our data demonstrate preservation of temporal resolution and a trend to impaired frequency resolution in this group without reaching statistical significance. Speech-in-noise perception compared to NH listeners was impaired as well. All measures were better than those in CI listeners. It remains to be seen if hearing aid modifications, customized for the spectral deficits in STRC-/- listeners can improve speech understanding in noise. Since cochlear implants are also limited by deficient spectral selectivity, STRC-/- hearing may provide an upper bound on what could be obtained with better temporal coding in electrical stimulation.
Collapse
Affiliation(s)
- Charlotte Benoit
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, USA.
| | - Ryan J Carlson
- Departments of Genome Sciences and Medicine, University of Washington, Seattle, WA, USA
| | - Mary-Claire King
- Departments of Genome Sciences and Medicine, University of Washington, Seattle, WA, USA
| | - David L Horn
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, USA; Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, USA; Division of Pediatric Otolaryngology, Department of Surgery, Seattle Children's Hospital, Seattle, WA, USA
| | - Jay T Rubinstein
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
8
|
Windle R, Dillon H, Heinrich A. A review of auditory processing and cognitive change during normal ageing, and the implications for setting hearing aids for older adults. Front Neurol 2023; 14:1122420. [PMID: 37409017 PMCID: PMC10318159 DOI: 10.3389/fneur.2023.1122420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/02/2023] [Indexed: 07/07/2023] Open
Abstract
Throughout our adult lives there is a decline in peripheral hearing, auditory processing and elements of cognition that support listening ability. Audiometry provides no information about the status of auditory processing and cognition, and older adults often struggle with complex listening situations, such as speech in noise perception, even if their peripheral hearing appears normal. Hearing aids can address some aspects of peripheral hearing impairment and improve signal-to-noise ratios. However, they cannot directly enhance central processes and may introduce distortion to sound that might act to undermine listening ability. This review paper highlights the need to consider the distortion introduced by hearing aids, specifically when considering normally-ageing older adults. We focus on patients with age-related hearing loss because they represent the vast majority of the population attending audiology clinics. We believe that it is important to recognize that the combination of peripheral and central, auditory and cognitive decline make older adults some of the most complex patients seen in audiology services, so they should not be treated as "standard" despite the high prevalence of age-related hearing loss. We argue that a primary concern should be to avoid hearing aid settings that introduce distortion to speech envelope cues, which is not a new concept. The primary cause of distortion is the speed and range of change to hearing aid amplification (i.e., compression). We argue that slow-acting compression should be considered as a default for some users and that other advanced features should be reconsidered as they may also introduce distortion that some users may not be able to tolerate. We discuss how this can be incorporated into a pragmatic approach to hearing aid fitting that does not require increased loading on audiology services.
Collapse
Affiliation(s)
- Richard Windle
- Audiology Department, Royal Berkshire NHS Foundation Trust, Reading, United Kingdom
| | - Harvey Dillon
- NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom
- Department of Linguistics, Macquarie University, North Ryde, NSW, Australia
| | - Antje Heinrich
- NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom
- Division of Human Communication, Development and Hearing, School of Health Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
9
|
Klug J, Dietz M. Frequency dependence of sensitivity to interaural phase differences in pure tones. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:3130. [PMID: 36586867 DOI: 10.1121/10.0015246] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
It is well established that in normal-hearing humans, the threshold of interaural time differences for pure tones increases dramatically above about 1300 Hz, only to become unmeasurable above 1400 Hz. However, physiological data and auditory models suggest that the actual decline in sensitivity is more gradual and only appears to be abrupt because the maximum of the psychometric function dips below the threshold proportion correct, e.g., 0.794. Published data only report thresholds at certain proportions correct but not the decline of proportions correct or of the sensitivity index d' with increasing frequencies. Here, we present pure-tone behavioral data obtained with a constant stimulus procedure. Seven of nine subjects showed proportions correct above 0.9 at 1300 Hz and virtually no sensitivity at 1500 Hz (proportion correct within 0.07 of chance level). This corresponds to a sensitivity decline of 46-78 dB/oct, much steeper than predicted by existing models or by the decline of phase locking of the auditory nerve fibers in animal data.
Collapse
Affiliation(s)
- Jonas Klug
- Department of Medical Physics and Acoustics, University of Oldenburg, 26129, Oldenburg, Germany
| | - Mathias Dietz
- Department of Medical Physics and Acoustics, University of Oldenburg, 26129, Oldenburg, Germany
| |
Collapse
|
10
|
Weissgerber T, Müller C, Stöver T, Baumann U. Age Differences in Speech Perception in Noise and Sound Localization in Individuals With Subjective Normal Hearing. Front Psychol 2022; 13:845285. [PMID: 35496254 PMCID: PMC9051364 DOI: 10.3389/fpsyg.2022.845285] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Hearing loss in old age, which often goes untreated, has far-reaching consequences. Furthermore, reduction of cognitive abilities and dementia can also occur, which also affects quality of life. The aim of this study was to investigate the hearing performance of seniors without hearing complaints with respect to speech perception in noise and the ability to localize sounds. Results were tested for correlations with age and cognitive performance. The study included 40 subjects aged between 60 and 90 years (mean age: 69.3 years) with not self-reported hearing problems. The subjects were screened for dementia. Audiological tests included pure-tone audiometry and speech perception in two types of background noise (continuous and amplitude-modulated noise) which was either co-located or spatially separated (multi-source noise field, MSNF) from the target speech. Sound localization ability was assessed and hearing performance was self-evaluated by a questionnaire. Speech in noise and sound localization was compared with young normal hearing adults. Although considering themselves as hearing normal, 17 subjects had at least a mild hearing loss. There was a significant negative correlation between hearing loss and dementia screening (DemTect) score. Speech perception in noise decreased significantly with age. There were significant negative correlations between speech perception in noise and DemTect score for both spatial configurations. Mean SRTs obtained in the co-located noise condition with amplitude-modulated noise were on average 3.1 dB better than with continuous noise. This gap-listening effect was severely diminished compared to a younger normal hearing subject group. In continuous noise, spatial separation of speech and noise led to better SRTs compared to the co-located masker condition. SRTs in MSNF deteriorated in modulated noise compared to continuous noise by 2.6 dB. Highest impact of age was found for speech perception scores using noise stimuli with temporal modulation in binaural test conditions. Mean localization error was in the range of young adults. Mean amount of front/back confusions was 11.5% higher than for young adults. Speech perception tests in the presence of temporally modulated noise can serve as a screening method for early detection of hearing disorders in older adults. This allows for early prescription of hearing aids.
Collapse
Affiliation(s)
- Tobias Weissgerber
- Audiological Acoustics, Department of Oto-Rhino-Laryngology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
- *Correspondence: Tobias Weissgerber,
| | - Carmen Müller
- Audiological Acoustics, Department of Oto-Rhino-Laryngology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Timo Stöver
- Department of Oto-Rhino-Laryngology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Uwe Baumann
- Audiological Acoustics, Department of Oto-Rhino-Laryngology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
11
|
Cheng L, Jiang B, Guo H. Modeling the causes of accidental gas explosions from the perspective of safety information loss. PROCESS SAFETY PROGRESS 2022. [DOI: 10.1002/prs.12356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lianhua Cheng
- College of Safety Science and Engineering Xi'an University of Science & Technology Xi'an China
| | - Bolin Jiang
- College of Safety Science and Engineering Xi'an University of Science & Technology Xi'an China
| | - Huimin Guo
- College of Safety Science and Engineering Xi'an University of Science & Technology Xi'an China
| |
Collapse
|
12
|
Wu M, Christiansen S, Fereczkowski M, Neher T. Revisiting Auditory Profiling: Can Cognitive Factors Improve the Prediction of Aided Speech-in-Noise Outcome? Trends Hear 2022; 26:23312165221113889. [PMID: 35942807 PMCID: PMC9373127 DOI: 10.1177/23312165221113889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Hearing aids (HA) are the most common type of rehabilitation treatment for
age-related hearing loss. However, HA users often obtain limited benefit from
their devices, particularly in noisy environments, and thus many HA candidates
do not use them at all. A possible reason for this could be that current HA
fittings are audiogram-based, that is, they neglect supra-threshold factors. In
an earlier study, an auditory-profiling method was proposed as a basis for more
personalized HA fittings. This method classifies HA users into four profiles
that differ in terms of hearing sensitivity and supra-threshold hearing
abilities. Previously, HA users belonging to these profiles showed significant
differences in terms of speech recognition in noise but not subjective
assessments of speech-in-noise (SIN) outcome. Moreover, large individual
differences within some profiles were observed. The current study therefore
explored if cognitive factors can help explain these differences and improve
aided outcome prediction. Thirty-nine older HA users completed sets of auditory
and SIN tests as well as two tablet-based cognitive measures (the Corsi
block-tapping and trail-making tests). Principal component analyses were applied
to extract the dominant sources of variance both within individual tests
producing many variables and within the three types of tests. Multiple linear
regression analyses performed on the extracted components showed that auditory
factors were related to aided speech recognition in noise but not to subjective
SIN outcome. Cognitive factors were unrelated to aided SIN outcome. Overall,
these findings provide limited support for adding those two cognitive tests to
the profiling of HA users.
Collapse
Affiliation(s)
- Mengfan Wu
- Institute of Clinical Research, Faculty of Health Sciences, 6174University of Southern Denmark, Odense, Denmark.,Research Unit for ORL - Head & Neck Surgery and Audiology, 11286Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Stine Christiansen
- Institute of Clinical Research, Faculty of Health Sciences, 6174University of Southern Denmark, Odense, Denmark.,Research Unit for ORL - Head & Neck Surgery and Audiology, 11286Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Michal Fereczkowski
- Institute of Clinical Research, Faculty of Health Sciences, 6174University of Southern Denmark, Odense, Denmark.,Research Unit for ORL - Head & Neck Surgery and Audiology, 11286Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Tobias Neher
- Institute of Clinical Research, Faculty of Health Sciences, 6174University of Southern Denmark, Odense, Denmark.,Research Unit for ORL - Head & Neck Surgery and Audiology, 11286Odense University Hospital & University of Southern Denmark, Odense, Denmark
| |
Collapse
|
13
|
Koiek S, Brandt C, Schmidt JH, Neher T. Monaural and binaural phase sensitivity in school-age children with early-childhood otitis media. Int J Audiol 2021; 61:1054-1061. [PMID: 34883026 DOI: 10.1080/14992027.2021.2009132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Previous research has linked recurrent otitis media (OM) during early childhood to reduced binaural masking level differences (BMLDs) in school-age children. How this finding relates to monaural processing abilities and the individual otologic history has not been investigated systematically. The current study, therefore, addressed these issues. DESIGN Sensitivity to monaural and binaural phase information was assessed using a common test paradigm. To evaluate the influence of the otologic history, overall OM duration, OM onset age, and the time since the last OM episode were considered in the analyses. STUDY SAMPLE Children aged 6-13 years with a history of recurrent OM (N = 42) or without any previous ear diseases (N = 20). RESULTS Compared to the controls, the OM children showed smaller BMLDs (p < 0.05) whereas their monaural and binaural detection thresholds were comparable (p > 0.05). After controlling for age, the otologic history factors failed to predict the BMLDs of the OM children. Their monaural detection thresholds were correlated with the binaural detection thresholds (r = ∼0.5, p < 0.05) but not the BMLDs. CONCLUSIONS The current study suggests that early-childhood OM can impair binaural processing abilities in school-age children.
Collapse
Affiliation(s)
- Shno Koiek
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.,Research Unit for ORL-Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Christian Brandt
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.,Research Unit for ORL-Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Jesper Hvass Schmidt
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.,Research Unit for ORL-Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark.,Department of Otolaryngology, Head & Neck Surgery and Audiology, Odense University Hospital, Odense, Denmark
| | - Tobias Neher
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.,Research Unit for ORL-Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| |
Collapse
|
14
|
Flanagan SA, Moore BCJ, Wilson AM, Gabrielczyk FC, MacFarlane A, Mandke K, Goswami U. Development of binaural temporal fine structure sensitivity in children. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:2967. [PMID: 34717481 DOI: 10.1121/10.0006665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
The highest frequency for which the temporal fine structure (TFS) of a sinewave can be compared across ears varies between listeners with an upper limit of about 1400 Hz for young normal-hearing adults (YNHA). In this study, binaural TFS sensitivity was investigated for 63 typically developing children, aged 5 years, 6 months to 9 years, 4 months using the temporal fine structure-adaptive frequency (TFS-AF) test of Füllgrabe, Harland, Sęk, and Moore [Int. J. Audiol. 56, 926-935 (2017)]. The test assesses the highest frequency at which an interaural phase difference (IPD) of ϕ° can be distinguished from an IPD of 0°. The values of ϕ were 30° and 180°. The starting frequency was 200 Hz. The thresholds for the children were significantly lower (worse) than the thresholds reported by Füllgrabe, Harland, Sęk, and Moore [Int. J. Audiol. 56, 926-935 (2017)] for YNHA. For both values of ϕ, the median age at which children performed above chance level was significantly higher (p < 0.001) than for those who performed at chance. For the subgroup of 40 children who performed above chance for ϕ = 180°, the linear regression analyses showed that the thresholds for ϕ = 180° increased (improved) significantly with increasing age (p < 0.001) with adult-like thresholds predicted to be reached at 10 years, 2 months of age. The implications for spatial release from masking are discussed.
Collapse
Affiliation(s)
- Sheila A Flanagan
- Department of Psychology, Centre for Neuroscience in Education, University of Cambridge, Downing Street, Cambridge CB2 3EB, United Kingdom
| | - Brian C J Moore
- Department of Psychology, Centre for Neuroscience in Education, University of Cambridge, Downing Street, Cambridge CB2 3EB, United Kingdom
| | - Angela M Wilson
- Department of Psychology, Centre for Neuroscience in Education, University of Cambridge, Downing Street, Cambridge CB2 3EB, United Kingdom
| | - Fiona C Gabrielczyk
- Department of Psychology, Centre for Neuroscience in Education, University of Cambridge, Downing Street, Cambridge CB2 3EB, United Kingdom
| | - Annabel MacFarlane
- Department of Psychology, Centre for Neuroscience in Education, University of Cambridge, Downing Street, Cambridge CB2 3EB, United Kingdom
| | - Kanad Mandke
- Department of Psychology, Centre for Neuroscience in Education, University of Cambridge, Downing Street, Cambridge CB2 3EB, United Kingdom
| | - Usha Goswami
- Department of Psychology, Centre for Neuroscience in Education, University of Cambridge, Downing Street, Cambridge CB2 3EB, United Kingdom
| |
Collapse
|
15
|
Wang C, Wang Z, Xie B, Shi X, Yang P, Liu L, Qu T, Qin Q, Xing Y, Zhu W, Teipel SJ, Jia J, Zhao G, Li L, Tang Y. Binaural processing deficit and cognitive impairment in Alzheimer's disease. Alzheimers Dement 2021; 18:1085-1099. [PMID: 34569690 DOI: 10.1002/alz.12464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/07/2021] [Accepted: 08/05/2021] [Indexed: 01/08/2023]
Abstract
Speech comprehension in noisy environments depends on central auditory functions, which are vulnerable in Alzheimer's disease (AD). Binaural processing exploits two ear sounds to optimally process degraded sound information; its characteristics are poorly understood in AD. We studied behavioral and electrophysiological alterations in binaural processing among 121 participants (AD = 27; amnestic mild cognitive impairment [aMCI] = 33; subjective cognitive decline [SCD] = 30; cognitively normal [CN] = 31). We observed impairment of binaural processing in AD and aMCI, and detected a U-shaped curve change in phase synchrony (declining from CN to SCD and to aMCI, but increasing from aMCI to AD). This improvement in phase synchrony accompanying more severe cognitive stages could reflect neural adaptation for binaural processing. Moreover, increased phase synchrony is associated with worse memory during the stages when neural adaptation apparently occurs. These findings support a hypothesis that neural adaptation for binaural processing deficit may exacerbate cognitive impairment, which could help identify biomarkers and therapeutic targets in AD.
Collapse
Affiliation(s)
- Changming Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Zhibin Wang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Beijia Xie
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Xinrui Shi
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Pengcheng Yang
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China.,Speech and Hearing Research Center, Peking University, Beijing, China
| | - Lei Liu
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China.,Speech and Hearing Research Center, Peking University, Beijing, China
| | - Tianshu Qu
- Speech and Hearing Research Center, Peking University, Beijing, China.,Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China
| | - Qi Qin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Yi Xing
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education of the People's Republic of China, Beijing, China
| | - Wei Zhu
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Stefan J Teipel
- Department of Psychosomatic Medicine, University Medicine Rostock, Rostock, Germany.,DZNE, German Center for Neurodegenerative Diseases, Rostock, Germany
| | - Jianping Jia
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education of the People's Republic of China, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Liang Li
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China.,Speech and Hearing Research Center, Peking University, Beijing, China.,Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China.,Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| | - Yi Tang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education of the People's Republic of China, Beijing, China
| |
Collapse
|
16
|
Zheng Y, Liu L, Li R, Wu Z, Chen L, Li J, Wu C, Kong L, Zhang C, Lei M, She S, Ning Y, Li L. Impaired interaural correlation processing in people with schizophrenia. Eur J Neurosci 2021; 54:6646-6662. [PMID: 34494695 DOI: 10.1111/ejn.15449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/19/2021] [Accepted: 09/03/2021] [Indexed: 01/05/2023]
Abstract
Detection of transient changes in interaural correlation is based on the temporal precision of the central representations of acoustic signals. Whether schizophrenia impairs the temporal precision in the interaural correlation process is not clear. In both participants with schizophrenia and matched healthy-control participants, this study examined the detection of a break in interaural correlation (BIC, a change in interaural correlation from 1 to 0 and back to 1), including the longest interaural delay at which a BIC was just audible, representing the temporal extent of the primitive auditory memory (PAM). Moreover, BIC-induced electroencephalograms (EEGs) and the relationships between the early binaural psychoacoustic processing and higher cognitive functions, which were assessed by the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), were examined. The results showed that compared to healthy controls, participants with schizophrenia exhibited poorer BIC detection, PAM and RBANS score. Both the BIC-detection accuracy and the PAM extent were correlated with the RBANS score. Moreover, participants with schizophrenia showed weaker BIC-induced N1-P2 amplitude which was correlated with both theta-band power and inter-trial phase coherence. These results suggested that schizophrenia impairs the temporal precision of the central representations of acoustic signals, affecting both interaural correlation processing and higher-order cognitions.
Collapse
Affiliation(s)
- Yingjun Zheng
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lei Liu
- School of Psychological and Cognitive Sciences, Key Laboratory on Machine Perception (Ministry of Education), Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Ruikeng Li
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhemeng Wu
- School of Psychological and Cognitive Sciences, Key Laboratory on Machine Perception (Ministry of Education), Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Liangjie Chen
- School of Psychological and Cognitive Sciences, Key Laboratory on Machine Perception (Ministry of Education), Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Juanhua Li
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chao Wu
- School of Psychological and Cognitive Sciences, Key Laboratory on Machine Perception (Ministry of Education), Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Lingzhi Kong
- School of Psychological and Cognitive Sciences, Key Laboratory on Machine Perception (Ministry of Education), Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Changxin Zhang
- School of Psychological and Cognitive Sciences, Key Laboratory on Machine Perception (Ministry of Education), Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Ming Lei
- School of Psychological and Cognitive Sciences, Key Laboratory on Machine Perception (Ministry of Education), Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Shenglin She
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liang Li
- School of Psychological and Cognitive Sciences, Key Laboratory on Machine Perception (Ministry of Education), Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| |
Collapse
|
17
|
Mai G, Howell P. Causal Relationship between the Right Auditory Cortex and Speech-Evoked Envelope-Following Response: Evidence from Combined Transcranial Stimulation and Electroencephalography. Cereb Cortex 2021; 32:1437-1454. [PMID: 34424956 PMCID: PMC8971082 DOI: 10.1093/cercor/bhab298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/27/2022] Open
Abstract
Speech-evoked envelope-following response (EFR) reflects brain encoding of speech periodicity that serves as a biomarker for pitch and speech perception and various auditory and language disorders. Although EFR is thought to originate from the subcortex, recent research illustrated a right-hemispheric cortical contribution to EFR. However, it is unclear whether this contribution is causal. This study aimed to establish this causality by combining transcranial direct current stimulation (tDCS) and measurement of EFR (pre- and post-tDCS) via scalp-recorded electroencephalography. We applied tDCS over the left and right auditory cortices in right-handed normal-hearing participants and examined whether altering cortical excitability via tDCS causes changes in EFR during monaural listening to speech syllables. We showed significant changes in EFR magnitude when tDCS was applied over the right auditory cortex compared with sham stimulation for the listening ear contralateral to the stimulation site. No such effect was found when tDCS was applied over the left auditory cortex. Crucially, we further observed a hemispheric laterality where aftereffect was significantly greater for tDCS applied over the right than the left auditory cortex in the contralateral ear condition. Our finding thus provides the first evidence that validates the causal relationship between the right auditory cortex and EFR.
Collapse
Affiliation(s)
- Guangting Mai
- Hearing Theme, National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham NG1 5DU, UK.,Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.,Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Peter Howell
- Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| |
Collapse
|
18
|
Palandrani KN, Hoover EC, Stavropoulos T, Seitz AR, Isarangura S, Gallun FJ, Eddins DA. Temporal integration of monaural and dichotic frequency modulation. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:745. [PMID: 34470296 PMCID: PMC8337085 DOI: 10.1121/10.0005729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 06/17/2021] [Accepted: 07/02/2021] [Indexed: 05/06/2023]
Abstract
Frequency modulation (FM) detection at low modulation frequencies is commonly used as an index of temporal fine-structure processing. The present study evaluated the rate of improvement in monaural and dichotic FM across a range of test parameters. In experiment I, dichotic and monaural FM detection was measured as a function of duration and modulator starting phase. Dichotic FM thresholds were lower than monaural FM thresholds and the modulator starting phase had no effect on detection. Experiment II measured monaural FM detection for signals that differed in modulation rate and duration such that the improvement with duration in seconds (carrier) or cycles (modulator) was compared. Monaural FM detection improved monotonically with the number of modulation cycles, suggesting that the modulator is extracted prior to detection. Experiment III measured dichotic FM detection for shorter signal durations to test the hypothesis that dichotic FM relies primarily on the signal onset. The rate of improvement decreased as duration increased, which is consistent with the use of primarily onset cues for the detection of dichotic FM. These results establish that improvement with duration occurs as a function of the modulation cycles at a rate consistent with the independent-samples model for monaural FM, but later cycles contribute less to detection in dichotic FM.
Collapse
Affiliation(s)
- Katherine N Palandrani
- Department of Communication Sciences and Disorders, University of Maryland, College Park, Maryland 20742, USA
| | - Eric C Hoover
- Department of Communication Sciences and Disorders, University of Maryland, College Park, Maryland 20742, USA
| | - Trevor Stavropoulos
- Brain Game Center, University of California Riverside, Riverside, California 92521, USA
| | - Aaron R Seitz
- Department of Psychology, University of California Riverside, Riverside, California 92521, USA
| | - Sittiprapa Isarangura
- Department of Communication Sciences and Disorders, Mahidol University, Phaya Thai, Bangkok 10400, Thailand
| | - Frederick J Gallun
- Oregon Hearing Research Center, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - David A Eddins
- Department of Communication Sciences and Disorders, University of South Florida, Tampa, Florida 33620, USA
| |
Collapse
|
19
|
Wu M, Cañete OM, Schmidt JH, Fereczkowski M, Neher T. Influence of Three Auditory Profiles on Aided Speech Perception in Different Noise Scenarios. Trends Hear 2021; 25:23312165211023709. [PMID: 34184946 PMCID: PMC8246576 DOI: 10.1177/23312165211023709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hearing aid (HA) users differ greatly in their speech-in-noise (SIN) outcomes. This could be because the degree to which current HA fittings can address individual listening needs differs across users and listening situations. In two earlier studies, an auditory test battery and a data-driven method were developed for classifying HA candidates into four distinct auditory profiles differing in audiometric hearing loss and suprathreshold hearing abilities. This study explored aided SIN outcome for three of these profiles in different noise scenarios. Thirty-one older habitual HA users and six young normal-hearing listeners participated. Two SIN tasks were administered: a speech recognition task and a “just follow conversation” task requiring the participants to self-adjust the target-speech level. Three noise conditions were tested: stationary speech-shaped noise, speech-shaped babble noise, and speech-shaped babble noise with competing dialogues. Each HA user was fitted with three HAs from different manufacturers using their recommended procedures. Real-ear measurements were performed to document the final gain settings. The results showed that HA users with mild hearing deficits performed better than HA users with pronounced hearing deficits on the speech recognition task but not the just follow conversation task. Moreover, participants with pronounced hearing deficits obtained different SIN outcomes with the tested HAs, which appeared to be related to differences in HA gain. Overall, these findings imply that current proprietary fitting strategies are limited in their ability to ensure good SIN outcomes, especially for users with pronounced hearing deficits, for whom the choice of device seems most consequential.
Collapse
Affiliation(s)
- Mengfan Wu
- Institute of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.,Research Unit for ORL-Head & Neck Surgery and Audiology, Odense University Hospital, Odense, Denmark.,University of Southern Denmark, Odense, Denmark
| | - Oscar M Cañete
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Jesper Hvass Schmidt
- Institute of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.,Research Unit for ORL-Head & Neck Surgery and Audiology, Odense University Hospital, Odense, Denmark.,University of Southern Denmark, Odense, Denmark.,Department of Otolaryngology, Head & Neck Surgery and Audiology, Odense University Hospital, Odense, Denmark.,OPEN, Odense Patient data Explorative Network, Odense University Hospital, Odense, Denmark
| | - Michal Fereczkowski
- Institute of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.,Research Unit for ORL-Head & Neck Surgery and Audiology, Odense University Hospital, Odense, Denmark.,University of Southern Denmark, Odense, Denmark
| | - Tobias Neher
- Institute of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.,Research Unit for ORL-Head & Neck Surgery and Audiology, Odense University Hospital, Odense, Denmark.,University of Southern Denmark, Odense, Denmark
| |
Collapse
|
20
|
Gallun FJ. Impaired Binaural Hearing in Adults: A Selected Review of the Literature. Front Neurosci 2021; 15:610957. [PMID: 33815037 PMCID: PMC8017161 DOI: 10.3389/fnins.2021.610957] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/19/2021] [Indexed: 11/17/2022] Open
Abstract
Despite over 100 years of study, there are still many fundamental questions about binaural hearing that remain unanswered, including how impairments of binaural function are related to the mechanisms of binaural hearing. This review focuses on a number of studies that are fundamental to understanding what is known about the effects of peripheral hearing loss, aging, traumatic brain injury, strokes, brain tumors, and multiple sclerosis (MS) on binaural function. The literature reviewed makes clear that while each of these conditions has the potential to impair the binaural system, the specific abilities of a given patient cannot be known without performing multiple behavioral and/or neurophysiological measurements of binaural sensitivity. Future work in this area has the potential to bring awareness of binaural dysfunction to patients and clinicians as well as a deeper understanding of the mechanisms of binaural hearing, but it will require the integration of clinical research with animal and computational modeling approaches.
Collapse
Affiliation(s)
- Frederick J. Gallun
- Oregon Hearing Research Center, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
21
|
Wang Y, Chen J, Benesty J, Jin J, Huang G. Binaural Heterophasic Superdirective Beamforming. SENSORS (BASEL, SWITZERLAND) 2020; 21:s21010074. [PMID: 33375543 PMCID: PMC7794733 DOI: 10.3390/s21010074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
The superdirective beamformer, while attractive for processing broadband acoustic signals, often suffers from the problem of white noise amplification. So, its application requires well-designed acoustic arrays with sensors of extremely low self-noise level, which is difficult if not impossible to attain. In this paper, a new binaural superdirective beamformer is proposed, which is divided into two sub-beamformers. Based on studies and facts in psychoacoustics, these two filters are designed in such a way that they are orthogonal to each other to make the white noise components in the binaural beamforming outputs incoherent while maximizing the output interaural coherence of the diffuse noise, which is important for the brain to localize the sound source of interest. As a result, the signal of interest in the binaural superdirective beamformer's outputs is in phase but the white noise components in the outputs are random phase, so the human auditory system can better separate the acoustic signal of interest from white noise by listening to the outputs of the proposed approach. Experimental results show that the derived binaural superdirective beamformer is superior to its conventional monaural counterpart.
Collapse
Affiliation(s)
- Yuzhu Wang
- Center of Intelligent Acoustics and Immersive Communications, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an 710072, China; (Y.W.); (J.J.)
| | - Jingdong Chen
- Center of Intelligent Acoustics and Immersive Communications, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an 710072, China; (Y.W.); (J.J.)
| | - Jacob Benesty
- INRS-EMT, University of Quebec, 800 de la Gauchetiere Ouest, Montreal, QC H5A 1K6, Canada;
| | - Jilu Jin
- Center of Intelligent Acoustics and Immersive Communications, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an 710072, China; (Y.W.); (J.J.)
| | - Gongping Huang
- Andrew and Erna Viterby Faculty of Electrical Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel;
| |
Collapse
|
22
|
Vinay, Sandhya, Moore BCJ. Effect of age, test frequency and level on thresholds for the TEN(HL) test for people with normal hearing. Int J Audiol 2020; 59:915-920. [DOI: 10.1080/14992027.2020.1783584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Vinay
- Department of Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Sandhya
- Department of Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Brian C. J. Moore
- Department of Experimental Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
23
|
Wu M, Sanchez-Lopez R, El-Haj-Ali M, Nielsen SG, Fereczkowski M, Dau T, Santurette S, Neher T. Investigating the Effects of Four Auditory Profiles on Speech Recognition, Overall Quality, and Noise Annoyance With Simulated Hearing-Aid Processing Strategies. Trends Hear 2020; 24:2331216520960861. [PMID: 33073727 PMCID: PMC7594216 DOI: 10.1177/2331216520960861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Effective hearing aid (HA) rehabilitation requires personalization of the
HA fitting parameters, but in current clinical practice only the gain
prescription is typically individualized. To optimize the fitting
process, advanced HA settings such as noise reduction and microphone
directionality can also be tailored to individual hearing deficits. In
two earlier studies, an auditory test battery and a data-driven
approach that allow classifying hearing-impaired listeners into four
auditory profiles were developed. Because these profiles were found to
be characterized by markedly different hearing abilities, it was
hypothesized that more tailored HA fittings would lead to better
outcomes for such listeners. Here, we explored potential interactions
between the four auditory profiles and HA outcome as assessed with
three different measures (speech recognition, overall quality, and
noise annoyance) and six HA processing strategies with various noise
reduction, directionality, and compression settings. Using virtual
acoustics, a realistic speech-in-noise environment was simulated. The
stimuli were generated using a HA simulator and presented to 49
habitual HA users who had previously been profiled. The four auditory
profiles differed clearly in terms of their mean aided speech
reception thresholds, thereby implying different needs in terms of
signal-to-noise ratio improvement. However, no clear interactions with
the tested HA processing strategies were found. Overall, these
findings suggest that the auditory profiles can capture some of the
individual differences in HA processing needs and that further
research is required to identify suitable HA solutions for them.
Collapse
Affiliation(s)
- Mengfan Wu
- Institute of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.,Research Unit for Oto-Rhino-Laryngology, Odense University Hospital, Odense, Denmark
| | - Raul Sanchez-Lopez
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Mouhamad El-Haj-Ali
- Institute of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Silje G Nielsen
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Michal Fereczkowski
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Torsten Dau
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Sébastien Santurette
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.,Centre for Applied Audiology Research, Oticon A/S, Smørum, Denmark
| | - Tobias Neher
- Institute of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.,Research Unit for Oto-Rhino-Laryngology, Odense University Hospital, Odense, Denmark
| |
Collapse
|