1
|
Essate A, Achiou B, Benkhaya S, Chakraborty S, Ouammou M, Alami Younssi S. Low‐cost polysulfone/polystyrene ultrafiltration membrane with efficient azoic dyes removal and excellent antifouling performance for colored wastewater. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ahlam Essate
- Laboratory of Materials, Membranes and Environment, Faculty of Sciences and Technologies of Mohammedia Hassan II University of Casablanca Mohammedia Morocco
| | - Brahim Achiou
- Laboratory of Materials, Membranes and Environment, Faculty of Sciences and Technologies of Mohammedia Hassan II University of Casablanca Mohammedia Morocco
| | - Said Benkhaya
- Department of Civil and Environmental Engineering Shantou University Shantou China
| | | | - Mohamed Ouammou
- Laboratory of Materials, Membranes and Environment, Faculty of Sciences and Technologies of Mohammedia Hassan II University of Casablanca Mohammedia Morocco
| | - Saad Alami Younssi
- Laboratory of Materials, Membranes and Environment, Faculty of Sciences and Technologies of Mohammedia Hassan II University of Casablanca Mohammedia Morocco
| |
Collapse
|
2
|
Nitrates Removal from Simulated Groundwater Using Nano Zerovalent Iron Supported by Polystyrenic Gel. Polymers (Basel) 2022; 15:polym15010061. [PMID: 36616410 PMCID: PMC9823507 DOI: 10.3390/polym15010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/11/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The main objectives of this present paper were to indicate the immobilization of nano zerovalent iron (nZVI) onto a polymeric material (Purolite A400) and the synthesis of the polymeric material (A400-nZVI) through sodium borohydride (NaBH4) reduction. The obtained polymeric material (A400-nZVI) was used for the nitrate ions removal from a simulated groundwater at different conditions. The polymeric materials, without and with nano zerovalent iron (A400 and A400-nZVI), were characterized trough the FTIR, SEM-EDAX, XRD, and TGA analysis. The analysis confirmed the presence of nano zerovalent iron (nZVI) onto the polymeric material (A400). The adsorption capacity of A400-nZVI, used as polymeric adsorbent, was evaluated by kinetic and thermodynamic studies. The obtained experimental results indicated that the nitrate ions reduction was fitted well by models: pseudo-second-order kinetic and Freundlich isotherm. According to the kinetic model results, a reaction mechanism could exist in the stage of reactions. The higher value of removal nitrate (>80%) was obtained under acidic condition. The results indicated that the obtained polymeric material (A400-nZVI) can be considered as a potential polymeric adsorbent for different pollutants from groundwater and wastewater.
Collapse
|
3
|
Wang Y, Ma B, Ulbricht M, Dong Y, Zhao X. Progress in alumina ceramic membranes for water purification: Status and prospects. WATER RESEARCH 2022; 226:119173. [PMID: 36252299 DOI: 10.1016/j.watres.2022.119173] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/25/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Ceramic membranes have gained increasing attention in recent years for the removal of various contaminants from water. Alumina membrane is considered as one of the most important ceramic membranes, which plays important roles not only in separation processes such as microfiltration, ultrafiltration, and nanofiltration, but also in catalysis- and adsorption- enhanced separation applications in water purification and wastewater treatment. However, there is currently still lack of a comprehensive critical review about alumina membranes for water purification. In this review, we first discuss recent developments of alumina membranes, and then critically introduce the state-of-the-art strategies for lowering fabrication cost, improving membrane performances and mitigating membrane fouling. Especially, aiming to improve membrane performance, some emerging methods are summarized such as tailoring membrane structure, developing flexible membranes, designing nano-pores for precise separation, and enhancing multi-functionalities. In addition, engineering applications of alumina membranes for water purification are also briefly introduced. Finally, the prospects for future research on alumina membranes are proposed, such as economic preparation/application, challenging precise separation, enriching multi-functionalities, and clarifying separation mechanisms.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Baiwen Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Duisburg-Essen Department of Technical Chemistry II, Essen 45117, Germany
| | - Mathias Ulbricht
- University of Duisburg-Essen Department of Technical Chemistry II, Essen 45117, Germany
| | - Yingchao Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Xu Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
4
|
Ismail AS, Ishak N, Kamarudin Q, Hui VES, Mustapa NB, Nasir AM. Synthesis of graphite‐based ion‐imprinted polymer for the selective removal of nitrate ions. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202200001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Anis Syahirah Ismail
- Faculty of Chemical Engineering Technology University Malaysia Perlis Padang Besar, Perlis 02100 Malaysia
| | - Noorhidayah Ishak
- Faculty of Chemical Engineering Technology University Malaysia Perlis Padang Besar, Perlis 02100 Malaysia
| | - Qasrina Kamarudin
- Faculty of Chemical Engineering Technology University Malaysia Perlis Padang Besar, Perlis 02100 Malaysia
| | - Vivian Ewe Shin Hui
- Faculty of Chemical Engineering Technology University Malaysia Perlis Padang Besar, Perlis 02100 Malaysia
| | - Nur Bahijah Mustapa
- Faculty of Chemical Engineering Technology University Malaysia Perlis Padang Besar, Perlis 02100 Malaysia
| | - Azalina Mohamed Nasir
- Faculty of Chemical Engineering Technology University Malaysia Perlis Padang Besar, Perlis 02100 Malaysia
| |
Collapse
|
5
|
Bishayee B, Chatterjee RP, Ruj B, Chakrabortty S, Nayak J. Strategic management of nitrate pollution from contaminated water using viable adsorbents: An economic assessment-based review with possible policy suggestions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 303:114081. [PMID: 34823908 DOI: 10.1016/j.jenvman.2021.114081] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/22/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Groundwater contaminated with nitrate has prompted a flurry of research studies around the world in the recent years to address this burning environmental issue. The common presence of nitrates in groundwater, wastewater, and surface waters has thrown an enormously critical challenge to the global research communities to provide safe and clean drinking water to municipalities. As per WHO, the maximum permissible limit of nitrate in drinking water is 10 mg/L and in groundwater is 50 mg/L; exceeding the limits, several human health problems are observed. Adsorption, ion-exchange processes, membrane-based approaches, electrochemical and chemical procedures, biological methods, filtration, nanoparticles, etc. have been well investigated and reviewed to reduce nitrate levels in water samples in the recent years. Process conditions, as well as the efficacy of various approaches, were discovered to influence different techniques for nitrate mitigation. But, because of low cost, simple operation, easy handling, and high removal effectiveness, adsorption has been found to be the most suitable and efficient approach. The main objectives of this review primarily focuses on the creation of a naturally abundant, cost-effective innovative abundant material, such as activated clay particles combined with iron oxide. Oxide-clay nanocomposite materials, effectively remove nitrate with higher removal efficiency along with recovery of nitrate concentrated sludge. Such methods stand out as flexible and economic ways for capturing stabilized nitrate in solid matrices to satisfy long-term operations. A techno-economic assessment along with suitable policy suggestions have been reported to justify the viability of the brighter processes. Indeed, this kind of analytical review appears ideal for municipal community recommendations on abatement of excess nitrate to supply of clean water.
Collapse
Affiliation(s)
- Bhaskar Bishayee
- Environmental Engineering Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209, India
| | - Rishya Prava Chatterjee
- Environmental Engineering Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209, India
| | - Biswajit Ruj
- Environmental Engineering Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209, India.
| | - Sankha Chakrabortty
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India.
| | - Jayato Nayak
- Department of Chemical Engineering, Kalasalingam Academy of Research and Education, Tamilnadu, 626126, India.
| |
Collapse
|
6
|
Optimization and performance studies of NFDK membrane for ionic separation from aqueous solutions. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Amenaghawon AN, Anyalewechi CL, Darmokoesoemo H, Kusuma HS. Hydroxyapatite-based adsorbents: Applications in sequestering heavy metals and dyes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:113989. [PMID: 34710761 DOI: 10.1016/j.jenvman.2021.113989] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Hydroxyapatite (HAp) is a calcium phosphate material that was used primarily in bone regeneration and repair as a result of its chemical similarity with bone. However, HAp has emerged as a very promising adsorbent for sequestering contaminants like heavy metals, dyes, hydrocarbons as well as other emerging pollutants from wastewater as a result of its versatility and encouraging adsorptive properties. Contaminants like heavy metals and dyes have been a major source of environmental concern. Research studies involving the use of HAp as adsorbents for the adsorptive treatment of heavy metal- and dye-contaminated wastewater have become increasingly popular due to its eco-friendliness, easy synthesis, unique adsorption properties etc. Various methods are available for the synthesis of HAp and its composites with some of these methods used in combination with other methods to obtain more efficient HAp-based adsorbents. In this work, the adsorptive removal of heavy metals and dyes by HAp and its composites was extensively reviewed as well as the parametric effects of process factors like contact time, solution pH, temperature, solute concentration etc on the adsorption process. Kinetic, thermodynamic, and isotherm models for elucidating the adsorption process were also considered. Generally, from the works reviewed, HAp-based adsorbents were found to be very effective for sequestering heavy metals and dyes from solution and thus presents a low-cost option for adsorptive wastewater treatment.
Collapse
Affiliation(s)
- Andrew N Amenaghawon
- Department of Chemical Engineering, Faculty of Engineering, University of Benin, PMB, 1154, Benin City, Edo State, Nigeria.
| | - Chinedu L Anyalewechi
- Department of Chemical Engineering, Faculty of Engineering, University of Benin, PMB, 1154, Benin City, Edo State, Nigeria; Department of Chemical Engineering, Federal Polytechnic Oko, Anambra State, Nigeria
| | - Handoko Darmokoesoemo
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Mulyorejo, Surabaya, 60115, Indonesia.
| | - Heri Septya Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional "Veteran" Yogyakarta, Indonesia.
| |
Collapse
|
8
|
Tkalčević M, Gotić M, Basioli L, Lihter M, Dražić G, Bernstorff S, Vuletić T, Mičetić M. Deposition of Thin Alumina Films Containing 3D Ordered Network of Nanopores on Porous Substrates. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2883. [PMID: 32604995 PMCID: PMC7372343 DOI: 10.3390/ma13132883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/11/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Self-supporting thin films containing nanopores are very promising materials for use for multiple applications, especially in nanofiltration. Here, we present a method for the production of nanomembranes containing a 3D ordered network of nanopores in an alumina matrix, with a diameter of about 1 nm and a body centered tetragonal structure of the network nodes. The material is produced by the magnetron sputtering deposition of a 3D ordered network of Ge nanowires in an alumina matrix, followed by a specific annealing process resulting in the evaporation of Ge. We demonstrate that the films can be easily grown on commercially available alumina substrates containing larger pores with diameters between 20 and 400 nm. We have determined the minimal film thickness needed to entirely cover the larger pores. We believe that these films have the potential for applications in the fields of filtration, separation and sensing.
Collapse
Affiliation(s)
- Marija Tkalčević
- Ruđer Bošković Institute, Division of Materials Physics, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.T.); (M.G.); (L.B.)
| | - Marijan Gotić
- Ruđer Bošković Institute, Division of Materials Physics, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.T.); (M.G.); (L.B.)
| | - Lovro Basioli
- Ruđer Bošković Institute, Division of Materials Physics, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.T.); (M.G.); (L.B.)
| | - Martina Lihter
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, 1015 Lausanne, Switzerland;
| | - Goran Dražić
- National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia;
| | | | - Tomislav Vuletić
- Institute of Physics, Bijenička Cesta 46, 10000 Zagreb, Croatia;
| | - Maja Mičetić
- Ruđer Bošković Institute, Division of Materials Physics, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.T.); (M.G.); (L.B.)
| |
Collapse
|
9
|
Effect and mechanism of graphene structured palladized zero-valent iron nanocomposite (nZVI-Pd/NG) for water denitration. Sci Rep 2020; 10:9931. [PMID: 32555218 PMCID: PMC7303133 DOI: 10.1038/s41598-020-66725-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 03/02/2020] [Indexed: 11/08/2022] Open
Abstract
Nitrate reduction by zero-valent iron-based materials has been extensively studied. However, the aggregation of nanoparticles and the preference for unfavored ammonia products limit the application of this technology. To overcome this issue, this study introduced a novel synthesized nanoscale palladized zero-valent iron graphene composite (nZVI-Pd/NG) and explored its nitrate reduction efficiency. A nitrate removal rate of 97.0% was achieved after 120 min of reaction for an initial nitrate concentration of 100 mg N/L. The nitrogen gas selectivity was enhanced from 0.4% to 15.6% at the end point compared to nanoscale zero-valent iron (nZVI) particles under the same conditions. Further analyses revealed that zero-valent metal nanoparticles spread uniformly on the graphene surface, with a thin layer of iron (hydr)oxides dominated by magnetite. The nZVI-Pd/NG exhibited good catalytic activity with the associated activation energy of 17.6 kJ/mol being significantly lower than that with nZVI (42.8 kJ/mol). The acidic condition promoted a higher nZVI utilization rate, with the excess dosage of nZVI-Pd/NG ensuring a high nitrate removal rate for a wide pH range. This study demonstrates an improvement in nitrate reduction efficiency in a nZVI system by combining the exceptional properties of graphene and palladium.
Collapse
|