1
|
Srivastava R, Ahmad F, Mishra BN, Mathkor DM, Singh V, Haque S. Terrein: isolation, chemical synthesis, bioactivity and future prospects of a potential therapeutic fungal metabolite. Nat Prod Res 2024:1-13. [PMID: 39641157 DOI: 10.1080/14786419.2024.2436112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/30/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
The increasing risk of drug-resistant infections and unexpected pandemics like Covid-19 has prompted researchers to explore the area of drug repurposing. Natural products, being a result of the evolutionary optimisation processes can be potential starting points for such drug discovery programs. One such unexplored chemical is terrein, a secondary fungal metabolite. Although discovered in 1935 from Aspergillus terreus, the therapeutic potential of terrein has largely remained undeciphered. Research has primarily been focused on its biosynthetic pathways and its mycotoxic effects. However, in the last two decades, its biological properties including anticancer, anti-inflammatory anti-melanogenic, and bacteriocidal activities have been reported. These reports are preliminary in nature and do not adequately establish its overall therapeutic application. From its structural and therapeutic properties, it can be conjectured that terrein may act as a novel multimodal therapeutic. This comprehensive study reviews the synthesis, production and application aspects of terrein to understand its importance.
Collapse
Affiliation(s)
- Rashi Srivastava
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, India
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Bhartendu Nath Mishra
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, India
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Vineeta Singh
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| |
Collapse
|
2
|
Goutam J, Sharma G, Yadav V, Pathak G, Kharwar RN, Sharma D. A Focused Review of the Pharmacological Potentials of Terrein as an Anticancer Agent. Nat Prod Commun 2023; 18. [DOI: 10.1177/1934578x231174128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025] Open
Abstract
Terrein is one of the most important biomolecules of fungal origin being studied from a medicinal perspective. Secondary metabolites are the intermediate products produced during the metabolism of organisms for a large number of functions, for example, defense and communication signals. From the outset, terrein has largely been studied as an anticancer secondary biomolecule. Aspergillus terreus is the only fungal source of some valuable drugs and mycotoxins. From the beginning, a few species of Aspergillus were known to be viable chemical factories. Terrein is a potent biological molecule present in the fungus that is responsible for its medicinal and agricultural values. Numerous evaluations conducted on terrein showed it to have marked biological activities (antimicrobial, antiproliferative, anti-oxidative, and others). To date, terrein has emerged as a very attractive therapeutic regimen against cancer due to its dual targeting nature; tumor angiogenesis and cell proliferation. This focused review provides details of the therapeutic value of terrein and its modes of action as an anticancer agent. Besides this, terrein has other marked bioactivities and manifold uses in the field of medicine, which have also been discussed here.
Collapse
Affiliation(s)
- Jyoti Goutam
- Mycopathology and Microbial Technology Laboratory, Centre of Advance Study in Botany, Banaras Hindu University, Varanasi, India
| | - Gunjan Sharma
- Immunology and Cancer Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vandana Yadav
- Central Animal House Facility, ICMR-National Institute of Pathology, New Delhi, India
| | - Gauri Pathak
- Department of Microbiology, Maulana Azad Medical College, New Delhi, India
| | - Ravindra Nath Kharwar
- Mycopathology and Microbial Technology Laboratory, Centre of Advance Study in Botany, Banaras Hindu University, Varanasi, India
| | - Divakar Sharma
- Department of Microbiology, Lady Hardinge Medical College, New Delhi, India
| |
Collapse
|
3
|
Liao W, He XJ, Zhang W, Chen YL, Yang J, Xiang W, Ding Y. MiR-145 participates in the development of lupus nephritis by targeting CSF1 to regulate the JAK/STAT signaling pathway. Cytokine 2022; 154:155877. [DOI: 10.1016/j.cyto.2022.155877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/01/2022] [Accepted: 04/03/2022] [Indexed: 11/17/2022]
|
4
|
Huang D, Yang J, Li C, Hui Y, Chen W. Recent Advances in Isolation, Synthesis and Biological Evaluation of Terrein. Chem Biodivers 2021; 18:e2100594. [PMID: 34704347 DOI: 10.1002/cbdv.202100594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/25/2021] [Indexed: 11/11/2022]
Abstract
Terrein is a small-molecule polyketide compound with a simple structure mainly isolated from fungi. Since its discovery in 1935, many scholars have conducted a series of research on its structure identification, isolation source, production increase, synthesis and biological activity. Studies have shown that terrein has a variety of biological activities, not only can inhibit melanin production and epidermal hyperplasia, but also has anti-cancer, anti-inflammatory, anti-angiopoietic secretion, antibacterial, insecticidal activities, and so on. It has potential application prospects in beauty, medicine, agriculture and other fields. This article reviews the process of structural identification of terrein since 1935, and summarizes the latest advances in its isolation, source, production increase, synthesis, and biological activity evaluation, with a view to providing a reference and helping for the in-depth research of terrein.
Collapse
Affiliation(s)
- Dan Huang
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158 Hainan, P. R. China
| | - Jianni Yang
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158 Hainan, P. R. China
| | - Chen Li
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158 Hainan, P. R. China
| | - Yang Hui
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158 Hainan, P. R. China
| | - Wenhao Chen
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158 Hainan, P. R. China
| |
Collapse
|
5
|
Abstract
Infections due to Aspergillus species are an acute threat to human health; members of the Aspergillus section Fumigati are the most frequently occurring agents, but depending on the local epidemiology, representatives of section Terrei or section Flavi are the second or third most important. Aspergillus terreus species complex is of great interest, as it is usually amphotericin B resistant and displays notable differences in immune interactions in comparison to Aspergillus fumigatus. The latest epidemiological surveys show an increased incidence of A. terreus as well as an expanding clinical spectrum (chronic infections) and new groups of at-risk patients being affected. Hallmarks of these non-Aspergillus fumigatus invasive mold infections are high potential for tissue invasion, dissemination, and possible morbidity due to mycotoxin production. We seek to review the microbiology, epidemiology, and pathogenesis of A. terreus species complex, address clinical characteristics, and highlight the underlying mechanisms of amphotericin B resistance. Selected topics will contrast key elements of A. terreus with A. fumigatus. We provide a comprehensive resource for clinicians dealing with fungal infections and researchers working on A. terreus pathogenesis, aiming to bridge the emerging translational knowledge and future therapeutic challenges on this opportunistic pathogen.
Collapse
|
6
|
Sakaida K, Omori K, Nakayama M, Mandai H, Nakagawa S, Sako H, Kamei C, Yamamoto S, Kobayashi H, Ishii S, Ono M, Ibaragi S, Yamashiro K, Yamamoto T, Suga S, Takashiba S. The Fungal Metabolite (+)-Terrein Abrogates Ovariectomy-Induced Bone Loss and Receptor Activator of Nuclear Factor-κB Ligand-Induced Osteoclastogenesis by Suppressing Protein Kinase-C α/βII Phosphorylation. Front Pharmacol 2021; 12:674366. [PMID: 34168561 PMCID: PMC8219168 DOI: 10.3389/fphar.2021.674366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/17/2021] [Indexed: 12/05/2022] Open
Abstract
Osteoporosis is a common disease characterized by a systemic impairment of bone mass and microarchitecture that results in fragility fractures. Severe bone loss due to osteoporosis triggers pathological fractures and consequently decreases the daily life activity and quality of life. Therefore, prevention of osteoporosis has become an important issue to be addressed. We have reported that the fungal secondary metabolite (+)-terrein (TER), a natural compound derived from Aspergillus terreus, has shown receptor activator of nuclear factor-κB ligand (RANKL)–induced osteoclast differentiation by suppressing nuclear factor of activated T-cell 1 (NFATc1) expression, a master regulator of osteoclastogenesis. TER has been shown to possess extensive biological and pharmacological benefits; however, its effects on bone metabolism remain unclear. In this study, we investigated the effects of TER on the femoral bone metabolism using a mouse-ovariectomized osteoporosis model (OVX mice) and then on RANKL signal transduction using mouse bone marrow macrophages (mBMMs). In vivo administration of TER significantly improved bone density, bone mass, and trabecular number in OVX mice (p < 0.01). In addition, TER suppressed TRAP and cathepsin-K expression in the tissue sections of OVX mice (p < 0.01). In an in vitro study, TER suppressed RANKL-induced phosphorylation of PKCα/βII, which is involved in the expression of NFATc1 (p < 0.05). The PKC inhibitor, GF109203X, also inhibited RANKL-induced osteoclastogenesis in mBMMs as well as TER. In addition, TER suppressed the expression of osteoclastogenesis-related genes, such as Ocstamp, Dcstamp, Calcr, Atp6v0d2, Oscar, and Itgb3 (p < 0.01). These results provide promising evidence for the potential therapeutic application of TER as a novel treatment compound against osteoporosis.
Collapse
Affiliation(s)
- Kyosuke Sakaida
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazuhiro Omori
- Department of Periodontics and Endodontics, Okayama University Hospital, Okayama, Japan
| | - Masaaki Nakayama
- Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroki Mandai
- Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science, Gifu, Japan
| | - Saki Nakagawa
- Department of Periodontics and Endodontics, Okayama University Hospital, Okayama, Japan
| | - Hidefumi Sako
- Department of Periodontics and Endodontics, Okayama University Hospital, Okayama, Japan
| | - Chiaki Kamei
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Satoshi Yamamoto
- Department of Periodontics and Endodontics, Okayama University Hospital, Okayama, Japan
| | - Hiroya Kobayashi
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Satoki Ishii
- Division of Applied Chemistry, Graduate School of Natural Sciences and Technology, Okayama University, Okayama, Japan
| | - Mitsuaki Ono
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Soichiro Ibaragi
- Department of Oral Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Keisuke Yamashiro
- Department of Periodontics and Endodontics, Okayama University Hospital, Okayama, Japan
| | - Tadashi Yamamoto
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Seiji Suga
- Division of Applied Chemistry, Graduate School of Natural Sciences and Technology, Okayama University, Okayama, Japan
| | - Shogo Takashiba
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
7
|
Tilvi S, Parvatkar R, Singh KS, Devi P. Chemical Investigation of Marine-Derived Fungus Aspergillus flavipes for Potential Anti-Inflammatory Agents. Chem Biodivers 2021; 18:e2000956. [PMID: 33533162 DOI: 10.1002/cbdv.202000956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/12/2021] [Indexed: 12/26/2022]
Abstract
The marine fungus, Aspergillus flavipes (MTCC 5220), was isolated from the pneumatophore of a mangrove plant Acanthus ilicifolius found in Goa, India. The crude extract of A. flavipes was found to show anti-inflammatory activity. It blocked interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) production in lipopolysaccharide (LPS)-activated THP-1 cells with IC50 of 2.69±0.5 μM and 6.64±0.4 μM, respectively. The chemical investigation led to the isolation of optically inactive 4β-[(1E)-propen-1-yl]cyclopentane-1β,2β-diol (1) along with a new optically active diastereoisomeric compound, 4β-[(1E)-propen-1-yl]cyclopentane-1β,2α-diol (2). In addition, the fungus also produced known compounds (+)-terrein (3), butyrolactone I (4) and butyrolactone II (5) in high yields. Among these, (+)-terrein (3) exhibited IL-6 and TNF-α inhibition activity with IC50 of 8.5±0.68 μM and 15.76±0.18 μM, respectively, while butyrolactone I (4) exhibited IC50 of 12.03±0.85 μM (IL-6) and 43.29±0.76 μM (TNF-α) inhibition activity with low toxicity to host cells in LPS stimulated THP-1 cells. This is the first report of the isolation and characterization of 4β-[(1E)-propen-1-yl]cyclopentane-1β,2α-diol (2). The structures of all the isolated compounds were elucidated on the basis of extensive detailed NMR spectroscopic data. Anti-inflammatory activity of the fungi A. flavipes is presented here for the first time, which was due to (+)-terrein and butyrolactone I, as the major constituents and they can be further explored in the therapeutic area.
Collapse
Affiliation(s)
- Supriya Tilvi
- Bio-Organic Chemistry Laboratory, Chemical Oceanography Division, CSIR-National Institute of Oceanography, Donapaula, 403004, Goa, India
| | - Rajesh Parvatkar
- Government College of Arts, Science and Commerce, Sankhali, 403505, Goa, India
| | - Keisham S Singh
- Bio-Organic Chemistry Laboratory, Chemical Oceanography Division, CSIR-National Institute of Oceanography, Donapaula, 403004, Goa, India
| | - Prabha Devi
- Bio-Organic Chemistry Laboratory, Chemical Oceanography Division, CSIR-National Institute of Oceanography, Donapaula, 403004, Goa, India
| |
Collapse
|
8
|
Vascular Endothelial Growth Factor: A Translational View in Oral Non-Communicable Diseases. Biomolecules 2021; 11:biom11010085. [PMID: 33445558 PMCID: PMC7826734 DOI: 10.3390/biom11010085] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Vascular endothelial growth factors (VEGFs) are vital regulators of angiogenesis that are expressed in response to soluble mediators, such as cytokines and growth factors. Their physiologic functions include blood vessel formation, regulation of vascular permeability, stem cell and monocyte/macrophage recruitment and maintenance of bone homeostasis and repair. In addition, angiogenesis plays a pivotal role in chronic pathologic conditions, such as tumorigenesis, inflammatory immune diseases and bone loss. According to their prevalence, morbidity and mortality, inflammatory diseases affecting periodontal tissues and oral cancer are relevant non-communicable diseases. Whereas oral squamous cell carcinoma (OSCC) is considered one of the most common cancers worldwide, destructive inflammatory periodontal diseases, on the other hand, are amongst the most prevalent chronic inflammatory conditions affecting humans and also represent the main cause of tooth loss in adults. In the recent years, while knowledge regarding the role of VEGF signaling in common oral diseases is expanding, new potential translational applications emerge. In the present narrative review we aim to explore the role of VEGF signaling in oral cancer and destructive periodontal inflammatory diseases, with emphasis in its translational applications as potential biomarkers and therapeutic targets.
Collapse
|
9
|
Nakagawa S, Omori K, Nakayama M, Mandai H, Yamamoto S, Kobayashi H, Sako H, Sakaida K, Yoshimura H, Ishii S, Ibaragi S, Hirai K, Yamashiro K, Yamamoto T, Suga S, Takashiba S. The fungal metabolite (+)-terrein abrogates osteoclast differentiation via suppression of the RANKL signaling pathway through NFATc1. Int Immunopharmacol 2020; 83:106429. [PMID: 32222639 DOI: 10.1016/j.intimp.2020.106429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 03/04/2020] [Accepted: 03/18/2020] [Indexed: 10/24/2022]
Abstract
Pathophysiological bone resorption is commonly associated with periodontal disease and involves the excessive resorption of bone matrix by activated osteoclasts. Receptor activator of nuclear factor (NF)-κB ligand (RANKL) signaling pathways have been proposed as targets for inhibiting osteoclast differentiation and bone resorption. The fungal secondary metabolite (+)-terrein is a natural compound derived from Aspergillus terreus that has previously shown anti-interleukin-6 properties related to inflammatory bone resorption. However, its effects and molecular mechanism of action on osteoclastogenesis and bone resorption remain unclear. In the present study, we showed that 10 µM synthetic (+)-terrein inhibited RANKL-induced osteoclast formation and bone resorption in a dose-dependent manner and without cytotoxicity. RANKL-induced messenger RNA expression of osteoclast-specific markers including nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), the master regulator of osteoclastogenesis, cathepsin K, tartrate-resistant acid phosphatase (Trap) was completely inhibited by synthetic (+)-terrein treatment. Furthermore, synthetic (+)-terrein decreased RANKL-induced NFATc1 protein expression. This study revealed that synthetic (+)-terrein attenuated osteoclast formation and bone resorption by mediating RANKL signaling pathways, especially NFATc1, and indicated the potential effect of (+)-terrein on inflammatory bone resorption including periodontal disease.
Collapse
Affiliation(s)
- Saki Nakagawa
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan.
| | - Kazuhiro Omori
- Department of Periodontics and Endodontics, Okayama University Hospital, Japan.
| | - Masaaki Nakayama
- Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan.
| | - Hiroki Mandai
- Department of Medical Technology, School of Health Science, Gifu University of Medical Science, Japan.
| | - Satoshi Yamamoto
- Department of Periodontics and Endodontics, Okayama University Hospital, Japan.
| | - Hiroya Kobayashi
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan.
| | - Hidefumi Sako
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan.
| | - Kyosuke Sakaida
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan.
| | - Hiroshi Yoshimura
- Division of Applied Chemistry, Graduate School of Natural Sciences and Technology, Okayama University, Japan.
| | - Satoki Ishii
- Division of Applied Chemistry, Graduate School of Natural Sciences and Technology, Okayama University, Japan.
| | - Soichiro Ibaragi
- Department of Oral Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan.
| | - Kimito Hirai
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan.
| | - Keisuke Yamashiro
- Department of Periodontics and Endodontics, Okayama University Hospital, Japan.
| | - Tadashi Yamamoto
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan.
| | - Seiji Suga
- Division of Applied Chemistry, Graduate School of Natural Sciences and Technology, Okayama University, Japan.
| | - Shogo Takashiba
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan.
| |
Collapse
|