1
|
Zhang S, Traverso AJ, Dolgopolova EA, Singh A, Kishida H, Livshits MY, Sheehan CJ, Bowes EG, Li C, Hollingsworth JA, Mikkelsen MH. Solution-Processed Ultrafast, Room-Temperature Single-Photon Source at 1550 nm. ACS NANO 2025; 19:19035-19045. [PMID: 40358050 DOI: 10.1021/acsnano.4c18261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Single photons are cornerstones of quantum technologies. The need for an ultrafast, bright, and stable photon source emitting in the telecom-band at ∼1550 nm, ideally operating at room temperature, has resulted in a decades-long quest. However, to date, telecom sources are hampered by inherently long radiative lifetimes that severely limit brightness and speed, material instability, or the need for cryogenic operation. Here, stable colloidal PbS/CdS quantum dots emitting at 1550 nm (C-band) or 1350 nm (O-band) are embedded in a solution-synthesized nanoparticle-on-mirror cavity. Single cavity-coupled quantum dots experience extreme Purcell factors up to 10,700, resulting in ultrafast emission lifetimes of 65 ps, along with near-complete blinking suppression. As a result, 12 million single photons are emitted per second affording a single photon source at 1550 nm that is more than two orders of magnitude brighter than previously possible at room-temperature. These telecom-band single photon sources are solution-processable and lithography-free and may leverage mature colloidal fabrication technologies for future quantum applications.
Collapse
Affiliation(s)
- Siyuan Zhang
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27705, United States
| | - Andrew J Traverso
- Department of Physics, Duke University, Durham, North Carolina 27705, United States
| | - Ekaterina A Dolgopolova
- Materials Physics and Applications Division, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| | - Ajay Singh
- Materials Physics and Applications Division, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| | - Hiroyuki Kishida
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27705, United States
| | - Maksim Y Livshits
- Chemistry Division: Physical Chemistry & Applied Spectroscopy, Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| | - Chris J Sheehan
- Materials Physics and Applications Division, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| | - Eric G Bowes
- Materials Physics and Applications Division, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| | - Can Li
- Materials Physics and Applications Division, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| | - Jennifer A Hollingsworth
- Materials Physics and Applications Division, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| | - Maiken H Mikkelsen
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27705, United States
- Department of Physics, Duke University, Durham, North Carolina 27705, United States
| |
Collapse
|
2
|
Buxton ML, Brackenridge J, Poliukhova V, Nepal D, Bunning TJ, Tsukruk VV. Surface Mapping of Functionalized Two-Dimensional Nanosheets: Graphene Oxide and MXene Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:11866-11881. [PMID: 40353599 PMCID: PMC12100715 DOI: 10.1021/acs.langmuir.4c05106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 04/29/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
In this study, we characterized the morphology, composition, and surface properties of individual flakes of graphene oxide and Ti3C2Tx MXene chemically modified with ethylenediamine, dopamine, and (3-aminopropyl) triethoxysilane (APTES). Individual monolayers of modified Ti3C2Tx MXene and graphene oxide nanosheets were deposited using the Langmuir-Blodgett technique. We compared the chemical surface modification of these two-dimensional (2D) flakes by employing advanced atomic force microscopy (AFM) modes, including quantitative nanomechanical (QNM) mode, Kelvin-Probe force microscopy (KPFM), and Nano-IR imaging. This approach reveals the distribution of mechanical, electrical, and chemical properties on individual flakes at the nanoscale. QNM analysis confirms that the flakes exhibited full surface coverage after the chemical modification process. In modified MXene flakes, we observed a decrease in apparent elastic modulus and an increase in adhesion of up to four times after their functionalization. Nano-IR imaging demonstrates that chemical modification uniformity is highest for graphene oxide species, while the complex surface distribution was observed for dopamine-modified MXene flakes, with a difference between the inner flat surface and their edges. KPFM indicates greater uniformity of surface electrical potential in differently modified graphene oxide, while a significant increase in surface potential of MXene flakes is seen when modified with dopamine. We suggest that a combination of the added dielectric layer and different grafting densities across the flakes is responsible for the increased or changes in apparent surface potential. Overall, a combination of AFM probing modes is needed for understanding how these functionalized nanosheets can be integrated into diverse polymer matrices.
Collapse
Affiliation(s)
- Madeline L. Buxton
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia30332, United States
| | - Justin Brackenridge
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia30332, United States
| | - Valeriia Poliukhova
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia30332, United States
| | - Dhriti Nepal
- Air
Force Research Lab, Materials and Manufacturing Directorate, 2941 Hobson Way, Wright-Patterson AFB, Ohio45433, United States
| | - Timothy J. Bunning
- Air
Force Research Lab, Materials and Manufacturing Directorate, 2941 Hobson Way, Wright-Patterson AFB, Ohio45433, United States
| | - Vladimir V. Tsukruk
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia30332, United States
| |
Collapse
|
3
|
Barrios N, Marquez R, Trovagunta R, Tolosa L, Suarez A, Zambrano F, Gonzalez R, Pal L, Hubbe MA. Lignin self-assembly phenomena and valorization strategies for pulping, biorefining, and materials development: Part 2. Factors affecting the specificity of lignin self-assembly for industrial applications. Adv Colloid Interface Sci 2025; 342:103521. [PMID: 40288034 DOI: 10.1016/j.cis.2025.103521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
This review considers a profoundly underutilized resource, technical lignin, and its potential for large scale upgrading for higher-valued industrial usage by means of self-assembly processes. Molecular interactions that can be used to guide lignin self-assembly are systematically explored, categorizing them into physicochemical interaction-driven assembly and external stimuli or template-driven assembly. Published findings are examined to reveal molecular mechanisms governing lignin aggregation into lignin nanoparticles (LNPs), films, and interfacial behavior in Pickering emulsions that have potential to be used industrially. Recent advancements in experimental techniques are explored to provide deeper insights into lignin's self-assembly processes. Hydrophobic effects, π-π stacking, hydrogen bonding, electrostatic layering, polyelectrolyte complex formation, chain entanglement, and covalent cross-linking are critically assessed as potential means to control the self-assembly of lignin and systems involving lignin. Additionally, external factors, such as chemical dehydration, solvent-mediated interactions, and external fields are examined related to their role in templating lignin assembly. Based on a comprehensive review of the literature, hydrophobic interactions are predominant in lignin aggregation, with hydrophobicity degrees varying significantly across lignin samples. Interfacial rheology studies demonstrate that lignosulfonate exhibits maximum storage moduli at oil-water interfaces, significantly enhancing emulsion stability. Additionally, modified lignins via esterification contribute larger lifetimes of water-in-oil emulsions stability under varying salinity and oil types. The integration of molecular modeling with experimental characterization techniques can further optimize lignin-based materials for multiple applications, such as drug delivery, catalysis, advanced pesticide delivery systems, bioplastics, 3D printing, and emulsification, among many others. Although there are existing technical and economic assessments (TEA) and life cycle assessments (LCA) involving lignin self-assembly that point to promising prospects, there is a need for more comprehensive TEA and LCA work to clear the way for the needed industrial innovations in this field.
Collapse
Affiliation(s)
- Nelson Barrios
- Department of Forest Biomaterials, North Carolina State University, Raleigh 27695, NC, USA
| | - Ronald Marquez
- Department of Forest Biomaterials, North Carolina State University, Raleigh 27695, NC, USA
| | | | - Laura Tolosa
- School of Chemical Engineering, Universidad de Los Andes, Mérida, Venezuela
| | - Antonio Suarez
- WestRock Company, 2742 Charles City Rd, Richmond 23231, VA, USA
| | | | - Ronalds Gonzalez
- Department of Forest Biomaterials, North Carolina State University, Raleigh 27695, NC, USA
| | - Lokendra Pal
- Department of Forest Biomaterials, North Carolina State University, Raleigh 27695, NC, USA
| | - Martin A Hubbe
- Department of Forest Biomaterials, North Carolina State University, Raleigh 27695, NC, USA.
| |
Collapse
|
4
|
Italia V, Jons A, Kaparthi B, Faulk B, Maccarini M, Bertoncello P, Meissner K, Martin DK, Bondos SE. Chemical and temporal manipulation of early steps in protein assembly tunes the structure and intermolecular interactions of protein-based materials. Protein Sci 2025; 34:e70000. [PMID: 39840718 PMCID: PMC11751906 DOI: 10.1002/pro.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/24/2024] [Indexed: 01/30/2025]
Abstract
The Drosophila intrinsically disordered protein Ultrabithorax (Ubx) undergoes a series of phase transitions, beginning with noncovalent interactions between apparently randomly organized monomers, and evolving over time to form increasingly ordered coacervates. This assembly process ends when specific dityrosine covalent bonds lock the monomers in place, forming macroscale materials. Inspired by this hierarchical, multistep assembly process, we analyzed the impact of protein concentration, assembly time, and subphase composition on the early, noncovalent stages of Ubx assembly, which are extremely sensitive to their environment. We discovered that in low salt buffers, we can generate a new type of Ubx material from early coacervates using 5-fold less protein, and 100-fold less assembly time. Comparison of the new materials with standard Ubx fibers also revealed differences in the extent of wrinkling on the fiber surface. A new image analysis technique based on autocorrelation of scanning electron microscopy (SEM) images was developed to quantify these structural differences. These differences extend to the molecular level: new materials form more dityrosine covalent cross-links per monomer, but without requiring the specific tyrosine residues necessary for crosslinking previously established materials. We conclude that varying the assembly conditions represents a facile and inexpensive process for creating new materials. Most new biopolymers are created by changing the composition of the monomers or the method used to drive assembly. In contrast, in this study we used the same monomers and assembly approach, but altered the assembly time and chemical environment to create a new material with unique properties.
Collapse
Affiliation(s)
| | - Amanda Jons
- Department of Cell Biology and Genetics, Texas A&M Health Science CenterTexas A&M UniversityBryanTexasUSA
- Interdisciplinary Graduate Program in GeneticsTexas A&M UniversityCollege StationTexasUSA
| | - Bhavika Kaparthi
- Department of Cell Biology and Genetics, Texas A&M Health Science CenterTexas A&M UniversityBryanTexasUSA
| | - Britt Faulk
- Department of Medical Physiology, School of MedicineTexas A&M UniversityBryanTexasUSA
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Marco Maccarini
- University Grenoble Alpes, SyNaBi, TIMC‐IMAG/CNRS/INSERM, UMR 5525GrenobleFrance
| | | | - Ken Meissner
- Department of PhysicsSwansea UniversitySwanseaUK
- Present address:
Department of Metallurgical, Materials, and Biomedical EngineeringUniversity of Texas at El PasoEl PasoTexasUSA
| | - Donald K. Martin
- University Grenoble Alpes, SyNaBi, TIMC‐IMAG/CNRS/INSERM, UMR 5525GrenobleFrance
| | - Sarah E. Bondos
- Department of Cell Biology and Genetics, Texas A&M Health Science CenterTexas A&M UniversityBryanTexasUSA
- Interdisciplinary Graduate Program in GeneticsTexas A&M UniversityCollege StationTexasUSA
- Department of Medical Physiology, School of MedicineTexas A&M UniversityBryanTexasUSA
| |
Collapse
|
5
|
Wiśnik-Sawka M, Fabianowski W, Gajda D. Innovative Supported Membranes for Ion Mobility Spectrometer (IMS) Sample Introduction Systems with High Permeability Relative to Toxic Agents in Air (TAAs). MATERIALS (BASEL, SWITZERLAND) 2025; 18:281. [PMID: 39859753 PMCID: PMC11766479 DOI: 10.3390/ma18020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 01/27/2025]
Abstract
One of the main objectives of the ion mobility spectrometry (IMS) technique is to reduce moisture in detection systems, which causes the formation of ion clusters and ion water and a reduction in formed clusters' activity. Thus, one of the methods limiting moisture in a sampling injection system is to use hydrophobic polymeric membranes. The use of membranes with high permeability relative to the analysed organic compounds is required, including toxic agents in air (TAAs). Such requirements align with those of polydimethylsiloxane (PDMS) membranes. Unfortunately, thin PDMS membranes are not mechanically resistant. In this study, relatively thin PDMS membranes were reinforced with fine mesh fabric supports. These supports were chemically modified with selected oligoglycol derivatives and finally coated with PDMS. The obtained membranes were tested for water permeability and TAA simulants.
Collapse
Affiliation(s)
- Monika Wiśnik-Sawka
- Military Institute of Chemistry and Radiometry, gen A. Chruściela “Montera” 105, 00-910 Warsaw, Poland;
| | - Wojciech Fabianowski
- Military Institute of Chemistry and Radiometry, gen A. Chruściela “Montera” 105, 00-910 Warsaw, Poland;
| | | |
Collapse
|
6
|
Cui F, García-López V, Wang Z, Luo Z, He D, Feng X, Dong R, Wang X. Two-Dimensional Organic-Inorganic van der Waals Hybrids. Chem Rev 2025; 125:445-520. [PMID: 39692750 DOI: 10.1021/acs.chemrev.4c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Two-dimensional organic-inorganic (2DOI) van der Waals hybrids (vdWhs) have emerged as a groundbreaking subclass of layer-stacked (opto-)electronic materials. The development of 2DOI-vdWhs via systematically integrating inorganic 2D layers with organic 2D crystals at the molecular/atomic scale extends the capabilities of traditional 2D inorganic vdWhs, thanks to their high synthetic flexibility and structural tunability. Constructing an organic-inorganic hybrid interface with atomic precision will unlock new opportunities for generating unique interfacial (opto-)electronic transport properties by combining the strengths of organic and inorganic layers, thus allowing us to satisfy the growing demand for multifunctional applications. Here, this review provides a comprehensive overview of the latest advancements in the chemical synthesis, structural characterization, and numerous applications of 2DOI-vdWhs. Firstly, we introduce the chemistry and the physical properties of the recently rising organic 2D crystals (O2DCs), which feature crystalline 2D nanostructures comprising carbon-rich repeated units linked by covalent/noncovalent bonds and exhibit strong in-plane extended π-conjugation and weak interlayer vdWs interaction. Simultaneously, representative inorganic 2D crystals (I2DCs) are briefly summarized. After that, the synthetic strategies will be systematically summarized, including synthesizing single-component O2DCs with dimensional control and their vdWhs with I2DCs. With these synthetic approaches, the control in the dimension, the stacking modes, and the composition of the 2DOI-vdWhs will be highlighted. Subsequently, a special focus will be given on the discussion of the optical and electronic properties of the single-component 2D materials and their vdWhs, which will be closely relevant to their structures, so that we can establish a general structure-property relationship of 2DOI-vdWhs. In addition to these physical properties, the (opto-)electronic devices such as transistors, photodetectors, sensors, spintronics, and neuromorphic devices as well as energy devices will be discussed. Finally, we provide an outlook to discuss the key challenges for the 2DOI-vdWhs and their future development. This review aims to provide a foundational understanding and inspire further innovation in the development of next-generation 2DOI-vdWhs with transformative technological potential.
Collapse
Affiliation(s)
- Fucai Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Víctor García-López
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Zhiyong Wang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
- Department of Synthetic Materials and Functional Devices, Max Planck Institute of Microstructure Physics, 06120 Halle (Saale), Germany
| | - Zhongzhong Luo
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Daowei He
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
- Department of Synthetic Materials and Functional Devices, Max Planck Institute of Microstructure Physics, 06120 Halle (Saale), Germany
| | - Renhao Dong
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen 518000, China
| | - Xinran Wang
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
- School of Integrated Circuits, Nanjing University, Suzhou 215163, China
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Interdisciplinary Research Center for Future Intelligent Chips (Chip-X), Nanjing University, Suzhou 215163, China
- Suzhou Laboratory, Suzhou 215163, China
| |
Collapse
|
7
|
Alexandrova AV, Shcherbina MA, Repchenko YL, Selivantiev YM, Shokurov AV, Arslanov VV, Selektor SL. Structure affinity of the Langmuir monolayer and the corresponding Langmuir-Blodgett film revealed by X-ray techniques. SOFT MATTER 2024; 20:8601-8609. [PMID: 39431450 DOI: 10.1039/d4sm01050g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The possibility of reproducing the structural organization and functional abilities of a Langmuir monolayer in a film formed from it is one of the fundamental problems of ultrathin film science. This work is devoted to the comparison of monolayer and Langmuir-Blodgett (LB) film characteristics using the example of 2D systems based on the dithia-aza-crown substituted hemicyanine dye HCS. As was shown earlier, the investigated systems are promising for the preparation of selective sensors and extractors for mercury ions in aqueous solutions with a subnanomolar sensitivity threshold. Therefore, the study of the analyte binding mechanism by such a film is of great importance. The study carried out using an ultra-highly brilliant X-ray source (ESRF) allows the application of highly sensitive techniques such as X-ray reflectometry (XRR) and X-ray standing wave (XSW). Comparison of the electron density depth profile of the HCS Langmuir monolayer at the air/water interface and the HCS film transferred to a silicon substrate shows the preservation of the film structure and its functional features. The XSW measurements in turn reveal the similarities in the fine structure of preorganized Langmuir monolayers and Langmuir-Blodgett films of HCS. The integration of X-ray techniques with molecular modeling methods allowed us to show that the crown-ether groups of HCS molecules in the pre-organized monolayer and in the corresponding LB film lie on the surface of water or silicon, and the bound mercury ion is located above the crown-ether, partially binding to the nitrogen atom. The latter loses conjugation to the chromophore group, thereby altering the UV-vis spectrum and providing a response signal. The revealed mechanism of imprinting preorganization allows the proposed approach to be extended to other crown-substituted amphiphilic dyes to significantly enhance the sensory response.
Collapse
Affiliation(s)
- Alvina V Alexandrova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Moscow, Russia.
| | - Maxim A Shcherbina
- N.S. Enikopolov Institute of Synthetic Polymer Materials of Russian Academy of Sciences, Moscow, Russia
- Moscow Center for Advanced Studies, Moscow, Russia
| | - Yuriy L Repchenko
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Moscow, Russia.
| | | | - Alexander V Shokurov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Moscow, Russia.
| | - Vladimir V Arslanov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Moscow, Russia.
| | - Sofiya L Selektor
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
8
|
Lucía Reviglio A, Ariel Alaniz G, Cecilia Liaudat A, Alustiza F, Santo M, Otero L, Fernández L. Evaluation of the antitumor activity of albendazole using Langmuir-Blodgett monolayers as surface mediated drug delivery system. Int J Pharm 2024; 663:124586. [PMID: 39147249 DOI: 10.1016/j.ijpharm.2024.124586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
This study demonstrates the application of Langmuir and Langmuir-Blodgett films as biomimetic drug reservoirs and delivery systems to investigate the effect of an anthelmintic on cancer cell culture. The repurposing of benzimidazole anthelmintics for cancer therapy due to their microtubule-inhibiting properties has gained attention, showing promising anticancer effects and tumor-suppressive properties. Although widely used in medicine, the low aqueous solubility of benzimidazole compounds poses challenges for studying their effects on cancer cells, requiring incorporation into various formulations. Our study demonstrates that incorporating albendazole into stable Palmitic Acid Langmuir monolayers, forming Langmuir-Blodgett films, significantly affects the proliferation of liver carcinoma cells. This report presents the initial findings of the effect of an antitumoral drug on cancer cell culture using a simple and repeatable methodology.
Collapse
Affiliation(s)
- Ana Lucía Reviglio
- IITEMA-CONICET, Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto-CONICET, Agencia Postal 3, X5804BYA Río Cuarto, Argentina
| | - Gustavo Ariel Alaniz
- IITEMA-CONICET, Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto-CONICET, Agencia Postal 3, X5804BYA Río Cuarto, Argentina
| | - Ana Cecilia Liaudat
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal 3, X5804BYA Río Cuarto, Argentina
| | - Fabrisio Alustiza
- Grupo de Sanidad Animal, INTA Estación Experimental Agropecuaria Marcos Juárez, X2580 Marcos Juárez, Argentina
| | - Marisa Santo
- IITEMA-CONICET, Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto-CONICET, Agencia Postal 3, X5804BYA Río Cuarto, Argentina
| | - Luis Otero
- IITEMA-CONICET, Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto-CONICET, Agencia Postal 3, X5804BYA Río Cuarto, Argentina.
| | - Luciana Fernández
- IITEMA-CONICET, Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto-CONICET, Agencia Postal 3, X5804BYA Río Cuarto, Argentina.
| |
Collapse
|
9
|
Ottolini M, Anfar Z, Grover N, Magna G, Stefanelli M, Paolesse R, Senge MO, Bettini S, Valli L, Oda R, Giancane G. Chirality induction to porphyrin derivatives co-confined at the air-water interface with silica nano-helices: towards enantioselective thin solid film surfaces. NANOSCALE 2024; 16:16593-16601. [PMID: 39162576 DOI: 10.1039/d4nr02344g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
A supramolecular approach based on self-assembled structures allows the formation of large structured co-assemblies based on chiral and achiral compounds with original physicochemical features. In this contribution, an achiral and hydrophobic porphyrin was co-assembled at the air-water interface with mesoscopic silica nano-helices dispersed in the water subphase of a Langmuir trough without covalent bond formation. This procedure allowed transferring the porphyrin/nano-helix co-assemblies on a solid support within a thin hybrid layer. The interaction between the two species was characterized using spectroscopic techniques and atomic force microscopy. As evidenced by the circular dichroism measurements performed directly on solid films, tunable chirality was induced to the porphyrin aggregates according to the chirality of the silica nano-helices. When the co-assemblies were transferred on surface plasmon resonance (SPR) slides and exposed to aqueous solutions of histidine enantiomers, selective chiral discrimination was observed which was determined by the matching/mismatching between the chirality of the analyte and the helicity of the nano-helical structure.
Collapse
Affiliation(s)
- Michela Ottolini
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy.
| | - Zakaria Anfar
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| | - Nitika Grover
- School of Chemistry, Chair of Organic Chemistry, Trinity College Dublin, The University of Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin, D02R590, Ireland
| | - Gabriele Magna
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Manuela Stefanelli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Roberto Paolesse
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Mathias O Senge
- School of Chemistry, Chair of Organic Chemistry, Trinity College Dublin, The University of Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin, D02R590, Ireland
- Institute for Advanced Study (TUM-IAS), Focus Group - Molecular and Interfacial Engineering of Organic Nanosystem, Technical University of Munich, Lichtenbergstrasse 2a, 85748 Garching, Germany
| | - Simona Bettini
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy.
| | - Ludovico Valli
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy.
| | - Reiko Oda
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
- WPI-Advanced Institute for Materials Research, Tohoku University, Katahira, Aoba-Ku, 980-8577 Sendai, Japan.
| | - Gabriele Giancane
- Department of Cultural Heritage, University of Salento, Via D. Birago 64, 73100 Lecce, Italy
| |
Collapse
|
10
|
Rys M, Stachurska J, Rudolphi-Szydło E, Dziurka M, Waligórski P, Filek M, Janeczko A. Does deacclimation reverse the changes in structural/physicochemical properties of the chloroplast membranes that are induced by cold acclimation in oilseed rape? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108961. [PMID: 39067102 DOI: 10.1016/j.plaphy.2024.108961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Winter crops acquire frost tolerance during the process of cold acclimation when plants are exposed to low but non-freezing temperatures that is connected to specific metabolic adjustments. Warm breaks during/after cold acclimation disturb the natural process of acclimation, thereby decreasing frost tolerance and can even result in a resumption of growth. This phenomenon is called deacclimation. In the last few years, studies that are devoted to deacclimation have become more important (due to climate changes) and necessary to be able to understand the mechanisms that occur during this phenomenon. In the acclimation of plants to low temperatures, the importance of plant membranes is indisputable; that is why the main aim of our studies was to answer the question of whether (and to what extent) deacclimation alters the physicochemical properties of the plant membranes. The studies were focused on chloroplast membranes from non-acclimated, cold-acclimated and deacclimated cultivars of winter oilseed rape. The analysis of the membranes (formed from chloroplast lipid fractions) using the Langmuir technique revealed that cold acclimation increased membrane fluidity (expressed as the Alim values), while deacclimation generally decreased the values that were induced by cold. Moreover, because the chloroplast membranes were penetrated by lipophilic molecules such as carotenoids or tocopherols, the relationships between the structure of the lipids and the content of these antioxidants in the chloroplast membranes during the process of the cold acclimation and deacclimation of oilseed rape are discussed.
Collapse
Affiliation(s)
- Magdalena Rys
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland.
| | - Julia Stachurska
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Elżbieta Rudolphi-Szydło
- Institute of Biology and Earth Sciences, University of the National Education Commission, Podchorążych 2, 30-084, Krakow, Poland
| | - Michał Dziurka
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Piotr Waligórski
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Maria Filek
- Institute of Biology and Earth Sciences, University of the National Education Commission, Podchorążych 2, 30-084, Krakow, Poland
| | - Anna Janeczko
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland.
| |
Collapse
|
11
|
Jaroque G, dos Santos AL, Sartorelli P, Caseli L. Surface Chemistry of Cytosporone-B Incorporated in Models for Microbial Biomembranes as Langmuir Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40. [PMID: 39007866 PMCID: PMC11295194 DOI: 10.1021/acs.langmuir.4c01575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
Cytosporone-B, a polyketide renowned for its antimicrobial properties, was integrated into Langmuir monolayers composed of dipalmitoylphosphoethanolamine (DPPE) and dioleoylphosphoethanolamine (DOPE) lipids, effectively emulating microbial cytoplasmic membranes. This compound exhibited an expansive influence on DPPE monolayers while inducing condensation in DOPE monolayers. This led to a notable reduction in the compressibility modulus for both lipids, with a more pronounced effect observed for DPPE. The heightened destabilization observed in DOPE monolayers subjected to biologically relevant pressures was particularly noteworthy, as evidenced by surface pressure-time curves at constant area. In-depth analysis using infrared spectroscopy at the air-water interface unveiled alterations in the alkyl chains of the lipids induced by cytosporone-B. This was further corroborated by surface potential measurements, indicating a heightened tilt in the acyl chains upon drug incorporation. Notably, these observed effects did not indicate an aggregating process induced by the drug. Overall, the distinctive impact of cytosporone-B on each lipid underscores the importance of understanding the nuanced effects of microbial drugs on membranes, whether in condensed or fluid states.
Collapse
Affiliation(s)
- Guilherme
Nuñez Jaroque
- Department of Chemistry,
Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (Unifesp), São Paulo, Diadema 04021-001, Brazil
| | - Augusto Leonardo dos Santos
- Department of Chemistry,
Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (Unifesp), São Paulo, Diadema 04021-001, Brazil
| | - Patricia Sartorelli
- Department of Chemistry,
Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (Unifesp), São Paulo, Diadema 04021-001, Brazil
| | - Luciano Caseli
- Department of Chemistry,
Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (Unifesp), São Paulo, Diadema 04021-001, Brazil
| |
Collapse
|
12
|
Gu W, Li Q, Wang R, Zhang L, Liu Z, Jiao T. Recent Progress in the Applications of Langmuir-Blodgett Film Technology. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1039. [PMID: 38921915 PMCID: PMC11207038 DOI: 10.3390/nano14121039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
Langmuir-Blodgett (LB) film technology is an advanced technique for the preparation of ordered molecular ultra-thin films at the molecular level, which transfers a single layer of film from the air/water interface to a solid substrate for the controlled assembly of molecules. LB technology has continually evolved over the past century, revealing its potential applications across diverse fields. In this study, the latest research progress of LB film technology is reviewed, with emphasis on its latest applications in gas sensors, electrochemical devices, and bionic films. Additionally, this review evaluates the strengths and weaknesses of LB technology in the application processes and discusses the promising prospects for future application of LB technology.
Collapse
Affiliation(s)
- Wenhui Gu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Qing Li
- Hebei Key Laboratory of Safety Monitoring of Mining Equipment, School of Emergency Equipment, North China Institute of Science and Technology, Langfang 065201, China
| | - Ran Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Lexin Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Zhiwei Liu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
13
|
Xing X, Wu Z, Sun Y, Liu Y, Dong X, Li S, Wang W. The Optimization of Hole Injection Layer in Organic Light-Emitting Diodes. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:161. [PMID: 38251126 PMCID: PMC10819190 DOI: 10.3390/nano14020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Organic light-emitting diodes (OLEDs) are widely recognized as the forefront technology for displays and lighting technology. Now, the global OLED market is nearly mature, driven by the rising demand for superior displays in smartphones. In recent years, numerous strategies have been introduced and demonstrated to optimize the hole injection layer to further enhance the efficiency of OLEDs. In this paper, different methods of optimizing the hole injection layer were elucidated, including using a suitable hole injection material to minimize the hole injection barrier and match the energy level with the emission layer, exploring new preparation methods to optimize the structure of hole injection layer, and so on. Meanwhile, this article can help people to understand the current research progress and the challenges still faced in relation to the hole injection layer in OLEDs, providing future research directions to enhance the properties of OLEDs.
Collapse
Affiliation(s)
- Xiaolin Xing
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China; (X.X.); (Z.W.); (Y.S.); (X.D.); (S.L.)
- Shandong Provincial Key Laboratory of Optical Communication Science and Technology, Liaocheng 252059, China
| | - Ziye Wu
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China; (X.X.); (Z.W.); (Y.S.); (X.D.); (S.L.)
- Shandong Provincial Key Laboratory of Optical Communication Science and Technology, Liaocheng 252059, China
| | - Yingying Sun
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China; (X.X.); (Z.W.); (Y.S.); (X.D.); (S.L.)
- Shandong Provincial Key Laboratory of Optical Communication Science and Technology, Liaocheng 252059, China
| | - Yunlong Liu
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China; (X.X.); (Z.W.); (Y.S.); (X.D.); (S.L.)
- Shandong Provincial Key Laboratory of Optical Communication Science and Technology, Liaocheng 252059, China
| | - Xiaochen Dong
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China; (X.X.); (Z.W.); (Y.S.); (X.D.); (S.L.)
- Shandong Provincial Key Laboratory of Optical Communication Science and Technology, Liaocheng 252059, China
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Shuhong Li
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China; (X.X.); (Z.W.); (Y.S.); (X.D.); (S.L.)
- Shandong Provincial Key Laboratory of Optical Communication Science and Technology, Liaocheng 252059, China
| | - Wenjun Wang
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China; (X.X.); (Z.W.); (Y.S.); (X.D.); (S.L.)
- Shandong Provincial Key Laboratory of Optical Communication Science and Technology, Liaocheng 252059, China
| |
Collapse
|
14
|
Rojewska M, Adamska K, Kurnatowska J, Miklaszewski A, Bartkowska A, Prochaska K. Preparation of Thin Films Containing Modified Hydroxyapatite Particles and Phospholipids (DPPC) for Improved Properties of Biomaterials. Molecules 2023; 28:7843. [PMID: 38067571 PMCID: PMC10708029 DOI: 10.3390/molecules28237843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The main aims of thin biofilm synthesis are to either achieve a new form to promote the transport of drugs in oral delivery systems or as a coating to improve the biocompatibility of the implant's surface. In this study, the Langmuir monolayer technique was employed to obtain films containing Mg-doped hydroxyapatite with 0.5%, 1.0%, and 1.5% Mg(II). The obtained modified HA particles were analysed via the FT-IR, XRD, DLS, and SEM methods. It was shown that the modified hydroxyapatite particles were able to form thin films at the air/water interface. BAM microscopy was employed to characterized the morphology of these films. In the next step, the mixed films were prepared using phospholipid (DPPC) molecules and modified hydroxyapatite particles (HA-Mg(II)). We expected that the presence of phospholipids (DPPC) in thin films improved the biocompatibility of the preparing films, while adding HA-Mg(II) particles will promote antibacterial properties and enhance osteogenesis processes. The films were prepared in two ways: (1) by mixing DPPC and HA-Mg (II) and spreading this solution onto the subphase, or (2) by forming DPPC films, dropping the HA-Mg (II) dispersion onto the phospholipid monolayer. Based on the obtained π-A isotherms, the surface parameters of the achieved thin films were estimated. It was observed that the HA-Mg(II) films can be stabilized with phospholipid molecules, and a more stable structure was obtained from films synthesied via method (2).
Collapse
Affiliation(s)
- Monika Rojewska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland; (K.A.); (J.K.)
| | - Katarzyna Adamska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland; (K.A.); (J.K.)
| | - Justyna Kurnatowska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland; (K.A.); (J.K.)
| | - Andrzej Miklaszewski
- Institute of Material Science, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Jana Pawła II 24, 61-138 Poznań, Poland; (A.M.); (A.B.)
| | - Aneta Bartkowska
- Institute of Material Science, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Jana Pawła II 24, 61-138 Poznań, Poland; (A.M.); (A.B.)
| | - Krystyna Prochaska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland; (K.A.); (J.K.)
| |
Collapse
|
15
|
Nurmamat X, Zhao Z, Ablat H, Ma X, Xie Q, Zhang Z, Tian J, Jia H, Wang F. Application of surface-enhanced Raman scattering to qualitative and quantitative analysis of arsenic species. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4798-4810. [PMID: 37724459 DOI: 10.1039/d3ay00736g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Given the toxicity of arsenic, there is an urgent need for the development of efficient and reliable detection systems. Raman spectroscopy, a powerful tool for material characterization and analysis, can be used to explore the properties of a wide range of different materials. Surface-enhanced Raman spectroscopy (SERS) can detect low concentrations of chemicals. This review focuses on the progress of qualitative and quantitative studies of the adsorption processes of inorganic arsenic and organic arsenic in aqueous media using Raman spectroscopy in recent years and discusses the application of Raman spectroscopy theory simulations to arsenic adsorption processes. Sliver nanoparticles are generally used as the SERS substrate to detect arsenic. Inorganic arsenic is chemisorbed onto the silver surface by forming As-O-Ag bonds, and the Raman shift difference in the As-O stretching (∼60 cm-1) between As(V) and As(III) allows SERS to detect and distinguish between As(V) and As(III) in groundwater samples. For organic arsenicals, specific compounds can be identified based on spectral differences in the vibration modes of the chemical bonds. Under the same laser excitation, the intensity of the Raman spectra for different arsenic concentrations is linearly related to the concentration, thus allowing quantitative analysis of arsenic. Molecular modeling of adsorbed analytes via density functional theory calculation (DFT) can predict the Raman shifts of analytes in different laser wavelengths.
Collapse
Affiliation(s)
- Xamsiya Nurmamat
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
- Xinjiang Key Laboratory of Energy Storage and Photoelectroctalytic Materials, Urumqi 830054, China
| | - Zhixi Zhao
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
- Xinjiang Key Laboratory of Energy Storage and Photoelectroctalytic Materials, Urumqi 830054, China
| | - Hadiya Ablat
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
- Xinjiang Key Laboratory of Energy Storage and Photoelectroctalytic Materials, Urumqi 830054, China
| | - Xiaoyan Ma
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
- Xinjiang Key Laboratory of Energy Storage and Photoelectroctalytic Materials, Urumqi 830054, China
| | - Qingqing Xie
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
- Xinjiang Key Laboratory of Energy Storage and Photoelectroctalytic Materials, Urumqi 830054, China
| | - Ziqi Zhang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
- Xinjiang Key Laboratory of Energy Storage and Photoelectroctalytic Materials, Urumqi 830054, China
| | - Jianrong Tian
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
- Xinjiang Key Laboratory of Energy Storage and Photoelectroctalytic Materials, Urumqi 830054, China
| | - Huiying Jia
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
- Xinjiang Key Laboratory of Energy Storage and Photoelectroctalytic Materials, Urumqi 830054, China
| | - Fupeng Wang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
- Xinjiang Key Laboratory of Energy Storage and Photoelectroctalytic Materials, Urumqi 830054, China
| |
Collapse
|
16
|
Sarkar S, Banik H, Rahman FY, Majumdar S, Bhattacharjee D, Hussain SA. Effect of long chain fatty acids on the memory switching behavior of tetraindolyl derivatives. RSC Adv 2023; 13:26330-26343. [PMID: 37671340 PMCID: PMC10476023 DOI: 10.1039/d3ra03869f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/18/2023] [Indexed: 09/07/2023] Open
Abstract
Non-volatile memory devices using organic materials have attracted much attention due to their excellent scalability, fast switching speed, low power consumption, low cost etc. Here, we report both volatile as well as non-volatile resistive switching behavior of p-di[3,3'-bis(2-methylindolyl)methane]benzene (Indole2) and its mixture with stearic acid (SA). Previously, we have reported the bipolar resistive switching (BRS) behavior using 1,4-bis(di(1H-indol-3-yl)methyl)benzene (Indole1) molecules under ambient conditions [Langmuir 37 (2021) 4449-4459] and complementary resistive switching (CRS) behavior when the device was exposed to 353 K or higher temperature [Langmuir 38 (2022) 9229-9238]. However, the present study revealed that when the H of -NH group of Indole1 is replaced by -CH3, the resultant Indole2 molecule-based device showed volatile threshold switching behaviour. On the other hand, when Indole2 is mixed with SA at a particular mole fraction, dynamic evolution of an Au/Indole2-SA/ITO device from volatile to non-volatile switching occurred with very good device stability (>285 days), memory window (6.69 × 102), endurance (210 times), data retention (6.8 × 104 s) and device yield of the order of 78.5%. Trap controlled SCLC as well as electric field driven conduction was the key behind the observed switching behaviour of the devices. In the active layer, trap centers due to the SA network may be responsible for non-volatile characteristics of the device. Observed non-volatile switching may be a potential candidate for write once read many (WORM) memory applications in future.
Collapse
Affiliation(s)
- Surajit Sarkar
- Thin Film and Nanoscience Laboratory, Department of Physics, Tripura University Suryamaninagar 799022 West Tripura Tripura India
| | - Hritinava Banik
- Thin Film and Nanoscience Laboratory, Department of Physics, Tripura University Suryamaninagar 799022 West Tripura Tripura India
| | - Farhana Yasmin Rahman
- Thin Film and Nanoscience Laboratory, Department of Physics, Tripura University Suryamaninagar 799022 West Tripura Tripura India
| | - Swapan Majumdar
- Department of Chemistry, Tripura University Suryamaninagar 799022 West Tripura Tripura India
| | - Debajyoti Bhattacharjee
- Thin Film and Nanoscience Laboratory, Department of Physics, Tripura University Suryamaninagar 799022 West Tripura Tripura India
| | - Syed Arshad Hussain
- Thin Film and Nanoscience Laboratory, Department of Physics, Tripura University Suryamaninagar 799022 West Tripura Tripura India
| |
Collapse
|
17
|
Borah R, Ag KR, Minja AC, Verbruggen SW. A Review on Self-Assembly of Colloidal Nanoparticles into Clusters, Patterns, and Films: Emerging Synthesis Techniques and Applications. SMALL METHODS 2023; 7:e2201536. [PMID: 36856157 DOI: 10.1002/smtd.202201536] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/25/2023] [Indexed: 06/09/2023]
Abstract
The colloidal synthesis of functional nanoparticles has gained tremendous scientific attention in the last decades. In parallel to these advancements, another rapidly growing area is the self-assembly or self-organization of these colloidal nanoparticles. First, the organization of nanoparticles into ordered structures is important for obtaining functional interfaces that extend or even amplify the intrinsic properties of the constituting nanoparticles at a larger scale. The synthesis of large-scale interfaces using complex or intricately designed nanostructures as building blocks, requires highly controllable self-assembly techniques down to the nanoscale. In certain cases, for example, when dealing with plasmonic nanoparticles, the assembly of the nanoparticles further enhances their properties by coupling phenomena. In other cases, the process of self-assembly itself is useful in the final application such as in sensing and drug delivery, amongst others. In view of the growing importance of this field, this review provides a comprehensive overview of the recent developments in the field of nanoparticle self-assembly and their applications. For clarity, the self-assembled nanostructures are classified into two broad categories: finite clusters/patterns, and infinite films. Different state-of-the-art techniques to obtain these nanostructures are discussed in detail, before discussing the applications where the self-assembly significantly enhances the performance of the process.
Collapse
Affiliation(s)
- Rituraj Borah
- Sustainable Energy, Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Karthick Raj Ag
- Sustainable Energy, Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Antony Charles Minja
- Sustainable Energy, Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Sammy W Verbruggen
- Sustainable Energy, Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| |
Collapse
|
18
|
Yan X, Zhao Y, Cao G, Li X, Gao C, Liu L, Ahmed S, Altaf F, Tan H, Ma X, Xie Z, Zhang H. 2D Organic Materials: Status and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203889. [PMID: 36683257 PMCID: PMC9982583 DOI: 10.1002/advs.202203889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/31/2022] [Indexed: 06/17/2023]
Abstract
In the past few decades, 2D layer materials have gradually become a central focus in materials science owing to their uniquely layered structural qualities and good optoelectronic properties. However, in the development of 2D materials, several disadvantages, such as limited types of materials and the inability to synthesize large-scale materials, severely confine their application. Therefore, further exploration of new materials and preparation methods is necessary to meet technological developmental needs. Organic molecular materials have the advantage of being customizable. Therefore, if organic molecular and 2D materials are combined, the resulting 2D organic materials would have excellent optical and electrical properties. In addition, through this combination, the free design and large-scale synthesis of 2D materials can be realized in principle. Furthermore, 2D organic materials exhibit excellent properties and unique functionalities along with great potential for developing sensors, biomedicine, and electronics. In this review, 2D organic materials are divided into five categories. The preparation methods and material properties of each class of materials are also described in detail. Notably, to comprehensively understand each material's advantages, the latest research applications for each material are presented in detail and summarized. Finally, the future development and application prospects of 2D organic materials are briefly discussed.
Collapse
Affiliation(s)
- Xiaobing Yan
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Ying Zhao
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Gang Cao
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Xiaoyu Li
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Chao Gao
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Luan Liu
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Shakeel Ahmed
- Collaborative Innovation Center for Optoelectronic Science and TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Faizah Altaf
- Department of ChemistryWomen University Bagh Azad KashmirBagh Azad KashmirBagh12500Pakistan
- School of Materials Science and EngineeringGeorgia Institute of Technology North AvenueAtlantaGA30332USA
| | - Hui Tan
- Department of RespiratoryShenzhen Children's HospitalShenzhen518036P. R. China
| | - Xiaopeng Ma
- Department of RespiratoryShenzhen Children's HospitalShenzhen518036P. R. China
| | - Zhongjian Xie
- Institute of PediatricsShenzhen Children's HospitalShenzhenGuangdong518038P. R. China
- Shenzhen International Institute for Biomedical ResearchShenzhenGuangdong518116China
| | - Han Zhang
- Collaborative Innovation Center for Optoelectronic Science and TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| |
Collapse
|
19
|
Mikhailov OV. Gelatin as It Is: History and Modernity. Int J Mol Sci 2023; 24:ijms24043583. [PMID: 36834993 PMCID: PMC9963746 DOI: 10.3390/ijms24043583] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/28/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
The data concerning the synthesis and physicochemical characteristics of one of the practically important proteins-gelatin, as well as the possibilities of its practical application, are systematized and discussed. When considering the latter, emphasis is placed on the use of gelatin in those areas of science and technology that are associated with the specifics of the spatial/molecular structure of this high-molecular compound, namely, as a binder for the silver halide photographic process, immobilized matrix systems with a nano-level organization of an immobilized substance, matrices for creating pharmaceutical/dosage forms and protein-based nanosystems. It was concluded that the use of this protein is promising in the future.
Collapse
Affiliation(s)
- Oleg V Mikhailov
- Department of Analytical Chemistry, Certification and Quality Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
20
|
Arya SS, Morsy NK, Islayem DK, Alkhatib SA, Pitsalidis C, Pappa AM. Bacterial Membrane Mimetics: From Biosensing to Disease Prevention and Treatment. BIOSENSORS 2023; 13:bios13020189. [PMID: 36831955 PMCID: PMC9953710 DOI: 10.3390/bios13020189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 05/31/2023]
Abstract
Plasma membrane mimetics can potentially play a vital role in drug discovery and immunotherapy owing to the versatility to assemble facilely cellular membranes on surfaces and/or nanoparticles, allowing for direct assessment of drug/membrane interactions. Recently, bacterial membranes (BMs) have found widespread applications in biomedical research as antibiotic resistance is on the rise, and bacteria-associated infections have become one of the major causes of death worldwide. Over the last decade, BM research has greatly benefited from parallel advancements in nanotechnology and bioelectronics, resulting in multifaceted systems for a variety of sensing and drug discovery applications. As such, BMs coated on electroactive surfaces are a particularly promising label-free platform to investigate interfacial phenomena, as well as interactions with drugs at the first point of contact: the bacterial membrane. Another common approach suggests the use of lipid-coated nanoparticles as a drug carrier system for therapies for infectious diseases and cancer. Herein, we discuss emerging platforms that make use of BMs for biosensing, bioimaging, drug delivery/discovery, and immunotherapy, focusing on bacterial infections and cancer. Further, we detail the synthesis and characteristics of BMs, followed by various models for utilizing them in biomedical applications. The key research areas required to augment the characteristics of bacterial membranes to facilitate wider applicability are also touched upon. Overall, this review provides an interdisciplinary approach to exploit the potential of BMs and current emerging technologies to generate novel solutions to unmet clinical needs.
Collapse
Affiliation(s)
- Sagar S. Arya
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Nada K. Morsy
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Deema K. Islayem
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Sarah A. Alkhatib
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Charalampos Pitsalidis
- Department of Physics Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Chemical Engineering and Biotechnology, Cambridge University, Philippa Fawcett Drive, Cambridge CB30AS, UK
| | - Anna-Maria Pappa
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Chemical Engineering and Biotechnology, Cambridge University, Philippa Fawcett Drive, Cambridge CB30AS, UK
| |
Collapse
|
21
|
Kazak AV, Marchenkova MA, Nabatov BV, Rykov IV, Dubinina TV, Chausov DN. Effect of the Structure of Substituted Naphthalocyanines on Their Optical Properties in Thin Films. CRYSTALLOGR REP+ 2022. [DOI: 10.1134/s1063774522040101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Cao L, Huang Y, Parakhonskiy B, Skirtach AG. Nanoarchitectonics beyond perfect order - not quite perfect but quite useful. NANOSCALE 2022; 14:15964-16002. [PMID: 36278502 DOI: 10.1039/d2nr02537j] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nanoarchitectonics, like architectonics, allows the design and building of structures, but at the nanoscale. Unlike those in architectonics, and even macro-, micro-, and atomic-scale architectonics, the assembled structures at the nanoscale do not always follow the projected design. In fact, they do follow the projected design but only for self-assembly processes producing structures with perfect order. Here, we look at nanoarchitectonics allowing the building of nanostructures without a perfect arrangement of building blocks. Here, fabrication of structures from molecules, polymers, nanoparticles, and nanosheets to polymer brushes, layer-by-layer assembly structures, and hydrogels through self-assembly processes is discussed, where perfect order is not necessarily the aim to be achieved. Both planar substrate and spherical template-based assemblies are discussed, showing the challenging nature of research in this field and the usefulness of such structures for numerous applications, which are also discussed here.
Collapse
Affiliation(s)
- Lin Cao
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Yanqi Huang
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Bogdan Parakhonskiy
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Andre G Skirtach
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
23
|
Du S, He T, Nie H, Yang G. High-Performance Wigs via the Langmuir-Blodgett Deposition of Keratin/Graphene Oxide Nanocomposite. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27233-27241. [PMID: 35656923 DOI: 10.1021/acsami.2c05965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Wigs provide a common service as hair accessories in people's daily life. However, the traditional wigs, regardless of the matrices derived from human hair or synthetic fibers, are faced with limitations such as short service life, dry and brittle texture, and static electricity. In this work, we described a new strategy for surface coating of wigs via the Langmuir-Blodgett (LB) technique using a nanocomposite composed of hair-derived keratin and graphene oxide (Ker/GO). In contrast to the conventionally used immersion method, this strategy achieved a significantly higher surface coverage with a close-packed structure and controlled deposition layers of the coating, thus delivering high performances, including greatly enhanced ultraviolet (UV) resistance, antistatic electricity, heat dissipation, hydroscopicity, and moisturizing ability, and durability against washing, for both the human hair and synthetic-fiber-based wigs.
Collapse
Affiliation(s)
- Shan Du
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, North Ren Min Road No. 2999, Shanghai 201620, China
| | - Tiantian He
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, North Ren Min Road No. 2999, Shanghai 201620, China
| | - Huali Nie
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, North Ren Min Road No. 2999, Shanghai 201620, China
| | - Guang Yang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, North Ren Min Road No. 2999, Shanghai 201620, China
| |
Collapse
|
24
|
The Branched Schiff Base Cationic Complexes of Iron(III) with Different Counter-Ions. Symmetry (Basel) 2022. [DOI: 10.3390/sym14061140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Fe(III) complexes of branched asymmetric dendrimers were obtained by a one-step reaction as the second-generation architectures. Mesomorphic behavior was found for complexes with PF6− and BF4− counter-ions. To obtain knowledge about the existence of HS and LS fractions of iron(III) ion and their evolution with temperature, EPR methods were used. It was demonstrated that compounds contain one low-spin (LS, S = 1/2) and two HS-spin (HS, S = 5/2) of Fe(III) centers and are packed into two magnetic sub-lattices. A floating layers of Fe(III) complexes and Langmuir–Blodgett films on their base were formed and investigated in the presence of a magnetic field.
Collapse
|
25
|
Sadeghzadeh H, Blanchard GJ. Quantitating the Binding Energy of Metal Ions to Langmuir-Blodgett Monolayers: The Copper(II)-Octadecylphosphonic Acid System. J Phys Chem B 2022; 126:3366-3373. [PMID: 35442044 DOI: 10.1021/acs.jpcb.2c01369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report on the formation and organization of a Cu2+-complexed octadecylphosphonic acid (ODPA) monolayer formed by Langmuir-Blodgett deposition. The formation of the Cu-complexed monolayer is seen to depend sensitively on the subphase pH and Cu2+ concentration, and it is possible to form a monolayer containing the regions of complexed and free ODPA. From the pressure-area isotherm data for these monolayers, we determine the equilibrium constant and free energy of formation for the Cu2+-ODPA complex, ΔG = -22.5 kJ/mol.
Collapse
Affiliation(s)
- Homa Sadeghzadeh
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - G J Blanchard
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
26
|
Periasamy V, Jaafar MM, Chandrasekaran K, Talebi S, Ng FL, Phang SM, kumar GG, Iwamoto M. Langmuir-Blodgett Graphene-Based Films for Algal Biophotovoltaic Fuel Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:840. [PMID: 35269327 PMCID: PMC8912429 DOI: 10.3390/nano12050840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/04/2022] [Accepted: 02/12/2022] [Indexed: 11/17/2022]
Abstract
The prevalence of photosynthesis, as the major natural solar energy transduction mechanism or biophotovoltaics (BPV), has always intrigued mankind. Over the last decades, we have learned to extract this renewable energy through continuously improving solid-state semiconductive devices, such as the photovoltaic solar cell. Direct utilization of plant-based BPVs has, however, been almost impracticable so far. Nevertheless, the electrochemical platform of fuel cells (FCs) relying on redox potentials of algae suspensions or biofilms on functionalized anode materials has in recent years increasingly been demonstrated to produce clean or carbon-negative electrical power generators. Interestingly, these algal BPVs offer unparalleled advantages, including carbon sequestration, bioremediation and biomass harvesting, while producing electricity. The development of high performance and durable BPVs is dependent on upgraded anode materials with electrochemically dynamic nanostructures. However, the current challenges in the optimization of anode materials remain significant barriers towards the development of commercially viable technology. In this context, two-dimensional (2D) graphene-based carbonaceous material has widely been exploited in such FCs due to its flexible surface functionalization properties. Attempts to economically improve power outputs have, however, been futile owing to molecular scale disorders that limit efficient charge coupling for maximum power generation within the anodic films. Recently, Langmuir-Blodgett (LB) film has been substantiated as an efficacious film-forming technique to tackle the above limitations of algal BPVs; however, the aforesaid technology remains vastly untapped in BPVs. An in-depth electromechanistic view of the fabrication of LB films and their electron transference mechanisms is of huge significance for the scalability of BPVs. However, an inclusive review of LB films applicable to BPVs has yet to be undertaken, prohibiting futuristic applications. Consequently, we report an inclusive description of a contextual outline, functional principles, the LB film-formation mechanism, recent endeavors in developing LB films and acute encounters with prevailing BPV anode materials. Furthermore, the research and scale-up challenges relating to LB film-integrated BPVs are presented along with innovative perceptions of how to improve their practicability in scale-up processes.
Collapse
Affiliation(s)
- Vengadesh Periasamy
- Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Institute of Ocean and Earth Sciences (IOES), University of Malaya, Kuala Lumpur 50603, Malaysia; (K.C.); (F.L.N.)
| | - Muhammad Musoddiq Jaafar
- Institute of Microengineering and Nanoelectronics, Research Complex, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia;
- International College of Semiconductor Technology, National Yang Ming Chiao Tung University, University Road, Hsinchu 30010, Taiwan
| | - Karthikeyan Chandrasekaran
- Institute of Ocean and Earth Sciences (IOES), University of Malaya, Kuala Lumpur 50603, Malaysia; (K.C.); (F.L.N.)
| | - Sara Talebi
- Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Fong Lee Ng
- Institute of Ocean and Earth Sciences (IOES), University of Malaya, Kuala Lumpur 50603, Malaysia; (K.C.); (F.L.N.)
| | - Siew Moi Phang
- Institute of Ocean and Earth Sciences (IOES), University of Malaya, Kuala Lumpur 50603, Malaysia; (K.C.); (F.L.N.)
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Georgepeter Gnana kumar
- Faculty of Engineering Technology & Built Environment, UCSI University, Kuala Lumpur 56000, Malaysia; (G.G.k.); (M.I.)
- Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Mitsumasa Iwamoto
- Faculty of Engineering Technology & Built Environment, UCSI University, Kuala Lumpur 56000, Malaysia; (G.G.k.); (M.I.)
- Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, 2-12-1, S3-33 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
27
|
Oliveira ON, Caseli L, Ariga K. The Past and the Future of Langmuir and Langmuir-Blodgett Films. Chem Rev 2022; 122:6459-6513. [PMID: 35113523 DOI: 10.1021/acs.chemrev.1c00754] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Langmuir-Blodgett (LB) technique, through which monolayers are transferred from the air/water interface onto a solid substrate, was the first method to allow for the controlled assembly of organic molecules. With its almost 100 year history, it has been the inspiration for most methods to functionalize surfaces and produce nanocoatings, in addition to serving to explore concepts in molecular electronics and nanoarchitectonics. This paper provides an overview of the history of Langmuir monolayers and LB films, including the potential use in devices and a discussion on why LB films are seldom considered for practical applications today. Emphasis is then given to two areas where these films offer unique opportunities, namely, in mimicking cell membrane models and exploiting nanoarchitectonics concepts to produce sensors, investigate molecular recognitions, and assemble molecular machines. The most promising topics for the short- and long-term prospects of the LB technique are also highlighted.
Collapse
Affiliation(s)
- Osvaldo N Oliveira
- São Carlos Institute of Physics, University of Sao Paulo, CP 369, 13560-970 Sao Carlos, SP, Brazil
| | - Luciano Caseli
- Department of Chemistry, Federal University of São Paulo, 09913-030 Diadema, SP, Brazil
| | - Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 305-0044 Tsukuba, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0827, Japan
| |
Collapse
|
28
|
Features of the Preparation and Luminescence of Langmuir-Blodgett Films Based on the Tb(III) Complex with 3-Methyl-1-phenyl-4-stearoylpyrazol-5-one and 2,2'-Bipyridine. MATERIALS 2022; 15:ma15031127. [PMID: 35161072 PMCID: PMC8840368 DOI: 10.3390/ma15031127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/16/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022]
Abstract
In this study, we investigated the effect of terbium ions (Tb3+) on the subphases of the limiting area of the molecule for the complex compound (CC) TbL3∙bipy (where HL is 3-methyl-1-phenyl-4-stearoylpyrazol-5-one and bipy is 2,2′-bipyridine). We examined the Langmuir monolayer and the change in the luminescence properties of TbL3∙bipy-based Langmuir-Blodgett films (LBFs). The analysis of the compression isotherms, infrared, and luminescence spectra of TbL3∙bipy LBFs was performed by varying the concentration of Tb3+ in the subphases. Our results demonstrate the partial dissociation of the CC at concentrations of C(Tb3+) < 5 × 10−4 M.
Collapse
|
29
|
Amadi EV, Venkataraman A, Papadopoulos C. Nanoscale self-assembly: concepts, applications and challenges. NANOTECHNOLOGY 2022; 33. [PMID: 34874297 DOI: 10.1088/1361-6528/ac3f54] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/02/2021] [Indexed: 05/09/2023]
Abstract
Self-assembly offers unique possibilities for fabricating nanostructures, with different morphologies and properties, typically from vapour or liquid phase precursors. Molecular units, nanoparticles, biological molecules and other discrete elements can spontaneously organise or form via interactions at the nanoscale. Currently, nanoscale self-assembly finds applications in a wide variety of areas including carbon nanomaterials and semiconductor nanowires, semiconductor heterojunctions and superlattices, the deposition of quantum dots, drug delivery, such as mRNA-based vaccines, and modern integrated circuits and nanoelectronics, to name a few. Recent advancements in drug delivery, silicon nanoelectronics, lasers and nanotechnology in general, owing to nanoscale self-assembly, coupled with its versatility, simplicity and scalability, have highlighted its importance and potential for fabricating more complex nanostructures with advanced functionalities in the future. This review aims to provide readers with concise information about the basic concepts of nanoscale self-assembly, its applications to date, and future outlook. First, an overview of various self-assembly techniques such as vapour deposition, colloidal growth, molecular self-assembly and directed self-assembly/hybrid approaches are discussed. Applications in diverse fields involving specific examples of nanoscale self-assembly then highlight the state of the art and finally, the future outlook for nanoscale self-assembly and potential for more complex nanomaterial assemblies in the future as technological functionality increases.
Collapse
Affiliation(s)
- Eberechukwu Victoria Amadi
- University of Victoria, Department of Electrical and Computer Engineering, PO BOX 1700 STN CSC, Victoria, BC, V8W 2Y2, Canada
| | - Anusha Venkataraman
- University of Victoria, Department of Electrical and Computer Engineering, PO BOX 1700 STN CSC, Victoria, BC, V8W 2Y2, Canada
| | - Chris Papadopoulos
- University of Victoria, Department of Electrical and Computer Engineering, PO BOX 1700 STN CSC, Victoria, BC, V8W 2Y2, Canada
| |
Collapse
|
30
|
Wang Z, Li J, Sun Y, Peng J, Wang J, Hao Y, Li W, Zhang P, Ning W, Miao S. Laponite elementary sheets assisted fluorescence resonance energy transfer: A demonstration by Langmuir-Blodgett technique. DYES AND PIGMENTS 2021; 196:109800. [DOI: 10.1016/j.dyepig.2021.109800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
31
|
Rhee S, Jung D, Kim D, Lee DC, Lee C, Roh J. Polarized Electroluminescence Emission in High-Performance Quantum Rod Light-Emitting Diodes via the Langmuir-Blodgett Technique. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101204. [PMID: 34242488 DOI: 10.1002/smll.202101204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/30/2021] [Indexed: 06/13/2023]
Abstract
Due to their anisotropic structure, quantum rods (QRs) feature unique properties that differ from quantum dots, such as suppression of non-radiative Auger recombination and linearly polarized light emission. Despite many potential advantages, the progress of QR-based light-emitting diodes (QR-LEDs) is left behind due to the difficulty in aligning QRs. In this study, polarized electroluminescence emission is reported in high-performance QR-LEDs by employing the Langmuir-Blodgett (LB) technique. The adoption of the LB technique successfully produces a highly dense and smooth QR film with a high degree of alignment. As a result, the aligned QR films exhibit polarized photoluminescence emission with a degree of linear polarization of 2.1. Advantageous features of the LB technique, such as nondestructiveness, precise thickness control, and the nonnecessity of an additional matrix material, allow to fabricate QR-LEDs with the same procedure as the standard spin coating-based scheme. The device is fabricated via the LB technique, which shows excellent device performance, such as the low turn-on voltage of 1.8 V, peak luminance of 56 287 cd m-2 , and peak external quantum efficiency (EQE) of 10.33%. Furthermore, these devices clearly exhibit an indication of polarized electroluminescence emission, which opens new opportunities for QRs in display technologies.
Collapse
Affiliation(s)
- Seunghyun Rhee
- SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Electrical Engineering and Computer Science, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul, 08826, Republic of Korea
| | - Dongju Jung
- SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Dahin Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Doh C Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Changhee Lee
- Department of Electrical Engineering and Computer Science, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeongkyun Roh
- Department of Electrical Engineering, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
32
|
Kanno K, Sase G, McNamee CE. Use of Mixed Langmuir Films of Nanoparticles to Form Metal Oxide Materials with the Optimal Surface Charge. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7643-7654. [PMID: 34125554 DOI: 10.1021/acs.langmuir.1c00388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We aimed to prepare metal oxide materials with the optimal surface charge by preparing mixed films of non-modified metal oxide nanoparticles (NPs) with dissimilar isoelectric points (iep). The purpose of preparing such surfaces was to expand the use of metal oxide materials in environments where the solution pH cannot be changed. Langmuir films of SiO2 (iep: pH 2-3) and TiO2 (iep: pH 5-6.6) NPs were first prepared at air-100 mM NaCl aqueous interfaces. This subphase allowed the formation of stable films of the NPs without the need to modify the NPs with surface-active chemicals, whose presence may detrimentally change the properties of the films. The Langmuir films were then transferred and sintered to silicon wafers and their physical properties were characterized using atomic force microscopy (AFM). The AFM images showed that the films were composed of NP aggregates. The average size of the aggregates decreased, and the uniformity of the aggregate sizes and their inter-aggregate spacing increased with the addition of SiO2 NPs to the film of TiO2 NPs. These changes were explained by an increased electrostatic and steric repulsion between the aggregates formed at the air-100 mM NaCl interface due to the adsorption of negatively charged SiO2 NPs to the slightly positively charged TiO2 aggregates. The force-distance curves measured between a SiO2 probe and the sintered films of SiO2 and/or TiO2 NPs in a 1.0 mM NaCl solution adjusted to pH 4 showed that the magnitude of the repulsive force decreased with an increased number of TiO2 NPs in the film. This force change indicated that the surface charge changed when different types of NPs were mixed. These results indicate that mixing different NP types in a Langmuir film at an air-aqueous interface can help change the physical properties of the transferred film.
Collapse
Affiliation(s)
- Koutarou Kanno
- Shinshu University, Tokida 3-15-1, Ueda-shi 386-8567, Nagano-ken, Japan
| | - Genki Sase
- Shinshu University, Tokida 3-15-1, Ueda-shi 386-8567, Nagano-ken, Japan
| | - Cathy E McNamee
- Shinshu University, Tokida 3-15-1, Ueda-shi 386-8567, Nagano-ken, Japan
| |
Collapse
|
33
|
Oliveira RD, Mouquinho A, Centeno P, Alexandre M, Haque S, Martins R, Fortunato E, Águas H, Mendes MJ. Colloidal Lithography for Photovoltaics: An Attractive Route for Light Management. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1665. [PMID: 34202858 PMCID: PMC8307338 DOI: 10.3390/nano11071665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022]
Abstract
The pursuit of ever-more efficient, reliable, and affordable solar cells has pushed the development of nano/micro-technological solutions capable of boosting photovoltaic (PV) performance without significantly increasing costs. One of the most relevant solutions is based on light management via photonic wavelength-sized structures, as these enable pronounced efficiency improvements by reducing reflection and by trapping the light inside the devices. Furthermore, optimized microstructured coatings allow self-cleaning functionality via effective water repulsion, which reduces the accumulation of dust and particles that cause shading. Nevertheless, when it comes to market deployment, nano/micro-patterning strategies can only find application in the PV industry if their integration does not require high additional costs or delays in high-throughput solar cell manufacturing. As such, colloidal lithography (CL) is considered the preferential structuring method for PV, as it is an inexpensive and highly scalable soft-patterning technique allowing nanoscopic precision over indefinitely large areas. Tuning specific parameters, such as the size of colloids, shape, monodispersity, and final arrangement, CL enables the production of various templates/masks for different purposes and applications. This review intends to compile several recent high-profile works on this subject and how they can influence the future of solar electricity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Manuel J. Mendes
- CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, and CEMOP/UNINOVA, 2829-516 Caparica, Portugal; (R.D.O.); (P.C.); (M.A.); (S.H.); (R.M.); (E.F.); (H.Á.)
| |
Collapse
|
34
|
Antina LA, Ksenofontov AA, Kazak AV, Usol’tseva NV, Antina EV, Berezin MB. Effect of ms-substitution on aggregation behavior and spectroscopic properties of BODIPY dyes in aqueous solution, Langmuir-Schaefer and poly(methyl methacrylate) thin films. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Sarkar S, Banik H, Suklabaidya S, Deb B, Majumdar S, Paul PK, Bhattacharjee D, Hussain SA. Resistive Switching of the Tetraindolyl Derivative in Ultrathin Films: A Potential Candidate for Nonvolatile Memory Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4449-4459. [PMID: 33821655 DOI: 10.1021/acs.langmuir.0c03629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bipolar resistive switching using organic molecule is very promising for memory applications owing to their advantages, such as simple device structure, low manufacturing cost, stability, and flexibility. Herein we report Langmuir-Blodgett (LB) and spin-coated-film-based bipolar resistive switching devices using organic material 1,4-bis(di(1H-indol-3-yl)methyl)benzene (Indole1). The pressure-area per molecule isotherm (π-A), Brewster angle microscopy (BAM), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to formulate an idea about the organization and morphology of the organic material onto thin films. On the basis of the device structure and measurement protocol, it is observed that the device made up of Indole1 shows nonvolatile resistive random access memory (RRAM) behavior with a very high memory window (∼106), data sustainability (5400 s), device yield (86.7%), and repeatability. The oxidation-reduction process and electric-field-driven conduction are the keys behind such switching behavior. Because of very good data retention, repeatability, stability, and a high device yield, the switching device designed using compound Indole1 may be a potential candidate for memory applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Pabitra Kumar Paul
- Department of Physics, Jadavpur University, Jadavpur, Kolkata 700032, India
| | | | | |
Collapse
|
36
|
Fernández L, Reviglio AL, Heredia DA, Morales GM, Santo M, Otero L, Alustiza F, Liaudat AC, Bosch P, Larghi EL, Bracca AB, Kaufman TS. Langmuir-Blodgett monolayers holding a wound healing active compound and its effect in cell culture. A model for the study of surface mediated drug delivery systems. Heliyon 2021; 7:e06436. [PMID: 33763610 PMCID: PMC7973310 DOI: 10.1016/j.heliyon.2021.e06436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/12/2021] [Accepted: 03/03/2021] [Indexed: 11/19/2022] Open
Abstract
Langmuir and Langmuir-Blodgett films holding a synthetic bioinspired wound healing active compound were used as drug-delivery platforms. Palmitic acid Langmuir monolayers were able to incorporate 2-methyltriclisine, a synthetic Triclisine derivative that showed wound healing activity. The layers proved to be stable and the nanocomposites were transferred to solid substrates. Normal human lung cells (Medical Research Council cell strain 5, MRC-5) were grown over the monomolecular Langmuir-Blodgett films that acted as a drug reservoir and delivery system. The proliferation and migration of the cells were clearly affected by the presence of 2-methyltriclisine in the amphiphilic layers. The methodology is proposed as a simple and reliable model for the study of the effects of bioactive compounds over cellular cultures.
Collapse
Affiliation(s)
- Luciana Fernández
- Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto, CONICET, Agencia Postal 3, X5804BYA, Río Cuarto, Argentina
| | - Ana Lucía Reviglio
- Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto, CONICET, Agencia Postal 3, X5804BYA, Río Cuarto, Argentina
| | - Daniel A. Heredia
- Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto, CONICET, Agencia Postal 3, X5804BYA, Río Cuarto, Argentina
| | - Gustavo M. Morales
- Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto, CONICET, Agencia Postal 3, X5804BYA, Río Cuarto, Argentina
| | - Marisa Santo
- Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto, CONICET, Agencia Postal 3, X5804BYA, Río Cuarto, Argentina
| | - Luis Otero
- Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto, CONICET, Agencia Postal 3, X5804BYA, Río Cuarto, Argentina
| | - Fabrisio Alustiza
- Grupo de Sanidad Animal, INTA Estación Experimental Agropecuaria Marcos Juárez, X2580, Marcos Juárez, Argentina
| | - Ana Cecilia Liaudat
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal 3, X5804BYA, Río Cuarto, Argentina
| | - Pablo Bosch
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal 3, X5804BYA, Río Cuarto, Argentina
| | - Enrique L. Larghi
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Andrea B.J. Bracca
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Teodoro S. Kaufman
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| |
Collapse
|
37
|
Nathanael AJ, Oh TH. Biopolymer Coatings for Biomedical Applications. Polymers (Basel) 2020; 12:E3061. [PMID: 33371349 PMCID: PMC7767366 DOI: 10.3390/polym12123061] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023] Open
Abstract
Biopolymer coatings exhibit outstanding potential in various biomedical applications, due to their flexible functionalization. In this review, we have discussed the latest developments in biopolymer coatings on various substrates and nanoparticles for improved tissue engineering and drug delivery applications, and summarized the latest research advancements. Polymer coatings are used to modify surface properties to satisfy certain requirements or include additional functionalities for different biomedical applications. Additionally, polymer coatings with different inorganic ions may facilitate different functionalities, such as cell proliferation, tissue growth, repair, and delivery of biomolecules, such as growth factors, active molecules, antimicrobial agents, and drugs. This review primarily focuses on specific polymers for coating applications and different polymer coatings for increased functionalization. We aim to provide broad overview of latest developments in the various kind of biopolymer coatings for biomedical applications, in order to highlight the most important results in the literatures, and to offer a potential outline for impending progress and perspective. Some key polymer coatings were discussed in detail. Further, the use of polymer coatings on nanomaterials for biomedical applications has also been discussed, and the latest research results have been reported.
Collapse
Affiliation(s)
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
38
|
Baidya A, Das B, Majumder S, Saha SK, Nath RK, Paul MK. The unique asymmetric nano-cluster formation by the uneven hockey-stick-shaped mesogen based on 1,3,4-oxadiazole in Langmuir–Blodgett thin film. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1848584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Alpana Baidya
- Department of Chemistry, Tripura University, Agartala, India
| | - Bandana Das
- Department of Chemistry, Tripura University, Agartala, India
| | | | - Sandip K. Saha
- Department of Chemistry, Assam University, Silchar, India
| | - Ranendu K. Nath
- Department of Chemistry, Tripura University, Agartala, India
| | - Manoj K. Paul
- Department of Chemistry, Assam University, Silchar, India
| |
Collapse
|
39
|
Shokurov AV, Alexandrova AV, Shcherbina MA, Bakirov AV, Rogachev AV, Yakunin SN, Chvalun SN, Arslanov VV, Selektor SL. Supramolecular control of the structure and receptor properties of an amphiphilic hemicyanine chromoionophore monolayer at the air/water interface. SOFT MATTER 2020; 16:9857-9863. [PMID: 33048105 DOI: 10.1039/d0sm01078b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Designing sensors for toxic compounds such as mercury salts in aqueous solutions still remains one of the most pressing tasks of modern chemical research, since many existing systems do not show enough sensitivity and/or response. In this regard, the opportunities offered by supramolecular approaches can be used to improve both these characteristics by creating a new self-organized smart system. Herein, we show that barium cations, that according to the data of X-ray standing waves do not bind directly to the ionophore molecules in the monolayers at the air/water interface, could be used to efficiently preorganize such molecules to achieve supramolecular architecture. We demonstrate that such preorganization ensures both low analyte detection threshold and high fluorescent response. We reveal the interrelation of the monolayer structure and receptor characteristics of a sensory system and show that such cation-induced preorganization in Langmuir monolayers of a hemicyanine dithia-aza-crown-substituted chromoionophore inhibits the formation of non-fluorescent aggregates with low receptor function, and allows the quantitative detection of mercury cations using a ratiometric fluorometric approach.
Collapse
Affiliation(s)
- Alexander V Shokurov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071, Russia.
| | - Alvina V Alexandrova
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071, Russia.
| | - Maxim A Shcherbina
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya 70, Moscow, 117393, Russia and Moscow Institute of Physics and Technology, 4 Institutsky line, 141700 Dolgoprudny, Moscow region, Russian Federation
| | - Artem V Bakirov
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya 70, Moscow, 117393, Russia
| | - Alexander V Rogachev
- Kurchatov Institute, National Research Centre Kurchatov Institute, 1 Kurchatov square, 123098 Moscow, Russian Federation
| | - Sergey N Yakunin
- Kurchatov Institute, National Research Centre Kurchatov Institute, 1 Kurchatov square, 123098 Moscow, Russian Federation
| | - Sergey N Chvalun
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya 70, Moscow, 117393, Russia and Kurchatov Institute, National Research Centre Kurchatov Institute, 1 Kurchatov square, 123098 Moscow, Russian Federation
| | - Vladimir V Arslanov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071, Russia.
| | - Sofiya L Selektor
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071, Russia.
| |
Collapse
|
40
|
Laskowska M, Pastukh O, Fedorchuk A, Schabikowski M, Kowalczyk P, Zalasiński M, Laskowski Ł. Nanostructured Silica with Anchoring Units: The 2D Solid Solvent for Molecules and Metal Ions. Int J Mol Sci 2020; 21:E8137. [PMID: 33143359 PMCID: PMC7663599 DOI: 10.3390/ijms21218137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 01/27/2023] Open
Abstract
The ability to organize, separate and manipulate individual molecules and ions on a surface opens up almost unlimited opportunities. However, it often requires complex techniques and a proper support material. With this in mind, we show a new concept of 2D solid solvents and review a simple and efficient procedure which is based on nanostructured forms of silica with anchoring units. We describe silica supports, such as spherical nanoparticles and mesoporous silica structures, as well as review the methods for chemical modification of the surface of silica with the functional groups. Finally, we present a few particular examples of the immobilization of molecules and ions on the surface of 2D solid solvents along with the experimental investigation of the obtained materials.
Collapse
Affiliation(s)
- Magdalena Laskowska
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland; (M.L.); (O.P.); (A.F.); (M.S.)
| | - Oleksandr Pastukh
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland; (M.L.); (O.P.); (A.F.); (M.S.)
| | - Andrii Fedorchuk
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland; (M.L.); (O.P.); (A.F.); (M.S.)
| | - Mateusz Schabikowski
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland; (M.L.); (O.P.); (A.F.); (M.S.)
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland;
| | - Marcin Zalasiński
- Department of Intelligent Computer Systems, Czestochowa University of Technology, 42-200 Czestochowa, Poland;
| | - Łukasz Laskowski
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland; (M.L.); (O.P.); (A.F.); (M.S.)
| |
Collapse
|
41
|
Bodik M, Jergel M, Majkova E, Siffalovic P. Langmuir films of low-dimensional nanomaterials. Adv Colloid Interface Sci 2020; 283:102239. [PMID: 32854017 DOI: 10.1016/j.cis.2020.102239] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 02/08/2023]
Abstract
A large number of low-dimensional nanomaterials having different shapes and being dispersible in solvents open a fundamental question if there is a universal deposition technique for the monolayer formation. A monolayer formation of various nanomaterials at the air-water interface, also known as a Langmuir film, is a well-established technique even for the large group of the recently developed low-dimensional nanomaterials. In this review, we cover the monolayer formation of the zero-dimensional, one-dimensional and two-dimensional nanomaterials. Thanks to the formation of a Langmuir layer at the thermodynamic equilibrium, by using a suitable nanomaterial dispersion and subphase, the monolayers can be formed from all kinds of materials, ranging from the graphene oxide to the semiconducting quantum dots. In this review, we will discuss the basic requirements for the successful formation of monolayers and summarize the recent scientific advances in the field of Langmuir films.
Collapse
|
42
|
Nanofabrication Techniques in Large-Area Molecular Electronic Devices. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10176064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The societal impact of the electronics industry is enormous—not to mention how this industry impinges on the global economy. The foreseen limits of the current technology—technical, economic, and sustainability issues—open the door to the search for successor technologies. In this context, molecular electronics has emerged as a promising candidate that, at least in the short-term, will not likely replace our silicon-based electronics, but improve its performance through a nascent hybrid technology. Such technology will take advantage of both the small dimensions of the molecules and new functionalities resulting from the quantum effects that govern the properties at the molecular scale. An optimization of interface engineering and integration of molecules to form densely integrated individually addressable arrays of molecules are two crucial aspects in the molecular electronics field. These challenges should be met to establish the bridge between organic functional materials and hard electronics required for the incorporation of such hybrid technology in the market. In this review, the most advanced methods for fabricating large-area molecular electronic devices are presented, highlighting their advantages and limitations. Special emphasis is focused on bottom-up methodologies for the fabrication of well-ordered and tightly-packed monolayers onto the bottom electrode, followed by a description of the top-contact deposition methods so far used.
Collapse
|
43
|
Antina LA, Ksenofontov AA, Kalyagin AA, Bocharov PS, Kharitonova NV, Kazak AV, Antina EV, Berezin MB. The influence of alkylation on the photophysical properties of BODIPYs and their labeling in blood plasma proteins. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
44
|
Mitra S, Das R, Singh A, Mukhopadhyay MK, Roy G, Ghosh SK. Surface Activities of a Lipid Analogue Room-Temperature Ionic Liquid and Its Effects on Phospholipid Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:328-339. [PMID: 31826620 DOI: 10.1021/acs.langmuir.9b02716] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
There are great efforts of synthesizing imidazolium-based ionic liquids (ILs) for developing new antibiotics as these molecules have shown strong antibacterial activities. Compared to a single-hydrocarbon-chained IL, the lipid analogues (LAs) with two chains are more effective. In the present study, the LA molecule MeIm(COOH)Me(Oleylamine)Iodide has been synthesized and its surface activities along with the effectiveness in restructuring of a model cellular membrane have been quantified. The molecule is found to be highly surface active as estimated from the area-pressure isotherm of a monolayer of the molecules formed at the air-water interface. The X-ray reflectivity (XRR) studies of a monolayer dip-coated on a hydrophilic substrate have shown the structural properties of the layer which resembles to those of unsaturated phospholipids. The LA molecules are observed to fluidize a phospholipid bilayer formed by the saturated lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). At a lower surface pressure, the lipid monolayer of DPPC has exhibited a thickening effect at a low concentration of added LA and a thinning effect at higher concentration. However, at a high surface pressure of the monolayer, the thickness is found to decrease monotonically. The in-plane pressure-dependent interaction of LA molecules with model cellular membrane and the corresponding perturbation in the structure and physical properties of the membrane may be linked to the strong lysing effect of these types of molecules.
Collapse
Affiliation(s)
| | | | - A Singh
- Surface Physics and Material Science Division , Saha Institute of Nuclear Physics , AF Block, Bidhannagar , Kolkata 700064 , India
| | - M K Mukhopadhyay
- Surface Physics and Material Science Division , Saha Institute of Nuclear Physics , AF Block, Bidhannagar , Kolkata 700064 , India
| | | | | |
Collapse
|
45
|
Neupane GP, Ma W, Yildirim T, Tang Y, Zhang L, Lu Y. 2D organic semiconductors, the future of green nanotechnology. NANO MATERIALS SCIENCE 2019. [DOI: 10.1016/j.nanoms.2019.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Abstract
Semiconductor nanowires have attracted extensive interest as one of the best-defined classes of nanoscale building blocks for the bottom-up assembly of functional electronic and optoelectronic devices over the past two decades. The article provides a comprehensive review of the continuing efforts in exploring semiconductor nanowires for the assembly of functional nanoscale electronics and macroelectronics. Specifically, we start with a brief overview of the synthetic control of various semiconductor nanowires and nanowire heterostructures with precisely controlled physical dimension, chemical composition, heterostructure interface, and electronic properties to define the material foundation for nanowire electronics. We then summarize a series of assembly strategies developed for creating well-ordered nanowire arrays with controlled spatial position, orientation, and density, which are essential for constructing increasingly complex electronic devices and circuits from synthetic semiconductor nanowires. Next, we review the fundamental electronic properties and various single nanowire transistor concepts. Combining the designable electronic properties and controllable assembly approaches, we then discuss a series of nanoscale devices and integrated circuits assembled from nanowire building blocks, as well as a unique design of solution-processable nanowire thin-film transistors for high-performance large-area flexible electronics. Last, we conclude with a brief perspective on the standing challenges and future opportunities.
Collapse
Affiliation(s)
- Chuancheng Jia
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Zhaoyang Lin
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Yu Huang
- Department of Materials Science and Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States.,California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States.,California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
| |
Collapse
|
47
|
Salamianski AE, Agabekov VE. Tribological Properties of Composite Langmuir–Blodgett Coatings of OLEIC Acid with Molybdenum Disulfide Nanoparticles. INTERNATIONAL JOURNAL OF NANOSCIENCE 2019. [DOI: 10.1142/s0219581x19400684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tribological properties of composite Langmuir–Blodgett monolayers of oleic acid (OA) with MoS2 nanoparticles formed on silicon surfaces by the horizontal precipitation method were studied. Incorporation of MoS2 (the average particle size [Formula: see text][Formula: see text]nm) into the structure of the layer was found to result in the increase of minimal area per molecule from 0.43[Formula: see text]nm2 to 0.58[Formula: see text]nm2 and wear stability of OA monolayer.
Collapse
Affiliation(s)
- A. E. Salamianski
- Institute of Chemistry of New Materials NASB, F. Skoriny 36, 220141 Minsk, Belarus
| | - V. E. Agabekov
- Institute of Chemistry of New Materials NASB, F. Skoriny 36, 220141 Minsk, Belarus
| |
Collapse
|
48
|
Influence of 7α-hydroxycholesterol on sphingomyelin and sphingomyelin/phosphatidylcholine films - The Langmuir monolayer study complemented with theoretical calculations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:861-870. [DOI: 10.1016/j.bbamem.2019.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/29/2022]
|