1
|
Le Roy B, Martin-Krumm C, Beauchamps V, Jimenez A, Giaume L, Jacob S, Voilque A, Ferhani O, Altena E, Trousselard M. Effects of repeated gravity changes during parabolic flight: Evidence of the need to assist space tourists to outer space. PLoS One 2025; 20:e0320588. [PMID: 40267028 PMCID: PMC12017518 DOI: 10.1371/journal.pone.0320588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/20/2025] [Indexed: 04/25/2025] Open
Abstract
In the era of space tourism, walking in the steps of Neil Armstrong has never been more real. Future space tourists will have to face the harshness of the environment, especially the travel, and adapt quickly for their own safety. This issue raises both the question of preparation and the impact of such a journey on novice populations who have not been selected for their physical and cognitive abilities. The objectives of the study are (1) to investigate the impact of space travel on psychophysiological and sensory responses during a parabolic flight experience; (2) to assess recovery from this experience one week later; and (3) to evaluate the relevance of high parasympathetic functioning at baseline as a biomarker of adaptation. Seventeen healthy participants were enrolled in the 79th ESA Parabolic Flight Campaign on board the Airbus A310. Psychological, physiological, and sensory responses were measured at different times from the day before the 3h-flight (baseline) to one week after the flight (recovery). Labels were allocated to two groups according to their parasympathetic functioning at baseline: high parasympathetic (HP) profile and low parasympathetic (LP) profile. At the psychological level, those with an HP profile have a higher coping acceptation and a higher level of interoceptive awareness than the LP profile, except for sleep quality. At the physiological and exteroceptive level, they have a higher heart rate variability, preserved identification of odors and a predisposition to a more adaptive postural response postflight. Nevertheless, postural stability is affected in both profiles, particularly during visual deprivation, while their heart rate variability is increased in both linear and non-linear components. Nevertheless, our results reveal that the recovery constitutes a critical period. Flyers have a decrease of interoceptive awareness and emotions, especially the HP profile. Although the LP profile reported a better subjective sleep quality, both profiles decreased their sleep quality. These results raise the question of the risks that may be induced by space tourism. They highlight two major outcomes: (1) travel of future space tourists does not seem to be at risk as long as the individuals are qualified and fit for the flight and adaptation may be improved by targeting parasympathetic functioning; (2) level of experience has no impact on the psychophysiological and sensory responses. The results highlight the need to monitor the crews over several days and/or to include in the preparation a module allowing them to be prepared for the postflight period and the return to life on Earth. Beyond this, these results contribute to enriching our knowledge of the human challenge of confronting space travel constraints.
Collapse
Affiliation(s)
- Barbara Le Roy
- Stress Neurophysiology Unit, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
- CNES, Paris, France
- INSPIIRE UMR, Inserm, University of Lorraine, F-54000, Nancy, France
| | - Charles Martin-Krumm
- Stress Neurophysiology Unit, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
- CNES, Paris, France
- INSPIIRE UMR, Inserm, University of Lorraine, F-54000, Nancy, France
- École de Psychologues Praticiens, Catholic Institute of Paris, EA Religion, culture et société, Paris, France
| | - Vincent Beauchamps
- Fatigue and Vigilance Unit, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Adrien Jimenez
- Stress Neurophysiology Unit, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Louise Giaume
- Stress Neurophysiology Unit, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
- AGM1, Brigade des Sapeurs-Pompiers de Paris, Paris, France
| | - Sandrine Jacob
- Stress Neurophysiology Unit, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Aude Voilque
- Stress Neurophysiology Unit, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Ouamar Ferhani
- Digital Innovation and Artificial Intelligence Department, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | | | - Marion Trousselard
- Stress Neurophysiology Unit, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
- CNES, Paris, France
- INSPIIRE UMR, Inserm, University of Lorraine, F-54000, Nancy, France
- French Military Health Service Academy, Paris, France
| |
Collapse
|
2
|
Dion W, Zhu B. Basic research and opportunities for translational advancement in the field of mammalian ∼12-hour ultradian chronobiology. Front Physiol 2024; 15:1497836. [PMID: 39633646 PMCID: PMC11614809 DOI: 10.3389/fphys.2024.1497836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Repetitive variations, such as oscillation, are ubiquitous in biology. In this mini review, we present a general summary of the ∼24 h circadian clock and provide a fundamental overview of another biological timekeeper that maintains ∼12 h oscillations. This ∼12 h oscillator is proposed to function independently of the circadian clock to regulate ultradian biological rhythms relevant to both protein homeostasis and liver health. Recent studies exploring these ∼12 h rhythms in humans are discussed, followed by our proposal that mammary gland physiology represents a promising area for further research. We conclude by highlighting potential translational applications in ∼12 h ultradian chronobiology.
Collapse
Affiliation(s)
- William Dion
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Bokai Zhu
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Zhu B, Liu S, David NL, Dion W, Doshi NK, Siegel LB, Amorim T, Andrews RE, Kumar GVN, Li H, Irfan S, Pesaresi T, Sharma AX, Sun M, Fazeli PK, Steinhauser ML. Evidence for ~12-h ultradian gene programs in humans. NPJ BIOLOGICAL TIMING AND SLEEP 2024; 1:4. [PMID: 39148626 PMCID: PMC11325440 DOI: 10.1038/s44323-024-00005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024]
Abstract
Mice and many marine organisms exhibit ~12-h ultradian rhythms, however, direct evidence of ~12-h ultradian rhythms in humans is lacking. Here, we performed prospective, temporal transcriptome profiling of peripheral white blood cells from three healthy humans. All three participants independently exhibited robust ~12-h transcriptional rhythms in molecular programs involved in RNA and protein metabolism, with strong homology to circatidal gene programs previously identified in Cnidarian marine species.
Collapse
Affiliation(s)
- Bokai Zhu
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Silvia Liu
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Natalie L. David
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Neuroendocrinology Unit, Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Center for Human Integrative Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - William Dion
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Nandini K. Doshi
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Center for Human Integrative Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Lauren B. Siegel
- Neuroendocrinology Unit, Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Tânia Amorim
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Neuroendocrinology Unit, Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Center for Human Integrative Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Rosemary E. Andrews
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Center for Human Integrative Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - G. V. Naveen Kumar
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Hanwen Li
- Department of Statistics, Kenneth P. Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA USA
| | - Saad Irfan
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Tristan Pesaresi
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Center for Human Integrative Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Ankit X. Sharma
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Michelle Sun
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Pouneh K. Fazeli
- Neuroendocrinology Unit, Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Center for Human Integrative Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Matthew L. Steinhauser
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Center for Human Integrative Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| |
Collapse
|
4
|
Mendes Zambetta R, Signini ÉDF, Ocamoto GN, Catai AM, Uliam NR, Santarnecchi E, Russo TL. Effects of weightlessness on the cardiovascular system: a systematic review and meta-analysis. Front Physiol 2024; 15:1438089. [PMID: 39129756 PMCID: PMC11310543 DOI: 10.3389/fphys.2024.1438089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024] Open
Abstract
Background: The microgravity environment has a direct impact on the cardiovascular system due to the fluid shift and weightlessness that results in cardiac dysfunction, vascular remodeling, and altered Cardiovascular autonomic modulation (CAM), deconditioning and poor performance on space activities, ultimately endangering the health of astronauts. Objective: This study aimed to identify the acute and chronic effects of microgravity and Earth analogues on cardiovascular anatomy and function and CAM. Methods: CINAHL, Cochrane Library, Scopus, Science Direct, PubMed, and Web of Science databases were searched. Outcomes were grouped into cardiovascular anatomic, functional, and autonomic alterations, and vascular remodeling. Studies were categorized as Spaceflight (SF), Chronic Simulation (CS), or Acute Simulation (AS) based on the weightlessness conditions. Meta-analysis was performed for the most frequent outcomes. Weightlessness and control groups were compared. Results: 62 articles were included with a total of 963 participants involved. The meta-analysis showed that heart rate increased in SF [Mean difference (MD) = 3.44; p = 0.01] and in CS (MD = 4.98; p < 0.0001), whereas cardiac output and stroke volume decreased in CS (MD = -0.49; p = 0.03; and MD = -12.95; p < 0.0001, respectively), and systolic arterial pressure decreased in AS (MD = -5.20; p = 0.03). According to the qualitative synthesis, jugular vein cross-sectional area (CSA) and volume were greater in all conditions, and SF had increased carotid artery CSA. Heart rate variability and baroreflex sensitivity, in general, decreased in SF and CS, whereas both increased in AS. Conclusion: This review indicates that weightlessness impairs the health of astronauts during and after spaceflight, similarly to the effects of aging and immobility, potentially increasing the risk of cardiovascular diseases. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42020215515.
Collapse
Affiliation(s)
| | - Étore De Favari Signini
- Physical Therapy Department, Federal University of São Carlos, UFSCar, São Carlos, SP, Brazil
| | - Gabriela Nagai Ocamoto
- Physical Therapy Department, Federal University of São Carlos, UFSCar, São Carlos, SP, Brazil
- Brain4care Inc., São Carlos, SP, Brazil
| | - Aparecida Maria Catai
- Physical Therapy Department, Federal University of São Carlos, UFSCar, São Carlos, SP, Brazil
| | - Nicoly Ribeiro Uliam
- Physical Therapy Department, Federal University of São Carlos, UFSCar, São Carlos, SP, Brazil
| | | | - Thiago Luiz Russo
- Physical Therapy Department, Federal University of São Carlos, UFSCar, São Carlos, SP, Brazil
| |
Collapse
|
5
|
Otsuka K, Beaty LA, Sato M, Shitakura K, Kikuchi T, Okajima K, Terada S, Cornelissen G. Chronobioethics: Symphony of biological clocks observed by 7-day/24-hour ambulatory blood pressure monitoring and cardiovascular health. Biomed J 2024:100753. [PMID: 38906327 DOI: 10.1016/j.bj.2024.100753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND The high prevalence of desynchronized biological rhythms is becoming a primary public health concern. We assess complex and diverse inter-modulations among multi-frequency rhythms present in blood pressure (BP) and heart rate (HR). SUBJECTS and Methods: We performed 7-day/24-hour Ambulatory BP Monitoring in 220 (133 women) residents (23 to 74 years) of a rural Japanese town in Kochi Prefecture under everyday life conditions. RESULTS A symphony of biological clocks contributes to the preservation of a synchronized circadian system. (1) Citizens with an average 12.02-h period had fewer vascular variability disorders than those with shorter (11.37-h) or longer (12.88-h) periods (P<0.05), suggesting that the circasemidian rhythm is potentially important for human health. (2) An appropriate BP-HR coupling promoted healthier circadian profiles than a phase-advanced BP: lower 7-day nighttime SBP (106.8 vs. 112.9 mmHg, P=0.0469), deeper nocturnal SBP dip (20.5% vs. 16.8%, P=0.0101), and less frequent incidence of masked non-dipping (0.53 vs. 0.86, P=0.0378), identifying the night as an important time window. CONCLUSION Adaptation to irregular schedules in everyday life occurs unconsciously at night, probably initiated from the brain default mode network, in coordination with the biological clock system, including a reinforced about 12-hour clock, as "a biological clock-guided core integration system".
Collapse
Affiliation(s)
- Kuniaki Otsuka
- Department of Chronomics and Gerontology, Tokyo Women's Medical University, Tokyo, Japan; Halberg Chronobiology Center, University of Minnesota, Minneapolis, MN, USA.
| | - Larry A Beaty
- Halberg Chronobiology Center, University of Minnesota, Minneapolis, MN, USA
| | - Madoka Sato
- Department of Medicine, Jyoban Hospital, Fukushima, Japan
| | - Kazunobu Shitakura
- Cardiovascular Internal Medicine, Higashi Omiya General Hospital, Saitama, Japan
| | - Tomoko Kikuchi
- Cardiovascular Internal Medicine, Higashi Omiya General Hospital, Saitama, Japan
| | - Kiyotaka Okajima
- Cardiovascular Internal Medicine, Higashi Omiya General Hospital, Saitama, Japan
| | - Shigehiko Terada
- Advanced Medical Center, Shonan Kamukura General Hospital, Kanagawa, Japan
| | | |
Collapse
|
6
|
Cheng H, Yang C, Ge P, Liu Y, Zafar MM, Hu B, Zhang T, Luo Z, Lu S, Zhou Q, Jaleel A, Ren M. Genetic diversity, clinical uses, and phytochemical and pharmacological properties of safflower ( Carthamus tinctorius L.): an important medicinal plant. Front Pharmacol 2024; 15:1374680. [PMID: 38799156 PMCID: PMC11127628 DOI: 10.3389/fphar.2024.1374680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Safflower (Carthamus tinctorius L.), a member of the Asteraceae family, is widely used in traditional herbal medicine. This review summarized agronomic conditions, genetic diversity, clinical application, and phytochemicals and pharmacological properties of safflower. The genetic diversity of the plant is rich. Abundant in secondary metabolites like flavonoids, phenols, alkaloids, polysaccharides, fatty acids, polyacetylene, and other bioactive components, the medicinal plant is effective for treating cardiovascular diseases, neurodegenerative diseases, and respiratory diseases. Especially, Hydroxysafflor yellow A (HYSA) has a variety of pharmacological effects. In terms of treatment and prevention of some space sickness in space travel, safflower could be a potential therapeutic agent. Further studies are still required to support the development of safflower in medicine. Our review indicates that safflower is an important medicinal plant and research prospects regarding safflower are very broad and worthy of further investigation.
Collapse
Affiliation(s)
- Hao Cheng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Chenglong Yang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Pengliang Ge
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yi Liu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Muhammad Mubashar Zafar
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Beibei Hu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Tong Zhang
- Chengdu Florascape Technology Service Center, Chengdu, China
| | - Zengchun Luo
- Chengdu Florascape Technology Service Center, Chengdu, China
| | - Siyu Lu
- Chengdu Florascape Technology Service Center, Chengdu, China
| | - Qin Zhou
- Chengdu Florascape Technology Service Center, Chengdu, China
| | - Abdul Jaleel
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Ahmed SS, Goswami N, Sirek A, Green DA, Winnard A, Fiebig L, Weber T. Systematic review of the effectiveness of standalone passive countermeasures on microgravity-induced physiologic deconditioning. NPJ Microgravity 2024; 10:48. [PMID: 38664498 PMCID: PMC11045828 DOI: 10.1038/s41526-024-00389-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
A systematic review of literature was conducted to evaluate the effectiveness of passive countermeasures in ameliorating the cardiopulmonary and musculoskeletal effects of gravitational unloading on humans during spaceflight. This systematic review is the third of a series being conducted by the European Space Agency to evaluate the effectiveness of countermeasures to physiologic deconditioning during spaceflight. With future long-duration space missions on the horizon, it is critical to understand the effectiveness of existing countermeasures to promote astronaut health and improve the probability of future mission success. An updated search for studies examining passive countermeasures was conducted in 2021 to supplement results from a broader search conducted in 2017 for all countermeasures. Ground-based analogue and spaceflight studies were included in the search. A total of 647 articles were screened following removal of duplicates, of which 16 were included in this review. Data extraction and analysis, quality assessment of studies, and transferability of reviewed studies to actual spaceflight based on their bed-rest protocol were conducted using dedicated tools created by the Aerospace Medicine Systematic Review Group. Of the 180 examined outcomes across the reviewed studies, only 20 were shown to have a significant positive effect in favour of the intervention group. Lower body negative pressure was seen to significantly maintain orthostatic tolerance (OT) closer to baseline as comparted to control groups. It also was seen to have mixed efficacy with regards to maintaining resting heart rate close to pre-bed rest values. Whole body vibration significantly maintained many balance-related outcome measures close to pre-bed rest values as compared to control. Skin surface cooling and centrifugation both showed efficacy in maintaining OT. Centrifugation also was seen to have mixed efficacy with regards to maintaining VO2max close to pre-bed rest values. Overall, standalone passive countermeasures showed no significant effect in maintaining 159 unique outcome measures close to their pre-bed rest values as compared to control groups. Risk of bias was rated high or unclear in all studies due to poorly detailed methodologies, poor control of confounding variables, and other sources of bias (i.e. inequitable recruitment of participants leading to a higher male:female ratios). The bed-rest transferability (BR) score varied from 2-7, with a median score of 5. Generally, most studies had good BR transferability but underreported on factors such as control of sunlight or radiation exposure, diet, level of exercise and sleep-cycles. We conclude that: (1) Lack of standardisation of outcome measurement and methodologies has led to large heterogeneity amongst studies; (2) Scarcity of literature and high risk of bias amongst existing studies limits the statistical power of results; and (3) Passive countermeasures have little or no efficacy as standalone measures against cardiopulmonary and musculoskeletal deconditioning induced by spaceflight related to physiologic deterioration due to gravity un-loading.
Collapse
Affiliation(s)
- Syed Shozab Ahmed
- Department of Family Medicine, Postgraduate Medical Education, Queen's University School of Medicine, Kingston, ON, Canada
| | - Nandu Goswami
- Division of Physiology, Otto Löwi Research Center for Vascular Biology, Immunity and Inflammation, Medical University of Graz, Graz, Austria.
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
- Integrative Health Department, Alma Mater Europaea Maribor, Maribor, Slovenia.
| | - Adam Sirek
- Faculty of Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
- Institute for Earth and Space Exploration, Western University, London, ON, Canada
| | - David Andrew Green
- King's College London, Centre of Human & Applied Physiological Sciences, London, UK
- Space Medicine Team, HRE-OM, European Astronaut Centre, European Space Agency, Cologne, Germany
- KBRwyle Laboratories GmbH, Cologne, Germany
| | | | - Leonie Fiebig
- Space Biomedicine Systematic Review Methods, Wylam, UK
| | - Tobias Weber
- Space Medicine Team, HRE-OM, European Astronaut Centre, European Space Agency, Cologne, Germany
- KBRwyle Laboratories GmbH, Cologne, Germany
| |
Collapse
|
8
|
Han X, Qu L, Yu M, Ye L, Shi L, Ye G, Yang J, Wang Y, Fan H, Wang Y, Tan Y, Wang C, Li Q, Lei W, Chen J, Liu Z, Shen Z, Li Y, Hu S. Thiamine-modified metabolic reprogramming of human pluripotent stem cell-derived cardiomyocyte under space microgravity. Signal Transduct Target Ther 2024; 9:86. [PMID: 38584163 PMCID: PMC10999445 DOI: 10.1038/s41392-024-01791-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 02/08/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
During spaceflight, the cardiovascular system undergoes remarkable adaptation to microgravity and faces the risk of cardiac remodeling. Therefore, the effects and mechanisms of microgravity on cardiac morphology, physiology, metabolism, and cellular biology need to be further investigated. Since China started constructing the China Space Station (CSS) in 2021, we have taken advantage of the Shenzhou-13 capsule to send human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) to the Tianhe core module of the CSS. In this study, hPSC-CMs subjected to space microgravity showed decreased beating rate and abnormal intracellular calcium cycling. Metabolomic and transcriptomic analyses revealed a battery of metabolic remodeling of hPSC-CMs in spaceflight, especially thiamine metabolism. The microgravity condition blocked the thiamine intake in hPSC-CMs. The decline of thiamine utilization under microgravity or by its antagonistic analog amprolium affected the process of the tricarboxylic acid cycle. It decreased ATP production, which led to cytoskeletal remodeling and calcium homeostasis imbalance in hPSC-CMs. More importantly, in vitro and in vivo studies suggest that thiamine supplementation could reverse the adaptive changes induced by simulated microgravity. This study represents the first astrobiological study on the China Space Station and lays a solid foundation for further aerospace biomedical research. These data indicate that intervention of thiamine-modified metabolic reprogramming in human cardiomyocytes during spaceflight might be a feasible countermeasure against microgravity.
Collapse
Affiliation(s)
- Xinglong Han
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Lina Qu
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Miao Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Lingqun Ye
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Liujia Shi
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Guangfu Ye
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Jingsi Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yaning Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Hao Fan
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yong Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yingjun Tan
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Chunyan Wang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Qi Li
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Jianghai Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoxia Liu
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China.
| | - Yinghui Li
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China.
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China.
| |
Collapse
|
9
|
Arapi EA, Reynolds M, Ellison AR, Cable J. Restless nights when sick: ectoparasite infections alter rest-activity cycles of diurnal fish hosts. Parasitology 2024; 151:251-259. [PMID: 38372138 PMCID: PMC11007282 DOI: 10.1017/s0031182023001324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 02/20/2024]
Abstract
Circadian rhythms are timekeeping mechanisms responsible for an array of biological processes. Disruption of such cycles can detrimentally affect animal health. Circadian rhythms are critical in the co-evolution of host–parasite systems, as synchronization of parasite rhythms to the host can influence infection dynamics and transmission potential. This study examines the circadian rhythms in behaviour and activity of a model fish species (Poecilia reticulata) in isolation and in shoals, both when uninfected and infected with an ectoparasite (Gyrodactylus turnbulli). Additionally, the rhythmical variance of parasite activity under different light conditions as well as rhythmical variance in parasite transmissibility was explored. Overall, infection alters the circadian rhythm of fish, causing nocturnal restlessness. Increased activity of gyrodactylids on the host's skin at night could potentially contribute to this elevated host activity. Whilst migration of gyrodactylids across the host's skin may have caused irritation to the host resulting in nocturnal restlessness, the disruption in guppy activity rhythm caused by the expression of host innate immunity cannot be excluded. We discuss the wider repercussions such behavioural responses to infection have for host health, the implications for animal behaviour studies of diurnal species as well as the application of chronotherapeutic approaches to aquaculture.
Collapse
Affiliation(s)
| | | | - Amy R. Ellison
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
- School of Natural Sciences, Bangor University, Bangor LL57 2DG, UK
| | - Jo Cable
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| |
Collapse
|
10
|
Otsuka K, Cornelissen G, Kubo Y, Shibata K, Mizuno K, Aiba T, Furukawa S, Ohshima H, Mukai C. Methods for assessing change in brain plasticity at night and psychological resilience during daytime between repeated long-duration space missions. Sci Rep 2023; 13:10909. [PMID: 37407662 DOI: 10.1038/s41598-023-36389-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/02/2023] [Indexed: 07/07/2023] Open
Abstract
This study was designed to examine the feasibility of analyzing heart rate variability (HRV) data from repeat-flier astronauts at matching days on two separate missions to assess any effect of repeated missions on brain plasticity and psychological resilience, as conjectured by Demertzi. As an example, on the second mission of a healthy astronaut studied about 20 days after launch, sleep duration lengthened, sleep quality improved, and spectral power (ms2) co-varying with activity of the salience network (SN) increased at night. HF-component (0.15-0.50 Hz) increased by 61.55%, and HF-band (0.30-0.40 Hz) by 92.60%. Spectral power of HRV indices during daytime, which correlate negatively with psychological resilience, decreased, HF-component by 22.18% and HF-band by 37.26%. LF-component and LF-band, reflecting activity of the default mode network, did not change significantly. During the second mission, 24-h acrophases of HRV endpoints did not change but the 12-h acrophase of TF-HRV did (P < 0.0001), perhaps consolidating the circadian system to help adapt to space by taking advantage of brain plasticity at night and psychological resilience during daytime. While this N-of-1 study prevents drawing definitive conclusions, the methodology used herein to monitor markers of brain plasticity could pave the way for further studies that could add to the present results.
Collapse
Affiliation(s)
- Kuniaki Otsuka
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Ibaraki, Japan.
- Halberg Chronobiology Center, University of Minnesota, Minneapolis, MN, USA.
- Tokyo Women's Medical University, Tokyo, Japan.
| | | | - Yutaka Kubo
- Tokyo Women's Medical University, Tokyo, Japan
| | | | - Koh Mizuno
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Ibaraki, Japan
- Faculty of Education, Tohoku Fukushi University, Miyagi, Japan
| | - Tatsuya Aiba
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Ibaraki, Japan
| | - Satoshi Furukawa
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Ibaraki, Japan
| | - Hiroshi Ohshima
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Ibaraki, Japan
| | - Chiaki Mukai
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Ibaraki, Japan
- Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
11
|
Sharma SN, Meller LLT, Sharma AN, Amsterdam EA. Cardiovascular Adaptations of Space Travel: A Systematic Review. Cardiology 2023; 148:434-440. [PMID: 37302388 PMCID: PMC10614241 DOI: 10.1159/000531466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Space travel imposes significant gravitational and radiation stress on both cellular and systemic physiology, resulting in myriad cardiovascular changes that have not been fully characterized. METHODS We conducted a systematic review of the cellular and clinical adaptations of the cardiovascular system after exposure to real or simulated space travel in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The PubMed and Cochrane databases were searched in June 2021 for all peer-reviewed articles published since 1950 related to the following search terms entered in separate pairs: "cardiology and space" and "cardiology and astronaut." Only cellular and clinical studies in English concerning the investigation of cardiology and space were included. RESULTS Eighteen studies were identified, comprising 14 clinical and 4 cellular investigations. On the genetic level, pluripotent stem cells in humans and cardiomyocytes in mice displayed increased beat irregularity, with clinical studies revealing a persistent increase in heart rate after space travel. Further cardiovascular adaptations included a higher frequency of orthostatic tachycardia but no evidence of orthostatic hypotension, after return to sea level. Hemoglobin concentration was also consistently decreased after return to Earth. No consistent change in systolic or diastolic blood pressure or any clinically significant arrhythmias were observed during or after space travel. CONCLUSION Changes in oxygen carrying capacity, blood pressure, and post-flight orthostatic tachycardia may serve as reasons to further screen for pre-existing anemic and hypotensive conditions among astronauts.
Collapse
Affiliation(s)
| | - Leo L T Meller
- School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Ajay Nair Sharma
- School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Ezra A Amsterdam
- Division of Cardiology, Department of Internal Medicine, University of California, Davis, California, USA
| |
Collapse
|
12
|
Le Roy B, Martin-Krumm C, Pinol N, Dutheil F, Trousselard M. Human challenges to adaptation to extreme professional environments: A systematic review. Neurosci Biobehav Rev 2023; 146:105054. [PMID: 36682426 DOI: 10.1016/j.neubiorev.2023.105054] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
NASA is planning human exploration of the Moon, while preparations are underway for human missions to Mars, and deeper into the solar system. These missions will expose space travelers to unusual conditions, which they will have to adapt to. Similar conditions are found in several analogous environments on Earth, and studies can provide an initial understanding of the challenges for human adaptation. Such environments can be marked by an extreme climate, danger, limited facilities and supplies, isolation from loved ones, or mandatory interaction with others. They are rarely encountered by most human beings, and mainly concern certain professions in limited missions. This systematic review focuses on professional extreme environments and captures data from papers published since 2005. Our findings provide an insight into their physiological, biological, cognitive, and behavioral impacts for better understand how humans adapt or not to them. This study provides a framework for studying adaptation, which is particularly important in light of upcoming longer space expeditions to more distant destinations.
Collapse
Affiliation(s)
- Barbara Le Roy
- Stress Neurophysiology Unit, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge Cedex, France; CNES, Paris, France; APEMAC/EPSAM, EA 4360 Metz Cedex, France.
| | - Charles Martin-Krumm
- Stress Neurophysiology Unit, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge Cedex, France; APEMAC/EPSAM, EA 4360 Metz Cedex, France; École de Psychologues Praticiens, Catholic Institute of Paris, EA Religion, Culture et société, Paris, France
| | - Nathalie Pinol
- Université Clermont Auvergne, Health Library, Clermont-Ferrand, France
| | - Frédéric Dutheil
- University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Occupational and Environmental Medicine, WittyFit, F 63000 Clermont-Ferrand, France; Université Clermont Auvergne, CNRS, LaPSCo, Physiological and Psychosocial Stress, 34 Avenue Carnot, 63 037 Clermont-Ferrand, France
| | - Marion Trousselard
- Stress Neurophysiology Unit, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge Cedex, France; APEMAC/EPSAM, EA 4360 Metz Cedex, France; French Military Health Service Academy, Paris, France
| |
Collapse
|
13
|
Unconscious mind activates central cardiovascular network and promotes adaptation to microgravity possibly anti-aging during 1-year-long spaceflight. Sci Rep 2022; 12:11862. [PMID: 35831420 PMCID: PMC9279338 DOI: 10.1038/s41598-022-14858-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
The intrinsic cardiovascular regulatory system (β, 0.00013–0.02 Hz) did not adapt to microgravity after a 6-month spaceflight. The infraslow oscillation (ISO, 0.01–0.10 Hz) coordinating brain dynamics via thalamic astrocytes plays a key role in the adaptation to novel environments. We investigate the adaptive process of a healthy astronaut during a 12-month-long spaceflight by analyzing heart rate variability (HRV) in the LF (0.01–0.05 Hz) and MF1 (0.05–0.10 Hz) bands for two consecutive days on four occasions: before launch, at 1-month (ISS01) and 11-month (ISS02) in space, and after return to Earth. Alteration of β during ISS01 improved during ISS02 (P = 0.0167). During ISS01, LF and MF1 bands, reflecting default mode network (DMN) activity, started to increase at night (by 43.1% and 32.0%, respectively), when suprachiasmatic astrocytes are most active, followed by a 25.9% increase in MF1-band throughout the entire day during ISS02, larger at night (47.4%) than during daytime. Magnetic declination correlated positively with β during ISS01 (r = 0.6706, P < 0.0001) and ISS02 (r = 0.3958, P = 0.0095). Magnetic fluctuations may affect suprachiasmatic astrocytes, and the DMN involving ISOs and thalamic astrocytes may then be activated, first at night, then during the entire day, a mechanism that could perhaps promote an anti-aging effect noted in other investigations.
Collapse
|
14
|
Kim HN, Richardson KK, Krager KJ, Ling W, Simmons P, Allen AR, Aykin-Burns N. Simulated Galactic Cosmic Rays Modify Mitochondrial Metabolism in Osteoclasts, Increase Osteoclastogenesis and Cause Trabecular Bone Loss in Mice. Int J Mol Sci 2021; 22:11711. [PMID: 34769141 PMCID: PMC8583929 DOI: 10.3390/ijms222111711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/24/2022] Open
Abstract
Space is a high-stress environment. One major risk factor for the astronauts when they leave the Earth's magnetic field is exposure to ionizing radiation from galactic cosmic rays (GCR). Several adverse changes occur in mammalian anatomy and physiology in space, including bone loss. In this study, we assessed the effects of simplified GCR exposure on skeletal health in vivo. Three months following exposure to 0.5 Gy total body simulated GCR, blood, bone marrow and tissue were collected from 9 months old male mice. The key findings from our cell and tissue analysis are (1) GCR induced femoral trabecular bone loss in adult mice but had no effect on spinal trabecular bone. (2) GCR increased circulating osteoclast differentiation markers and osteoclast formation but did not alter new bone formation or osteoblast differentiation. (3) Steady-state levels of mitochondrial reactive oxygen species, mitochondrial and non-mitochondrial respiration were increased without any changes in mitochondrial mass in pre-osteoclasts after GCR exposure. (4) Alterations in substrate utilization following GCR exposure in pre-osteoclasts suggested a metabolic rewiring of mitochondria. Taken together, targeting radiation-mediated mitochondrial metabolic reprogramming of osteoclasts could be speculated as a viable therapeutic strategy for space travel induced bone loss.
Collapse
Affiliation(s)
- Ha-Neui Kim
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA; (K.K.R.); (W.L.)
| | - Kimberly K. Richardson
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA; (K.K.R.); (W.L.)
| | - Kimberly J. Krager
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA; (K.J.K.); (P.S.); (A.R.A.)
| | - Wen Ling
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA; (K.K.R.); (W.L.)
| | - Pilar Simmons
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA; (K.J.K.); (P.S.); (A.R.A.)
| | - Antino R. Allen
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA; (K.J.K.); (P.S.); (A.R.A.)
| | - Nukhet Aykin-Burns
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA; (K.J.K.); (P.S.); (A.R.A.)
| |
Collapse
|
15
|
Astronauts well-being and possibly anti-aging improved during long-duration spaceflight. Sci Rep 2021; 11:14907. [PMID: 34290387 PMCID: PMC8295322 DOI: 10.1038/s41598-021-94478-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
This study assesses how circadian rhythms of heart rate (HR), HR variability (HRV) and activity change during long-term missions in space and how they relate to sleep quality. Ambulatory 48-h ECG and 96-h actigraphy were performed four times on ten healthy astronauts (44.7 ± 6.9 years; 9 men): 120.4 ± 43.7 days (Before) launch; 21.1 ± 2.5 days (ISS01) and 143.0 ± 27.1 days (ISS02) after launch; and 86.6 ± 40.6 days (After) return to Earth. Sleep quality was determined by sleep-related changes in activity, RR-intervals, HRV HF- and VLF-components and LF-band. The circadian amplitude of HR (HR-A) was larger in space (ISS01: 12.54, P = 0.0099; ISS02: 12.77, P = 0.0364) than on Earth (Before: 10.90; After: 10.55 bpm). Sleep duration in space (ISS01/ISS02) increased in 3 (Group A, from 370.7 to 388.0/413.0 min) and decreased in 7 (Group B, from 454.0 to 408.9/381.6 min) astronauts. Sleep quality improved in Group B from 7.07 to 8.36 (ISS01) and 9.36 (ISS02, P = 0.0001). Sleep-related parasympathetic activity increased from 55.2% to 74.8% (pNN50, P = 0.0010) (ISS02). HR-A correlated with the 24-h (r = 0.8110, P = 0.0044), 12-h (r = 0.6963, P = 0.0253), and 48-h (r = 0.6921, P = 0.0266) amplitudes of the magnetic declination index. These findings suggest associations of mission duration with increased well-being and anti-aging benefitting from magnetic fluctuations.
Collapse
|
16
|
Mohammadyari P, Gadda G, Taibi A. Modelling physiology of haemodynamic adaptation in short-term microgravity exposure and orthostatic stress on Earth. Sci Rep 2021; 11:4672. [PMID: 33633331 PMCID: PMC7907254 DOI: 10.1038/s41598-021-84197-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/08/2021] [Indexed: 11/09/2022] Open
Abstract
Cardiovascular haemodynamics alters during posture changes and exposure to microgravity. Vascular auto-remodelling observed in subjects living in space environment causes them orthostatic intolerance when they return on Earth. In this study we modelled the human haemodynamics with focus on head and neck exposed to different hydrostatic pressures in supine, upright (head-up tilt), head-down tilt position, and microgravity environment by using a well-developed 1D-0D haemodynamic model. The model consists of two parts that simulates the arterial (1D) and brain-venous (0D) vascular tree. The cardiovascular system is built as a network of hydraulic resistances and capacitances to properly model physiological parameters like total peripheral resistance, and to calculate vascular pressure and the related flow rate at any branch of the tree. The model calculated 30.0 mmHg (30%), 7.1 mmHg (78%), 1.7 mmHg (38%) reduction in mean blood pressure, intracranial pressure and central venous pressure after posture change from supine to upright, respectively. The modelled brain drainage outflow percentage from internal jugular veins is 67% and 26% for supine and upright posture, while for head-down tilt and microgravity is 65% and 72%, respectively. The model confirmed the role of peripheral veins in regional blood redistribution during posture change from supine to upright and microgravity environment as hypothesized in literature. The model is able to reproduce the known haemodynamic effects of hydraulic pressure change and weightlessness. It also provides a virtual laboratory to examine the consequence of a wide range of orthostatic stresses on human haemodynamics.
Collapse
Affiliation(s)
- Parvin Mohammadyari
- Department of Physics and Earth Sciences, University of Ferrara, 44122, Ferrara, Italy
| | - Giacomo Gadda
- National Institute for Nuclear Physics (INFN), Section of Ferrara, 44122, Ferrara, Italy.
| | - Angelo Taibi
- Department of Physics and Earth Sciences, University of Ferrara, 44122, Ferrara, Italy
| |
Collapse
|
17
|
Moraes MM, Mendes TT, Arantes RME. Smart Wearables for Cardiac Autonomic Monitoring in Isolated, Confined and Extreme Environments: A Perspective from Field Research in Antarctica. SENSORS (BASEL, SWITZERLAND) 2021; 21:1303. [PMID: 33670324 PMCID: PMC7917677 DOI: 10.3390/s21041303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/30/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
Antarctica is a space-analog ICE (isolated, cold, and extreme) environment. Cardiovascular and heart autonomic adjustments are key-adaptive physiological responses to Antarctica, both in summer camps and in research stations winter-over. Research fieldwork in ICE environments imposes limitations such as energy restriction, the need for portable and easy-to-handle resources, and resistance of materials to cold and snow/water. Herein, we present the methods we use for cardiac monitoring in the Antarctic field, the limitations of the equipment currently available, and the specific demands for smart wearables to physiological and health tracking in ICE environments, including the increased remote monitoring demand due to COVID-19 restrictions.
Collapse
Affiliation(s)
- Michele M. Moraes
- Department of Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil;
| | - Thiago T. Mendes
- Center for Natural and Human Sciences, Health and Technology, Universidade Federal do Maranhão, Pinheiro, Maranhão 65200-000, Brazil;
| | - Rosa M. E. Arantes
- Department of Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil;
| |
Collapse
|
18
|
Revealing the hidden reality of the mammalian 12-h ultradian rhythms. Cell Mol Life Sci 2021; 78:3127-3140. [PMID: 33449146 DOI: 10.1007/s00018-020-03730-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/18/2020] [Accepted: 12/04/2020] [Indexed: 12/29/2022]
Abstract
Biological oscillations often cycle at different harmonics of the 24-h circadian rhythms, a phenomenon we coined "Musica Universalis" in 2017. Like the circadian rhythm, the 12-h oscillation is also evolutionarily conserved, robust, and has recently gained new traction in the field of chronobiology. Originally thought to be regulated by the circadian clock and/or environmental cues, recent new evidences support the notion that the majority of 12-h rhythms are regulated by a distinct and cell-autonomous pacemaker that includes the unfolded protein response (UPR) transcription factor spliced form of XBP1 (XBP1s). 12-h cycle of XBP1s level in turn transcriptionally generates robust 12-h rhythms of gene expression enriched in the central dogma information flow (CEDIF) pathway. Given the regulatory and functional separation of the 12-h and circadian clocks, in this review, we will focus our attention on the mammalian 12-h pacemaker, and discuss our current understanding of its prevalence, evolutionary origin, regulation, and functional roles in both physiological and pathological processes.
Collapse
|
19
|
Otsuka K, Cornelissen G, Kubo Y, Shibata K, Mizuno K, Ohshima H, Furukawa S, Mukai C. Anti-aging effects of long-term space missions, estimated by heart rate variability. Sci Rep 2019; 9:8995. [PMID: 31222071 PMCID: PMC6586662 DOI: 10.1038/s41598-019-45387-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023] Open
Abstract
Reports that aging slows down in space prompted this investigation of anti-aging effects in humans by analyzing astronauts' heart rate variability (HRV). Ambulatory 48-hour electrocardiograms from 7 astronauts (42.1 ± 6.8 years; 6 men) 20.6 ± 2.7 days (ISS01) and 138.6 ± 21.8 days (ISS02) after launch were divided into 24-hour spans of relative lower or higher magnetic disturbance, based on geomagnetic measures in Tromso, Norway. Magnetic disturbances were significantly higher on disturbed than on quiet days (ISS01: 72.01 ± 33.82 versus 33.96 ± 17.90 nT, P = 0.0307; ISS02: 71.06 ± 51.52 versus 32.53 ± 27.27 nT, P = 0.0308). SDNNIDX was increased on disturbed days (by 5.5% during ISS01, P = 0.0110), as were other HRV indices during ISS02 (SDANN, 12.5%, P = 0.0243; Triangular Index, 8.4%, P = 0.0469; and TF-component, 17.2%, P = 0.0054), suggesting the action of an anti-aging or longevity effect. The effect on TF was stronger during light (12:00-17:00) than during darkness (0:00-05:00) (P = 0.0268). The brain default mode network (DMN) was activated, gauged by increases in the LF-band (9.7%, P = 0.0730) and MF1-band (9.9%, P = 0.0281). Magnetic changes in the magnetosphere can affect and enhance HRV indices in space, involving an anti-aging or longevity effect, probably in association with the brain DMN, in a light-dependent manner and/or with help from the circadian clock.
Collapse
Affiliation(s)
- Kuniaki Otsuka
- Executive Medical Center, Totsuka Royal Clinic, Tokyo Women's Medical University, Tokyo, Japan.
- Halberg Chronobiology Center, University of Minnesota, Minneapolis, Minnesota, USA.
| | - Germaine Cornelissen
- Halberg Chronobiology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yutaka Kubo
- Department of Medicine, Tokyo Women's Medical University, Medical Center East, Tokyo, Japan
| | - Koichi Shibata
- Department of Medicine, Tokyo Women's Medical University, Medical Center East, Tokyo, Japan
| | - Koh Mizuno
- Faculty of Education, Tohoku Fukushi University, Miyagi, Japan
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Tokyo, Japan
| | - Hiroshi Ohshima
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Tokyo, Japan
| | - Satoshi Furukawa
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Tokyo, Japan
| | - Chiaki Mukai
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Tokyo, Japan
| |
Collapse
|
20
|
Otsuka K, Cornelissen G, Kubo Y, Shibata K, Hayashi M, Mizuno K, Ohshima H, Furukawa S, Mukai C. Circadian challenge of astronauts' unconscious mind adapting to microgravity in space, estimated by heart rate variability. Sci Rep 2018; 8:10381. [PMID: 29991811 PMCID: PMC6039530 DOI: 10.1038/s41598-018-28740-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
It is critical that the regulatory system functions well in space's microgravity. However, the "intrinsic" cardiovascular regulatory system (β), estimated by the fractal scaling of heart rate variability (HRV) (0.0001-0.01 Hz), does not adapt to the space environment during long-duration (6-month) space flights. Neuroimaging studies suggest that the default mode network (DMN) serves a broad adaptive purpose, its topology changing over time in association with different brain states of adaptive behavior. Hypothesizing that HRV varies in concert with changes in brain's functional connectivity, we analyzed 24-hour HRV records from 8 healthy astronauts (51.8 ± 3.7 years; 6 men) on long (174.5 ± 13.8 days) space missions, obtained before launch, after about 21 (ISS01), 73 (ISS02), and 156 (ISS03) days in space, and after return to Earth. Spectral power in 8 frequency regions reflecting activity in different brain regions was computed by maximal entropy. Improved β (p < 0.05) found in 4 astronauts with a positive activation in the "HRV slow-frequency oscillation" (0.10-0.20 Hz) occurred even in the absence of consciousness. The adaptive response was stronger in the evening and early sleep compared to morning (p = 0.039). Brain functional networks, the DMN in particular, can help adapt to microgravity in space with help from the circadian clock.
Collapse
Affiliation(s)
- Kuniaki Otsuka
- Executive Medical Center, Totsuka Royal Clinic, Tokyo Women's Medical University, Tokyo, Japan.
- Halberg Chronobiology Center, University of Minnesota, Minneapolis, Minnesota, USA.
| | - Germaine Cornelissen
- Halberg Chronobiology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yutaka Kubo
- Department of Medicine, Tokyo Women's Medical University, Medical Center East, Tokyo, Japan
| | - Koichi Shibata
- Department of Medicine, Tokyo Women's Medical University, Medical Center East, Tokyo, Japan
| | - Mitsutoshi Hayashi
- Department of Medicine, Tokyo Women's Medical University, Medical Center East, Tokyo, Japan
| | - Koh Mizuno
- Faculty of Education, Tohoku Fukushi University, Miyagi, Japan
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Tokyo, Japan
| | - Hiroshi Ohshima
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Tokyo, Japan
| | - Satoshi Furukawa
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Tokyo, Japan
| | - Chiaki Mukai
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Tokyo, Japan
| |
Collapse
|
21
|
Zhu B, Dacso CC, O’Malley BW. Unveiling "Musica Universalis" of the Cell: A Brief History of Biological 12-Hour Rhythms. J Endocr Soc 2018; 2:727-752. [PMID: 29978151 PMCID: PMC6025213 DOI: 10.1210/js.2018-00113] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022] Open
Abstract
"Musica universalis" is an ancient philosophical concept claiming the movements of celestial bodies follow mathematical equations and resonate to produce an inaudible harmony of music, and the harmonious sounds that humans make were an approximation of this larger harmony of the universe. Besides music, electromagnetic waves such as light and electric signals also are presented as harmonic resonances. Despite the seemingly universal theme of harmonic resonance in various disciplines, it was not until recently that the same harmonic resonance was discovered also to exist in biological systems. Contrary to traditional belief that a biological system is either at stead-state or cycles with a single frequency, it is now appreciated that most biological systems have no homeostatic "set point," but rather oscillate as composite rhythms consisting of superimposed oscillations. These oscillations often cycle at different harmonics of the circadian rhythm, and among these, the ~12-hour oscillation is most prevalent. In this review, we focus on these 12-hour oscillations, with special attention to their evolutionary origin, regulation, and functions in mammals, as well as their relationship to the circadian rhythm. We further discuss the potential roles of the 12-hour clock in regulating hepatic steatosis, aging, and the possibility of 12-hour clock-based chronotherapy. Finally, we posit that biological rhythms are also musica universalis: whereas the circadian rhythm is synchronized to the 24-hour light/dark cycle coinciding with the Earth's rotation, the mammalian 12-hour clock may have evolved from the circatidal clock, which is entrained by the 12-hour tidal cues orchestrated by the moon.
Collapse
Affiliation(s)
- Bokai Zhu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Clifford C Dacso
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Bert W O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
22
|
The Impact of Oxidative Stress on the Bone System in Response to the Space Special Environment. Int J Mol Sci 2017; 18:ijms18102132. [PMID: 29023398 PMCID: PMC5666814 DOI: 10.3390/ijms18102132] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/28/2017] [Accepted: 10/09/2017] [Indexed: 12/25/2022] Open
Abstract
The space special environment mainly includes microgravity, radiation, vacuum and extreme temperature, which seriously threatens an astronaut’s health. Bone loss is one of the most significant alterations in mammalians after long-duration habitation in space. In this review, we summarize the crucial roles of major factors—namely radiation and microgravity—in space in oxidative stress generation in living organisms, and the inhibitory effect of oxidative stress on bone formation. We discussed the possible mechanisms of oxidative stress-induced skeletal involution, and listed some countermeasures that have therapeutic potentials for bone loss via oxidative stress antagonism. Future research for better understanding the oxidative stress caused by space environment and the development of countermeasures against oxidative damage accordingly may facilitate human beings to live more safely in space and explore deeper into the universe.
Collapse
|