1
|
Wang X, An J, Cao T, Guo M, Han F. Application of Biosurfactants in Medical Sciences. Molecules 2024; 29:2606. [PMID: 38893481 PMCID: PMC11173561 DOI: 10.3390/molecules29112606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Biosurfactants derived from microorganisms have attracted widespread attention in scientific research due to their unique surface activity, low toxicity, biodegradability, antibacterial properties, and stability under extreme conditions. Biosurfactants are widely used in many fields, such as medicine, agriculture, and environmental protection. Therefore, this review aims to comprehensively review and analyze the various applications of biosurfactants in the medical field. The central roles of biosurfactants in crucial medical areas are explored, like drug delivery, induction of tumor cell differentiation or death, treating bacterial and viral effects, healing wounds, and immune regulation. Moreover, a new outlook is introduced on optimizing the capabilities of biosurfactants through modification and gene recombination for better use in medicine. The current research challenges and future research directions are described, aiming to provide valuable insights for continuous study of biosurfactants in medicine.
Collapse
Affiliation(s)
| | | | | | | | - Fu Han
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (X.W.); (J.A.); (T.C.); (M.G.)
| |
Collapse
|
2
|
Binot C, Sadoc JF, Chouard CH. SARS-COV2, variants, membranes et physique fondamentale. BULLETIN DE L'ACADÉMIE NATIONALE DE MÉDECINE 2022; 206:445-447. [PMID: 35185153 PMCID: PMC8847083 DOI: 10.1016/j.banm.2022.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022]
Affiliation(s)
- C Binot
- Académie nationale de médecine, 16, rue Bonaparte, 75006 Paris, France
| | - J-F Sadoc
- Académie nationale de médecine, 16, rue Bonaparte, 75006 Paris, France
| | - C-H Chouard
- Académie nationale de médecine, 16, rue Bonaparte, 75006 Paris, France
| |
Collapse
|
3
|
Zhao W, Song Y, Wang QQ, Han S, Li XX, Cui Y, Gao H, Yuan R, Yang S. Cryptotanshinone Induces Necroptosis through Ca2+ Release and ROS Production in vitro and in vivo. Curr Mol Pharmacol 2022; 15:1009-1023. [PMID: 35086466 DOI: 10.2174/1874467215666220127112201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/15/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Necroptosis is a type of programmed necrosis mediated by receptor-interacting protein kinases 1 and 3 (RIP1 and RIP3), which is morphologically characterized by enlarged organelles, ruptured plasma membrane, and subsequent loss of intracellular contents. Cryptotanshinone (CPT), a diterpene quinone compound extracted from the root of Salvia miltiorrhiza Bunge, has been reported to have significant anticancer activities. However, the detailed mechanism of CPT has not been clearly illustrated. OBJECTIVE The present study aimed to explore the cell death type and mechanisms of CPT-induced in non-small cell lung cancer (NSCLC) cells. METHODS The cytotoxicity of CPT on A549 cells was assessed by MTS assay. Ca2+ release and reactive oxygen species (ROS) generation were detected by flow cytometry. The changes in mitochondrial membrane potential (MMP) were observed through JC-1 staining. The expressions of p-RIP1, p-RIP3, p-MLKL, and MAPKs pathway proteins were analyzed by western blotting analysis. The efficacy of CPT in vivo was evaluated by the Lewis lung carcinoma (LLC) xenograft mice model. Blood samples were collected for hematology analysis. ELISA investigated the effects of CPT on tumor necrosis factor α (TNF-α). Hematoxylin and eosin staining (HE) was used to determine the tumor tissues. Proteins' expression of tumor tissues was quantified by western blotting. RESULTS CPT inhibited the cell viability of A549 cells in a time- and concentration-dependent manner, which was reversed by Necrostatin-1 (Nec-1). In addition, CPT treatment increased the expression of p-RIP1, p-RIP3, p-MLKL, the release of Ca2+, ROS generation, and the MAPKs pathway activated in A549 cells. Moreover, animal experiment results showed that intraperitoneal injection of CPT (15 mg/kg and 30 mg/kg) significantly inhibited tumor growth in C57BL/6 mice without affecting the bodyweight and injuring the organs. CONCLUSION Our findings suggested that CPT-induced necroptosis via RIP1/RIP3/MLKL signaling pathway both in vitro and in vivo, indicating that CPT may be a promising agent in the treatment of NSCLC.
Collapse
Affiliation(s)
- Wentong Zhao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Yuanbo Song
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine
| | - Qin-Qin Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530200, China
| | - Shan Han
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Xin-Xing Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Yushun Cui
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530200, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Renyikun Yuan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| |
Collapse
|
4
|
Feuser PE, Coelho ALS, de Melo ME, Scussel R, Carciofi BAM, Machado-de-Ávila RA, de Oliveira D, de Andrade CJ. Apoptosis Induction in Murine Melanoma (B16F10) Cells by Mannosylerythritol Lipids-B; a Glycolipid Biosurfactant with Antitumoral Activities. Appl Biochem Biotechnol 2021; 193:3855-3866. [PMID: 34302592 DOI: 10.1007/s12010-021-03620-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 07/12/2021] [Indexed: 11/26/2022]
Abstract
Mannosylerythritol lipids have drawn attention to cosmetic and pharmaceutical industries due to their non-toxicity and excellent biological interactions with human skin, particularly with the deepest epidermal layer. Lamellar liquid crystal structure, formed by MEL-B, is an interesting feature due to its similarity to the stratum corneum molecular arrangement and cell signaling events involved in the deregulation of the cancerous cell membrane. Thus, this work aimed to evaluate the cytotoxicity of commercial mannosylerythritol lipids-B in murine melanoma, fibroblast, and human erythrocytes cells. Cytotoxic effect was more pronounced on the tumor cells from 20 µg/mL, reducing cell viability by 65%, whereas fibroblast and human erythrocytes cells were more resistant to glycolipid treatment. Fluorescence microscopy and flow cytometer proved that mannosylerythritol lipids-B is an apoptosis inducer in tumor cells related to reactive oxygen species generation.
Collapse
Affiliation(s)
- P E Feuser
- Graduate Program in Chemical Engineering, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Trindade, s/n, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - A L S Coelho
- Graduate Program in Food Engineering, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Trindade, s/n, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - M E de Melo
- Graduate Program in Health Science, University of the Extreme South Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - R Scussel
- Graduate Program in Health Science, University of the Extreme South Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - B A M Carciofi
- Graduate Program in Food Engineering, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Trindade, s/n, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - R A Machado-de-Ávila
- Graduate Program in Health Science, University of the Extreme South Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - D de Oliveira
- Graduate Program in Chemical Engineering, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Trindade, s/n, Florianópolis, Santa Catarina, 88040-900, Brazil
- Graduate Program in Food Engineering, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Trindade, s/n, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - C J de Andrade
- Graduate Program in Chemical Engineering, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Trindade, s/n, Florianópolis, Santa Catarina, 88040-900, Brazil.
| |
Collapse
|
5
|
Zhang X, Wu W. Liquid Crystalline Phases for Enhancement of Oral Bioavailability. AAPS PharmSciTech 2021; 22:81. [PMID: 33619612 DOI: 10.1208/s12249-021-01951-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/03/2021] [Indexed: 12/21/2022] Open
Abstract
Liquid crystalline phases (LCPs) are generated upon lipolysis of ingested lipids in the gastrointestinal tract. The breaking off and subsequent evolution of LCPs produce more advanced vesicular and micellar structures which facilitate oral absorption of lipids, as well as co-loaded drug entities. Owing to sustained or controlled drug release, bioadhesiveness, and capability of loading drugs of different properties, LCPs are promising vehicles to implement for enhancement of oral bioavailability. This review aims to provide an overview on the classification, preparation and characterization, in vivo generation and transformation, absorption mechanisms, and encouraging applications of LCPs in enhancement of oral bioavailability. In addition, we comment on the merits of LCPs as oral drug delivery carriers, as well as solutions to industrialization utilizing liquid crystalline precursor and preconcentrate formulations.
Collapse
|
6
|
Claude-Henri C, Binot C, Sadoc JF. The involvement of liquid crystals in multichannel implanted neurostimulators, hearing and ENT infections, and cancer. Acta Otolaryngol 2019; 139:316-332. [PMID: 31035839 DOI: 10.1080/00016489.2018.1554265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Liquid crystals (LCs) consist of assemblies of molecules, between one and tens of nanometers, grouped in identifiable cohorts according to orientation and structure, which is often lamellar with varying chirality. The term liquid phase (Lo phase) designates certain such mesophases. This variety in geometry corresponds to a variety of functions. Some molecules, both organic and inorganic, used in applied engineering, and association with LCs confer new properties. Applying these aspects of LCs in manufacturing implantable material is a growing technology, especially in the interfaces of differentiated multichannel electro-neurostimulation. We highlight the involvement of LCs in the head and neck region, and the role mesophases play in outer hair cell electromotility (mechanotransduction). We summarize implications of LCs this for multichannel electroneurostimulation implant engineering, and highlight their role importance of LCs in early oncogenic process, HPV, and latency in (Epstein-Barr) and other pathogens. Our approach should help give rise to new therapeutic perspectives. Focusing on upstream nanometric phenomena needs to take on board classic determinism, quantum probability, and statistical complexity.
Collapse
|
7
|
Vallamkondu J, Corgiat EB, Buchaiah G, Kandimalla R, Reddy PH. Liquid Crystals: A Novel Approach for Cancer Detection and Treatment. Cancers (Basel) 2018; 10:E462. [PMID: 30469457 PMCID: PMC6267481 DOI: 10.3390/cancers10110462] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 11/23/2022] Open
Abstract
Liquid crystals are defined as the fourth state of matter forming between solid and liquid states. Earlier the applications of liquid crystals were confined to electronic instruments, but recent research findings suggest multiple applications of liquid crystals in biology and medicine. Here, the purpose of this review article is to discuss the potential biological impacts of liquid crystals in the diagnosis and prognosis of cancer along with the risk assessment. In this review, we also discussed the recent advances of liquid crystals in cancer biomarker detection and treatment in multiple cell line models. Cases reviewed here will demonstrate that cancer diagnostics based on the multidisciplinary technology and intriguingly utilization of liquid crystals may become an alternative to regular cancer detection methodologies. Additionally, we discussed the formidable challenges and problems in applying liquid crystal technologies. Solving these problems will require great effort and the way forward is through the multidisciplinary collaboration of physicists, biologists, chemists, material-scientists, clinicians, and engineers. The triumphant outcome of these liquid crystals and their applications in cancer research would be convenient testing for the detection of cancer and may result in treating the cancer patients non-invasively.
Collapse
Affiliation(s)
- Jayalakshmi Vallamkondu
- Department of Physics, NIT Warangal, Telangana 506004, India.
- Centre for Advanced Materials, NIT Warangal, Telangana 506004, India.
| | - Edwin Bernard Corgiat
- Department of Cellular Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | - Ramesh Kandimalla
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA.
- Neurology Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA.
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA.
- Neurology Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA.
- Pharmacology and Neuroscience Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA.
- Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, 6630 S. Quaker Suite E, MS 7495, Lubbock, TX 79413, USA.
- Cell Biology and Biochemistry Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA.
- Speech, Language and Hearing Sciences Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA.
- Department of Public Health, Graduate School of Biomedical Sciences, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA.
| |
Collapse
|