1
|
Riedlova P, Tavandzis S, Kana J, Roubec J. Conditions and factors affecting the accuracy of olfactometric detection. Heliyon 2025; 11:e41604. [PMID: 39866477 PMCID: PMC11761340 DOI: 10.1016/j.heliyon.2024.e41604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/21/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025] Open
Abstract
Introduction The use of signal dogs for cancer detection is not yet routinely performed,but dogs and their powerful olfactory system have proven to be a unique and valuable tool for many lineages and are beginning to be incorporated into medical practice. This method has great advantages; the dog can detect a tumour in the human body already in preclinical stages, when the patient has no symptoms yet. The identification of cancer biomarkers to enable early diagnosis is a need for many types of cancer, whose prognosis is strongly dependent on the stage of the disease. However, this method also has its various pitfalls that must be taken into account. Aim The aim of the study was to identify and highlight the factors that affect the level of detection accuracy, but also the conditions associated with olfactometric diagnosis. Methods The study included 48 dogs and 48 handlers, that were part of the training between 2016 and 2023.All those who started olfactometry training and remained in training for at least one year were included in the study. The dogs ranged in age from 8 months to 12 years and were of different races and sexes. After long-term observation, a qualitative analysis was performed and factors that may play a role in the early detection of the disease were listed. Results The results of the search for the different factors have been compiled into two groups, focussing on the actual handling of the patient biological sample from collection, processing, storage until transport, preparation of the sample,and detection. Focus on the actual work and behaviour of the dog and handler. Conclusion There are many factors; however, it is worth addressing them because the canine sense of smell is one of the possible uses as a diagnostic method.
Collapse
Affiliation(s)
- Petra Riedlova
- Centre for Epidemiological Research, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Czech Centre of Signal Animals, Novy Jicin, Czech Republic
| | | | - Josef Kana
- Czech Centre of Signal Animals, Novy Jicin, Czech Republic
| | - Jaromir Roubec
- Department of Pulmonary, Vitkovice Hospital, Ostrava, Czech Republic
| |
Collapse
|
2
|
Caldicott L, Pike TW, Zulch HE, Mills DS, Williams FJ, Elliker KR, Hutchings B, Wilkinson A. Odour generalisation and detection dog training. Anim Cogn 2024; 27:73. [PMID: 39485633 PMCID: PMC11530475 DOI: 10.1007/s10071-024-01907-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 11/03/2024]
Abstract
Detection dogs are required to search for and alert to specific odours of interest, such as drugs, cadavers, disease markers and explosives. However, the odour released from different samples of the same target substance will vary for a number of reasons, including the production method, evaporation, degradation, or by being mixed with extraneous odours. Generalisation, the tendency to respond in the same manner to stimuli which are different - but similar to - a conditioned stimulus, is therefore a crucial requirement for working detection dogs. Odour is a complex modality which poses unique challenges in terms of reliably predicting generalisation, when compared with auditory or visual stimuli. The primary aim of this review is to explore recent advances in our understanding of generalisation and the factors that influence it, and to consider these in light of detection dog training methods currently used in the field. We identify potential risks associated with certain training practices, and highlight areas where research is lacking and which warrant further investigation.
Collapse
Affiliation(s)
- Lyn Caldicott
- School of Life and Environmental Sciences, University of Lincoln, Lincoln, UK
| | - Thomas W Pike
- School of Life and Environmental Sciences, University of Lincoln, Lincoln, UK
| | - Helen E Zulch
- School of Life and Environmental Sciences, University of Lincoln, Lincoln, UK
| | - Daniel S Mills
- School of Life and Environmental Sciences, University of Lincoln, Lincoln, UK
| | - Fiona J Williams
- Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
| | - Kevin R Elliker
- Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
| | - Bethany Hutchings
- Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
| | - Anna Wilkinson
- School of Life and Environmental Sciences, University of Lincoln, Lincoln, UK.
| |
Collapse
|
3
|
Katilie CJ, DeGreeff LE, Sharpes CE, Best EM, Buckley PE, Gadberry JD, Maughan MN. Evaluation of canine training aids containment for homemade explosive and components by headspace analysis and canine testing. J Forensic Sci 2023; 68:2021-2036. [PMID: 37691017 DOI: 10.1111/1556-4029.15368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023]
Abstract
While canines are most commonly trained to detect traditional explosives, such as nitroaromatics and smokeless powders, homemade explosives (HMEs), such as fuel-oxidizer mixtures, are arguably a greater threat. As such, it is imperative that canines are sufficiently trained in the detection of such HMEs. The training aid delivery device (TADD) is a primary containment device that has been used to house HMEs and HME components for canine detection training purposes. This research assesses the odor release from HME components, ammonium nitrate (AN), urea nitrate (UN), and potassium chlorate (PC), housed in TADDs. Canine odor recognition tests (ORTs) were used with analytical data to determine the detectability of TADDs containing AN, UN, or PC. Headspace analysis by gas chromatography/mass spectrometry (GC/MS) with solid-phase microextraction (SPME) or online cryotrapping were used to measure ammonia or chlorine, as well as other unwanted odorants, emanating from bulk AN, UN, and PC in TADDs over 28 weeks. The analytical data showed variation in the amount of ammonia and chlorine over time, with ammonia from AN and UN decreasing slowly over time and the abundance of chlorine from PC TADDs dependent on the frequency of exposure to ambient air. Even with these variations in odor abundance, canines previously trained to detect bulk explosive HME components were able to detect all three targets in glass and plastic TADDs for at least 18 months after loading. Detection proficiency ranged from 64% to 100% and was not found to be dependent on either age of material.
Collapse
Affiliation(s)
| | - Lauryn E DeGreeff
- Formerly of the U.S. Naval Research Laboratory, Washington, District of Columbia, USA
| | | | - Eric M Best
- College of Emergency Preparedness, Homeland Security and Cybersecurity, University of Albany, Albany, New York, USA
| | - Patricia E Buckley
- US Army DEVCOM Chemical Biological Center, Aberdeen Proving Ground, Maryland, USA
| | | | | |
Collapse
|
4
|
Simon A, Ong TH, Wrobel A, Mendum T, Kunz R. Review: Headspace Components of Explosives for Canine Non-Detonable Training Aid Development. Forensic Chem 2023. [DOI: 10.1016/j.forc.2023.100491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
5
|
Gallegos SF, Aviles-Rosa EO, DeChant MT, Hall NJ, Prada-Tiedemann PA. Explosive Odor Signature Profiling: A Review of recent advances in technical analysis and detection. Forensic Sci Int 2023; 347:111652. [PMID: 37019070 DOI: 10.1016/j.forsciint.2023.111652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
With the ever-increasing threat of improvised explosive devices (IEDs) and homemade explosives (HME) both domestically and abroad, detection of explosives and explosive related materials is an area of urgent importance for preventing terrorist activities around the globe. Canines are a common biological detector used in explosive detection due to their enhanced olfactory abilities, high mobility, efficient standoff sampling, and optimal identification of vapor sources. While other sensors based on different principles have emerged, an important concept for the rapid field detection of explosives is understanding key volatile organic compounds (VOCs) associated with these materials. Explosive detection technology needs to be on par with a large number of threats including an array of explosive materials as well as novel chemicals used in the manufacture of IEDs. Within this much needed area of research for law enforcement and homeland security applications, several studies have sought to understand the explosive odor profile from a range of materials. This review aims to provide a foundational overview of these studies to provide a summary of instrumental analysis to date on the various types of explosive odor profiles evaluated focusing on the experimental approaches and laboratory techniques utilized in the chemical characterization of explosive vapors and mixtures. By expanding upon these concepts, a greater understanding of the explosive vapor signature can be achieved, providing for enhanced chemical and biological sensing of explosive threats as well as expanding upon existing laboratory-based models for continued sensor development.
Collapse
|
6
|
Dorey N, Anderson MA, Mims D, Peruyero P. The Effects of Cue Modality on Reliability and Generalization of Training Outcomes with Domestic Dog. J Vet Behav 2023. [DOI: 10.1016/j.jveb.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
7
|
Mörén L, Bergström F, Brantlind M, Wingfors H. Rapid changes in profiles from stored materials used in scent training of explosive detection dogs. Sci Justice 2022; 62:657-665. [DOI: 10.1016/j.scijus.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/02/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
|
8
|
Aviles-Rosa EO, Fernandez LS, Collins-Pisano C, Prada-Tiedemann PA, Hall NJ. The use of an intermittent schedule of reinforcement to evaluate detection dogs’ generalization from smokeless-powder. Anim Cogn 2022; 25:1609-1620. [DOI: 10.1007/s10071-022-01648-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022]
|
9
|
Juge AE, Hall NJ, Richeson JT, Daigle CL. Using Canine Olfaction to Detect Bovine Respiratory Disease: A Pilot Study. Front Vet Sci 2022; 9:902151. [PMID: 35847637 PMCID: PMC9284318 DOI: 10.3389/fvets.2022.902151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/23/2022] [Indexed: 12/05/2022] Open
Abstract
Bovine respiratory disease (BRD) is the leading cause of morbidity and mortality in feedlot cattle and is a major welfare and economic concern. Identification of BRD-affected cattle using clinical illness scores is problematic, and speed and cost constraints limit the feasibility of many diagnostic approaches. Dogs can rapidly identify humans and animals affected by a variety of diseases based on scent. Canines' olfactory systems can distinguish between patterns of volatile organic compounds produced by diseased and healthy tissue. In this pilot study, two dogs (“Runnels” and “Cheaps”) were trained for 7 months to discriminate between nasal swabs from cattle that developed signs of BRD within 20 days of feedlot arrival and swabs from cattle that did not develop BRD signs within 3 months at the feedlot. Nasal swabs were collected during cattle processing upon arrival to the feedlot and were stored at −80°C. Dogs were presented with sets of one positive and two negative samples and were trained using positive reinforcement to hold their noses over the positive sample. The dogs performed moderately well in the final stage of training, with accuracy for Runnels of 0.817 and Cheaps of 0.647, both greater than the 0.333 expected by chance. During a double-blind detection test, dogs evaluated 123 unique and unfamiliar samples that were presented as 41 sets (3 samples per set), with both the dog handler and data recorder blinded to the positive sample location. Each dog was tested twice on each set of samples. Detection test accuracy was slightly better than chance for Cheaps at 0.451 (95% CI: 0.344–0.559) and was no better than chance for Runnels at 0.390 (95% CI: 0.285–0.496. Overall accuracy was 0.421 (95% CI: 0.345–0.496). When dogs' consensus response on each sample set was considered, accuracy was 0.537 (95% CI: 0.384–0.689). Detection accuracy also varied by sample lot. While dogs showed some ability to discriminate between BRD-affected and healthy cattle using nasal swabs, the complexity of this task suggests that more testing is needed before determining whether dogs could be effective as a screening method for BRD.
Collapse
Affiliation(s)
- Aiden E. Juge
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Nathaniel J. Hall
- Department of Animal Science, Texas Tech University, Lubbock, TX, United States
| | - John T. Richeson
- Department of Agricultural Sciences, West Texas A&M University, Canyon, TX, United States
| | - Courtney L. Daigle
- Department of Animal Science, Texas A&M University, College Station, TX, United States
- *Correspondence: Courtney L. Daigle
| |
Collapse
|
10
|
Influences of Indication Response Requirement and Target Prevalence on Dogs’ Performance in a Scent-detection Task. Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2022.105657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Gallegos S, Aviles-Rosa EO, Hall NJ, PradaTiedemann PA. Headspace Sampling of Smokeless Powder Odor in a Dynamic Airflow Context. Forensic Chem 2022. [DOI: 10.1016/j.forc.2022.100402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Aviles-Rosa EO, Gallegos SF, Prada-Tiedemann PA, Hall NJ. An Automated Canine Line-Up for Detection Dog Research. Front Vet Sci 2021; 8:775381. [PMID: 35071382 PMCID: PMC8771161 DOI: 10.3389/fvets.2021.775381] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Currently, there is a need to develop technology that facilitates and improves detection dog research. The aim of this research was to develop an automated computer-driven olfactory line-up task. The apparatus consisted of three olfactometers. Each olfactometer was equipped with flow meters to regulate air flow and dilution and six solenoid valves connected to odor jars. Each olfactometer generated an odor which was carried to an odor port where the dogs sample it. The olfactometer's valves were activated by a microcontroller, and a Python program was built to control each olfactometer and randomize and balance the odor presentation. Dogs (N = 12) received one or two 40-trial training sessions in a day where they progressed through a series of training phases where they learned to detect and alert to double-base smokeless powder (SP). An “alert” consisted of a 4-s nose hold. This was measured by infrared sensors in the ports. For each trial, the apparatus recorded dogs' search latency, sniff time, port entries, and response. All this information was automatically recorded in a csv file. A photoionization detector (PID) and solid-phase microextraction followed by gas chromatography-mass spectrometry (SPME-GC/MS) were used to evaluate the odor dynamics and to instrumentally verify odor presence and clearance. A control test was conducted at the end of the training to ensure dogs were alerting exclusively to the odorant. All 12 dogs readily learned to operate the apparatus within 23 days, and all exceeded 85% accuracy. Control tests indicated dogs were leveraging only olfactory cues and not unintentional cues such as auditory cues from the apparatus. Analytical data showed that odor was detected in the port immediately after the activation of a valve and that odor clearance occurred immediately after the valve was closed. The apparatus developed was easy to operate by the dogs and allowed substantial data collection using double-blind testing procedures in a very short period at an affordable cost point for research equipment (~$5,000 USD). The apparatus may prove to be a useful research tool to provide optimal odor stimuli control, ensure double-blind conditions, reduce labor, and significantly increase the amount of data collected.
Collapse
Affiliation(s)
- Edgar O. Aviles-Rosa
- Canine Olfaction Research and Education Laboratory, Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, United States
| | - Shawna F. Gallegos
- Forensic Analytical Chemistry and Odor Profiling Laboratory, Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, United States
| | - Paola A. Prada-Tiedemann
- Forensic Analytical Chemistry and Odor Profiling Laboratory, Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, United States
| | - Nathaniel J. Hall
- Canine Olfaction Research and Education Laboratory, Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, United States
- *Correspondence: Nathaniel J. Hall
| |
Collapse
|
13
|
DeGreeff LE, Peranich K. Canine olfactory detection of trained explosive and narcotic odors in mixtures using a Mixed Odor Delivery Device. Forensic Sci Int 2021; 329:111059. [PMID: 34715445 DOI: 10.1016/j.forsciint.2021.111059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/24/2021] [Accepted: 10/17/2021] [Indexed: 10/20/2022]
Abstract
Like using a substandard calibrant to test and calibrate an instrumental detector, when detection canines are regularly exposed to less than optimal training material, their detection proficiency is diminished, risking the lives of their handlers and civilians they are intended to protect. This research examined canine detection proficiency to odor mixtures and the use of mixture training to improve said proficiency. Trained detection canines were tested on their ability to correctly locate their trained target odors, explosives or narcotics, in various mixtures from a series of blanks and distractor odors. After making base measurements, canines were trained on the target odor in mixtures using the Mixed Odor Delivery Device (MODD), which was previously developed to safely contain separated explosive components and deliver the mixed odor to a canine detector for training purposes. Headspace measurements, made using solid phase microextraction with gas chromatography/mass spectrometry (SPME-GC/MS), were also taken of mixture components in and out of the MODD to confirm that odor mixtures were accurately portrayed to the canines during MODD training. Following mixture training, canines were retested on the same mixtures. Results of the headspace analysis showed that the MODD did not alter the delivery of the odorants from the mixture components. As such, canines showed an improved proficiency in detection of target mixtures following mixture training, increasing the detection rate from 63% to 72% for pseudo cocaine mixtures and from 19% to 100% for explosive mixtures.
Collapse
Affiliation(s)
- Lauryn E DeGreeff
- Formerly of the US Naval Research Laboratory, Code 6181, 4555 Overlook Ave. SW, Washington, D.C. 20375, USA
| | - Kimberly Peranich
- Naval Surface Warfare Center, Indian Head Division, 3767 Strauss Ave #113, Indian Head, MD 20640, USA.
| |
Collapse
|
14
|
|
15
|
Kokocińska-Kusiak A, Woszczyło M, Zybala M, Maciocha J, Barłowska K, Dzięcioł M. Canine Olfaction: Physiology, Behavior, and Possibilities for Practical Applications. Animals (Basel) 2021; 11:ani11082463. [PMID: 34438920 PMCID: PMC8388720 DOI: 10.3390/ani11082463] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/03/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Dogs have an extraordinary olfactory capability, which far exceeds that of humans. Dogs’ sense of smell seems to be the main sense, allowing them to not only gather both current and historical information about their surrounding environment, but also to find the source of the smell, which is crucial for locating food, danger, or partners for reproduction. Dogs can be trained by humans to use their olfactory abilities in a variety of fields, with a detection limit often much lower than that of sophisticated laboratory instruments. The specific anatomical and physiological features of dog olfaction allow humans to achieve outstanding results in the detection of drugs, explosives, and different illnesses, such as cancer, diabetes, or infectious disease. This article provides an overview of the anatomical features and physiological mechanisms involved in the process of odor detection and identification, as well as behavioral aspects of canine olfaction and its use in the service of humans in many fields. Abstract Olfaction in dogs is crucial for gathering important information about the environment, recognizing individuals, making decisions, and learning. It is far more specialized and sensitive than humans’ sense of smell. Using the strength of dogs’ sense of smell, humans work with dogs for the recognition of different odors, with a precision far exceeding the analytical capabilities of most modern instruments. Due to their extremely sensitive sense of smell, dogs could be used as modern, super-sensitive mobile area scanners, detecting specific chemical signals in real time in various environments outside the laboratory, and then tracking the odor of dynamic targets to their source, also in crowded places. Recent studies show that dogs can detect not only specific scents of drugs or explosives, but also changes in emotions as well as in human cell metabolism during various illnesses, including COVID-19 infection. Here, we provide an overview of canine olfaction, discussing aspects connected with anatomy, physiology, behavioral aspects of sniffing, and factors influencing the olfactory abilities of the domestic dog (Canis familiaris).
Collapse
Affiliation(s)
- Agata Kokocińska-Kusiak
- Institute of Animal Sciences, Warsaw University of Life Sciences, ul. Ciszewskiego 8, 02-786 Warszawa, Poland; (A.K.-K.); (J.M.)
| | - Martyna Woszczyło
- Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Plac Grunwaldzki 49, 50-366 Wrocław, Poland;
| | - Mikołaj Zybala
- Institute of Biological Sciences, Doctoral School, Siedlce University of Natural Sciences and Humanities, ul. Konarskiego 2, 08-110 Siedlce, Poland;
| | - Julia Maciocha
- Institute of Animal Sciences, Warsaw University of Life Sciences, ul. Ciszewskiego 8, 02-786 Warszawa, Poland; (A.K.-K.); (J.M.)
| | - Katarzyna Barłowska
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland;
| | - Michał Dzięcioł
- Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Plac Grunwaldzki 49, 50-366 Wrocław, Poland;
- Correspondence:
| |
Collapse
|
16
|
DeGreeff LE, Peranich K. Headspace analysis of ammonium nitrate variants and the effects of differing vapor profiles on canine detection. Forensic Chem 2021. [DOI: 10.1016/j.forc.2021.100342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Hall NJ, Johnston AM, Bray EE, Otto CM, MacLean EL, Udell MAR. Working Dog Training for the Twenty-First Century. Front Vet Sci 2021; 8:646022. [PMID: 34386536 PMCID: PMC8353195 DOI: 10.3389/fvets.2021.646022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/28/2021] [Indexed: 01/24/2023] Open
Abstract
Dogs are trained for a variety of working roles including assistance, protection, and detection work. Many canine working roles, in their modern iterations, were developed at the turn of the 20th century and training practices have since largely been passed down from trainer to trainer. In parallel, research in psychology has advanced our understanding of animal behavior, and specifically canine learning and cognition, over the last 20 years; however, this field has had little focus or practical impact on working dog training. The aims of this narrative review are to (1) orient the reader to key advances in animal behavior that we view as having important implications for working dog training, (2) highlight where such information is already implemented, and (3) indicate areas for future collaborative research bridging the gap between research and practice. Through a selective review of research on canine learning and behavior and training of working dogs, we hope to combine advances from scientists and practitioners to lead to better, more targeted, and functional research for working dogs.
Collapse
Affiliation(s)
- Nathaniel J. Hall
- Canine Olfaction Lab, Department of Animal and Food Science, Texas Tech University, Lubbock, TX, United States
| | - Angie M. Johnston
- Boston College Canine Cognition Center, Psychology and Neuroscience Department, Boston College, Chapel Hill, MA, United States
| | - Emily E. Bray
- Arizona Canine Cognition Center, School of Anthropology, University of Arizona, Tucson, AZ, United States
- Canine Companions for Independence, National Headquarters, Santa Rosa, CA, United States
| | - Cynthia M. Otto
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, Penn Vet Working Dog Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Evan L. MacLean
- Arizona Canine Cognition Center, School of Anthropology, University of Arizona, Tucson, AZ, United States
- Cognitive Science Program, University of Arizona, Tucson, AZ, United States
- Department of Psychology, University of Arizona, Tucson, AZ, United States
- College of Veterinary Medicine, University of Arizona, Tucson, AZ, United States
| | - Monique A. R. Udell
- Human-Animal Interaction Lab, Department of Animal & Rangeland Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
18
|
Prichard A, Chhibber R, King J, Athanassiades K, Spivak M, Berns GS. Decoding Odor Mixtures in the Dog Brain: An Awake fMRI Study. Chem Senses 2021; 45:833-844. [PMID: 33179730 DOI: 10.1093/chemse/bjaa068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In working and practical contexts, dogs rely upon their ability to discriminate a target odor from distracting odors and other sensory stimuli. Using awake functional magnetic resonance imaging (fMRI) in 18 dogs, we examined the neural mechanisms underlying odor discrimination between 2 odors and a mixture of the odors. Neural activation was measured during the presentation of a target odor (A) associated with a food reward, a distractor odor (B) associated with nothing, and a mixture of the two odors (A+B). Changes in neural activation during the presentations of the odor stimuli in individual dogs were measured over time within three regions known to be involved with odor processing: the caudate nucleus, the amygdala, and the olfactory bulbs. Average activation within the amygdala showed that dogs maximally differentiated between odor stimuli based on the stimulus-reward associations by the first run, while activation to the mixture (A+B) was most similar to the no-reward (B) stimulus. To clarify the neural representation of odor mixtures in the dog brain, we used a random forest classifier to compare multilabel (elemental) versus multiclass (configural) models. The multiclass model performed much better than the multilabel (weighted-F1 0.44 vs. 0.14), suggesting the odor mixture was processed configurally. Analysis of the subset of high-performing dogs' brain classification metrics revealed a network of olfactory information-carrying brain regions that included the amygdala, piriform cortex, and posterior cingulate. These results add further evidence for the configural processing of odor mixtures in dogs and suggest a novel way to identify high-performers based on brain classification metrics.
Collapse
Affiliation(s)
| | | | - Jon King
- Psychology Department, Emory University, Atlanta, GA, USA
| | | | - Mark Spivak
- Comprehensive Pet Therapy, Inc., Sandy Springs, GA, USA.,Dog Star Technologies, LLC, Sandy Springs, GA, USA
| | | |
Collapse
|
19
|
Aviles-Rosa EO, McGuinness G, Hall NJ. Case Study: An Evaluation of Detection Dog Generalization to a Large Quantity of an Unknown Explosive in the Field. ANIMALS : AN OPEN ACCESS JOURNAL FROM MDPI 2021; 11:ani11051341. [PMID: 34066869 PMCID: PMC8151250 DOI: 10.3390/ani11051341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 11/20/2022]
Abstract
Simple Summary This case study is a series of experiments to investigate a real-life event where two highly trained and certified detection dogs did not find an explosive in a suspicious bag. We tested seven dog teams from the agency in three experiments and confirmed that dogs were able to detect the agency’s training sample in a small quantity (30 g) but not the large amount of the confiscated explosive (13 kg) found in a similar scenario. To further evaluate a possible generalization deficit, we tested dogs with a 30 g subsample of the confiscated explosive, and most of the dogs were able to detect it (but with some decrement) even though they largely failed to detect 13 kg of the same material. Finally, we trained dogs to detect the 30 g subsample until reaching proficiency and found that after training with the small sample, dogs still showed poor generalization to the large-quantity sample until explicit training with the large sample was conducted. Altogether, this series of studies shows the importance of explicitly training for larger quantity finds and has led to changes in agency practices to mitigate future risks. Abstract Two explosive detection dogs were deployed to search a suspicious bag, and failed to detect 13 kg of explosive within. The aim of this research was to further evaluate this incident. First, dog teams (N = 7) searched four bags in a similar scenario. One bag contained the same 13 kg of explosive, two bags were blanks, and the other contained the training sample that the agency routinely used for training. All dogs detected the training sample, but most (5/7) did not alert to the 13 kg sample. Subsequently, dogs received two trials in a line up with a 30 g subsample of the explosive to evaluate whether they could generalize to a smaller quantity. Most dogs (6/7) alerted to the subsample at least once. Finally, dogs were trained with the 30 g subsample and later tested with the 13 kg sample. Only three dogs spontaneously generalized to the large sample after training with the small subsample. Dogs’ alert rate to the 13 kg sample was improved with training in subsequent trials with the 13 kg sample. This result indicates that explosive detection dogs may not generalize to a target odor at a significantly higher quantity relative to the one used in training, highlighting the importance of conducting such training.
Collapse
Affiliation(s)
- Edgar O. Aviles-Rosa
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409-214, USA;
| | | | - Nathaniel J. Hall
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409-214, USA;
- Correspondence: ; Tel.: +1-806-834-8924
| |
Collapse
|
20
|
Agranat AJ, Kabessa Y, Shemer B, Shpigel E, Schwartsglass O, Atamneh L, Uziel Y, Ejzenberg M, Mizrachi Y, Garcia Y, Perepelitsa G, Belkin S. An autonomous bioluminescent bacterial biosensor module for outdoor sensor networks, and its application for the detection of buried explosives. Biosens Bioelectron 2021; 185:113253. [PMID: 33930754 DOI: 10.1016/j.bios.2021.113253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 11/19/2022]
Abstract
We describe a miniaturized field-deployable biosensor module, designed to function as an element in a sensor network for standoff monitoring and mapping of environmental hazards. The module harbors live bacterial sensor cells, genetically engineered to emit a bioluminescent signal in the presence of preselected target materials, which act as its core sensing elements. The module, which detects and processes the biological signal, composes a digital record that describes its findings, and can be transmitted to a remote receiver. The module is an autonomous self-contained unit that can function either as a standalone sensor, or as a node in a sensor network. The biosensor module can potentially be used for detecting any target material to which the sensor cells were engineered to respond. The module described herein was constructed to detect the presence of buried landmines underneath its footprint. The demonstrated detection sensitivity was 0.25 mg 2,4-dinitrotoluene per Kg soil.
Collapse
Affiliation(s)
- Aharon J Agranat
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Yossef Kabessa
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| | - Benjamin Shemer
- Department of Plant & Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Etai Shpigel
- Department of Plant & Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Offer Schwartsglass
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Loay Atamneh
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Yonatan Uziel
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Meir Ejzenberg
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Yosef Mizrachi
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Yehudit Garcia
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Galina Perepelitsa
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Shimshon Belkin
- Department of Plant & Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| |
Collapse
|
21
|
DeChant MT, Hall NJ. Training with varying odor concentrations: implications for odor detection thresholds in canines. Anim Cogn 2021; 24:889-896. [PMID: 33649995 DOI: 10.1007/s10071-021-01484-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/14/2021] [Accepted: 02/01/2021] [Indexed: 11/24/2022]
Abstract
Detection dogs are required to detect trace quantities of substances, many times in the parts per billion or parts per trillion concentration range. Frequently, detection of trace quantities is not explicitly trained but rather assumed when dogs show proficiency at higher concentrations to which they are trained. The aim of this study was to evaluate the effect of the odor concentration of the training sample on the minimum concentration dogs will subsequently detect. We expected that dogs may not spontaneously generalize to trace odor concentration when trained with higher concentrations, but when trained to a range of lower concentrations, dogs will show superior detection to lower untrained concentrations. A total of 11 dogs were randomly assigned to 2 groups and were trained to alert to isoamyl acetate at 0.01% odor dilution (v/v with mineral oil) using a 3-alternative forced choice test. Once reaching proficiency, odor detection threshold was assessed using a 2-down 1-up descending staircase procedure. Next, experimental dogs received training with systematically lower concentrations of isoamyl acetate and threshold re-assessed. Control dogs were yoked to experimental dogs in terms of training time, but only received training to the 0.01% dilution between threshold assessments. Experimental dogs showed significantly improved detection thresholds, outperforming control dogs by detecting an average dilution about 100-fold lower. Results suggest that explicitly training for lower concentrations is critical for generalization for trace odor detection.
Collapse
Affiliation(s)
- Mallory T DeChant
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, USA.
| | - Nathaniel J Hall
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
22
|
DeChant MT, Bunker PC, Hall NJ. Stimulus Control of Odorant Concentration: Pilot Study of Generalization and Discrimination of Odor Concentration in Canines. Animals (Basel) 2021; 11:ani11020326. [PMID: 33525503 PMCID: PMC7912023 DOI: 10.3390/ani11020326] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Dogs are deployed worldwide for detection tasks, but little is known about how they spontaneously generalize between concentration variations of their trained odor. This study found that dogs spontaneously generalized within a 10-fold concentration range lower than the training stimulus. Further, dogs could be trained to discriminate between concentrations within that 10-fold range. However, discrimination training did not affect dogs’ spontaneous generalization to the odor concentration unless discrimination training occurred in compound with generalization testing, suggesting that relative stimulus control of the target and non-target concentrations might be important in determining whether dogs will respond. Abstract Despite dogs’ widespread use as detection systems, little is known about how dogs generalize to variations of an odorant’s concentration. Further, it is unclear whether dogs can be trained to discriminate between similar concentration variations of an odorant. Four dogs were trained to an odorant (0.01 air dilution of isoamyl acetate) in an air-dilution olfactometer, and we assessed spontaneous generalization to a range of concentrations lower than the training stimulus (Generalization Test 1). Dogs generalized to odors within a 10-fold range of the training odorant. Next, we conducted discrimination training to suppress responses to concentrations lower than a concentration dogs showed initial responding towards in Generalization Test 1 (0.0025 air dilution). Dogs successfully discriminated between 0.0025 and 0.01, exceeding 90% accuracy. However, when a second generalization test was conducted (Generalization Test 2), responding at the 0.0025 concentration immediately recovered and was no different than in Generalization Test 1. Dogs were then tested in another generalization test (Compound Discrimination and Generalization) in which generalization probes were embedded within discrimination trials, and dogs showed suppression of responding to the 0.0025 concentration and lower concentrations in this preparation. These data suggest dogs show limited spontaneous generalization across odor concentration and that dogs can be trained to discriminate between similar concentrations of the same odorant. Stimulus control, however, may depend on the negative stimulus, suggesting olfactory concentration generalization may depend on relative stimulus control. These results highlight the importance of considering odor concentration as a dimension for generalization in canine olfactory research.
Collapse
Affiliation(s)
- Mallory T. DeChant
- Department of Food and Animal Sciences, Texas Tech University, Lubbock, TX 79409, USA;
| | | | - Nathaniel J. Hall
- Department of Food and Animal Sciences, Texas Tech University, Lubbock, TX 79409, USA;
- Correspondence:
| |
Collapse
|
23
|
Dorman DC, Foster ML, Lazarowski L. Training with Multiple Structurally Related Odorants Fails to Improve Generalization of Ammonium Nitrate Detection in Domesticated Dogs ( Canis familiaris). Animals (Basel) 2021; 11:ani11010213. [PMID: 33467128 PMCID: PMC7829996 DOI: 10.3390/ani11010213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Domestic dogs are used by military and police forces to detect improvised explosive devices (IEDs) and other explosives. A challenge with training explosive detection dogs is that the ingredients used by someone to make an IED can vary. It is therefore critical that dogs be able to detect an IED with unfamiliar ingredients. This ability can be improved if the dog’s training allows them to categorize similar odors together. Many IEDs are created using ammonium nitrate, which was the focus of our study. Based on preliminary odor training performance, we equally assigned dogs to two experimental groups. Dogs in the first group were trained with two odors related to ammonium nitrate, while dogs in the second group were trained to six related odors. We anticipated that dogs trained to six odors would be more likely to form a category. However, this was not the case since dogs in both experimental groups were unable to form a category that allowed them to identify a novel ammonium nitrate mixture. Based on our results, the use of authentic explosive materials likely remains the most cost-effective and efficient way to train explosive scent detection dogs. Abstract A critical aspect of canine scent detection involves the animal’s ability to respond to odors based on prior odor training. In the current study, dogs (n = 12) were initially trained on an olfactory simple discrimination task using vanillin as the target odorant. Based on their performance on this task, dogs were assigned to experimental groups. Dogs in group 1 and 2 (n = 5 dogs/group; 1 dog/group were removed due to low motivation or high error rates) were trained with either two or six forms of ammonium nitrate (AN), respectively. Dogs were then assessed with a mock explosive with AN and powdered aluminum. Dogs in both groups failed to respond to the novel AN-aluminum odor. Mean success rates were 56 ± 5 and 54 ± 4% for groups 1 and 2, respectively. Overall, and individual dog performance was not statistically higher than chance indicating that dogs did not generalize from AN to a similar AN-based odorant at reliable levels desired for explosive detection dogs. These results suggest the use of authentic explosive materials, without the added complication of including category-learning methods, likely remains a cost-effective and efficient way to train explosive scent detection dogs.
Collapse
|
24
|
Lazarowski L, Krichbaum S, DeGreeff LE, Simon A, Singletary M, Angle C, Waggoner LP. Methodological Considerations in Canine Olfactory Detection Research. Front Vet Sci 2020; 7:408. [PMID: 32766296 PMCID: PMC7379233 DOI: 10.3389/fvets.2020.00408] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 06/08/2020] [Indexed: 11/13/2022] Open
Abstract
Dogs are increasingly used in a wide range of detection tasks including explosives, narcotics, medical, and wildlife detection. Research on detection dog performance is important to understand olfactory capabilities, behavioral characteristics, improve training, expand deployment practices, and advance applied canine technologies. As such, it is important to understand the influence of specific variables on the quantification of detection dog performance such as test design, experimental controls, odor characteristics, and statistical analysis. Methods for testing canine scent detection vary influencing the outcome metrics of performance and the validity of results. Operators, management teams, policy makers, and law enforcement rely on scientific data to make decisions, design policies, and advance canine technologies. A lack of scientific information and standardized protocols in the detector dog industry adds difficulty and inaccuracies when making informed decisions about capability, vulnerability, and risk analysis. Therefore, the aim of this review is to highlight important methodological issues and expand on considerations for conducting scientifically valid detection dog research.
Collapse
Affiliation(s)
- Lucia Lazarowski
- Canine Performance Sciences Program, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Sarah Krichbaum
- Canine Performance Sciences Program, College of Veterinary Medicine, Auburn University, Auburn, AL, United States.,Department of Psychological Sciences, College of Liberal Arts, Auburn University, Auburn, AL, United States
| | - Lauryn E DeGreeff
- Chemistry Division, U.S. Naval Research Laboratory, Washington, DC, United States
| | - Alison Simon
- AGS Forensics, LLC, Washington, DC, United States
| | - Melissa Singletary
- Canine Performance Sciences Program, College of Veterinary Medicine, Auburn University, Auburn, AL, United States.,Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Craig Angle
- Canine Performance Sciences Program, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - L Paul Waggoner
- Canine Performance Sciences Program, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
25
|
Klapec DJ, Czarnopys G, Pannuto J. Interpol review of detection and characterization of explosives and explosives residues 2016-2019. Forensic Sci Int Synerg 2020; 2:670-700. [PMID: 33385149 PMCID: PMC7770463 DOI: 10.1016/j.fsisyn.2020.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Abstract
This review paper covers the forensic-relevant literature for the analysis and detection of explosives and explosives residues from 2016-2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/Resources/Documents#Publications.
Collapse
Affiliation(s)
- Douglas J. Klapec
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Greg Czarnopys
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Julie Pannuto
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| |
Collapse
|
26
|
Simon A, Lazarowski L, Singletary M, Barrow J, Van Arsdale K, Angle T, Waggoner P, Giles K. A Review of the Types of Training Aids Used for Canine Detection Training. Front Vet Sci 2020; 7:313. [PMID: 32596267 PMCID: PMC7301692 DOI: 10.3389/fvets.2020.00313] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/06/2020] [Indexed: 12/04/2022] Open
Abstract
The canine detection community is a diverse one, ranging from scientific fields such as behavior, genetics, veterinary medicine, chemistry, and biology to applications in law enforcement, military, medicine, and agricultural/environmental detection. This diversity has allowed for a flourishing and innovative community, yet it has also led to little acceptance and agreement on terminology. This is especially true when discussing the variety of training aids used in olfactory-based exercises. In general, authentic materials and pseudo-scents are the most commonly discussed, with the former accepted widely for training and certification, and the latter more often disregarded. However, as advances are made in the creation of training materials, alternative training aids are being introduced that do not fit into either of these categories. The misconceptions surrounding how these alternative training aids are manufactured has led to confusion on their classification, and therefore their reliance as an effective tool. This manuscript will review the existing language surrounding canine training aids, address relevant research revealing effectiveness, and clarify the different types based on their manufacture, chemical nature, and fundamental function.
Collapse
Affiliation(s)
- Alison Simon
- AGS Forensics, LLC, Washington, DC, United States
| | - Lucia Lazarowski
- Canine Performance Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Melissa Singletary
- Canine Performance Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Jason Barrow
- Federal Bureau of Investigation Laboratory, Quantico, VA, United States
| | - Kelly Van Arsdale
- Federal Bureau of Investigation Laboratory, Quantico, VA, United States
| | - Thomas Angle
- Canine Performance Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Paul Waggoner
- Canine Performance Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Kathleen Giles
- Giles Consulting, LLC, Huntington Beach, CA, United States
| |
Collapse
|
27
|
Abel RJ, Lunder JL, Harynuk JJ. A novel protocol for producing low-abundance targets to characterize the sensitivity limits of ignitable liquid detection canines. Forensic Chem 2020. [DOI: 10.1016/j.forc.2020.100230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Moser AY, Bizo L, Brown WY. Olfactory Generalization in Detector Dogs. Animals (Basel) 2019; 9:E702. [PMID: 31546835 PMCID: PMC6769875 DOI: 10.3390/ani9090702] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 11/21/2022] Open
Abstract
Generalizing to target odor variations while retaining specificity against non-targets is crucial to the success of detector dogs under working conditions. As such, the importance of generalization should be considered in the formulation of effective training strategies. Research investigating olfactory generalization from pure singular compounds to more complex odor mixtures helps to elucidate animals' olfactory generalization tendencies and inform ways to alter the generalization gradient by broadening or narrowing the range of stimuli to which dogs will respond. Olfactory generalization depends upon both intrinsic factors of the odors, such as concentration, as well as behavioral and cognitive factors related to training and previous experience. Based on the current research, some training factors may influence generalization. For example, using multiple target exemplars appears to be the most effective way to promote elemental processing and broaden the generalization gradient, whereas increasing the number of training instances with fewer exemplars can narrow the gradient, thereby increasing discrimination. Overall, this research area requires further attention and study to increase our understanding of olfactory generalization in dogs, particularly detector dogs, to improve training and detection outcomes.
Collapse
Affiliation(s)
- Ariella Y Moser
- Canine and Equine Research Group, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
| | - Lewis Bizo
- School of Psychology, University of New England, Armidale, NSW 2351, Australia.
| | - Wendy Y Brown
- Canine and Equine Research Group, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
| |
Collapse
|
29
|
Liu R, Li Z, Huang Z, Li K, Lv Y. Biosensors for explosives: State of art and future trends. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|