1
|
Park C, Kim D. Influence of Inner Lining Atoms of Multilayered Hexagonal Boron Nitride Porous Membrane on Desalination. MICROMACHINES 2025; 16:530. [PMID: 40428657 PMCID: PMC12114459 DOI: 10.3390/mi16050530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025]
Abstract
Recent findings have demonstrated that the desalination and purification of contaminated water and the separation of ions and gases, besides solutions to other related issues, may all be achieved with the use of membranes based on artificial nanoporous materials. Before the expensive stages of production and experimental testing, the optimum size and form of membrane nanopores could be determined using computer-aided modeling. The notion that rectangular nanopores created in a multilayered hexagonal boron nitride (h-BN) membrane in a way that results in different inner lining atoms would exhibit unique properties in terms of the water penetration rate is put forth and examined in the current study. Nanopores in boron nitride sheets can be generated with the inner lining of boron atoms (B-edged), nitrogen atoms (N-edged), or both boron and nitrogen atoms (BN-edged). In this study, we compared the three different inner-lined nanopores of boron nitride nanosheets to a comparable-sized graphene nanopore and evaluated the water conduction.
Collapse
Affiliation(s)
| | - Daejoong Kim
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Republic of Korea;
| |
Collapse
|
2
|
Das S. Nanocapillary Core-Annular Flows of Immiscible Active and Non-Active Liquids Trigger External-Drive-Free Nanofluidic Liquid Transport. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:7790-7803. [PMID: 40091221 DOI: 10.1021/acs.langmuir.5c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
In this paper, we develop analytical solutions for investigating the nanocapillary core-annular transport of an active liquid and an immiscible non-active liquid. The active liquid contains active particles that show vortex defects, which trigger a circular polarization field, eventually enabling the generation of an induced pressure-driven flow inside the active fluids in the presence of an axial gradient in the activity (or the concentration of the active particles). Here we consider two separate scenarios. For the first (second) case, the active liquid occupies the core (annular) region while the non-active liquid occupies the annular (core) region. Our main finding is that for both of these cases, the active flow drives the non-active flow and can achieve a significant volume flow rate (of the non-active flow) in the presence of an appropriate strength of activity (or concentration of the active particles); therefore, such significant nanofluidic transport of the driven fluid occurs with no external driving (such as an external pressure gradient or an applied axial electric field). Also, for both of these cases, a greater thickness of the active liquid layer increases the flow strength across the entire nanocapillary but causes a nonmonotonic variation of the volume flow rate of the non-active liquid. Furthermore, for the case where the active liquid occupies the core, a larger active:non-active liquid viscosity ratio significantly enhances the overall transport; however, for the other case, the viscosity ratio has no effect. Finally, we provide our analytical results for the case where there is a finite slip at the nanocapillary walls. We find that depending on the scenario (active liquid occupying the core or the annular region), different signs of the slip lengths have different influences on the overall magnitude and direction of the velocity field in the system and the flow rate in the driven liquid.
Collapse
Affiliation(s)
- Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
3
|
Shtansky DV, Matveev AT, Permyakova ES, Leybo DV, Konopatsky AS, Sorokin PB. Recent Progress in Fabrication and Application of BN Nanostructures and BN-Based Nanohybrids. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2810. [PMID: 36014675 PMCID: PMC9416166 DOI: 10.3390/nano12162810] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 05/27/2023]
Abstract
Due to its unique physical, chemical, and mechanical properties, such as a low specific density, large specific surface area, excellent thermal stability, oxidation resistance, low friction, good dispersion stability, enhanced adsorbing capacity, large interlayer shear force, and wide bandgap, hexagonal boron nitride (h-BN) nanostructures are of great interest in many fields. These include, but are not limited to, (i) heterogeneous catalysts, (ii) promising nanocarriers for targeted drug delivery to tumor cells and nanoparticles containing therapeutic agents to fight bacterial and fungal infections, (iii) reinforcing phases in metal, ceramics, and polymer matrix composites, (iv) additives to liquid lubricants, (v) substrates for surface enhanced Raman spectroscopy, (vi) agents for boron neutron capture therapy, (vii) water purifiers, (viii) gas and biological sensors, and (ix) quantum dots, single photon emitters, and heterostructures for electronic, plasmonic, optical, optoelectronic, semiconductor, and magnetic devices. All of these areas are developing rapidly. Thus, the goal of this review is to analyze the critical mass of knowledge and the current state-of-the-art in the field of BN-based nanomaterial fabrication and application based on their amazing properties.
Collapse
Affiliation(s)
- Dmitry V. Shtansky
- Labotoary of Inorganic Nanomaterials, National University of Science and Technology “MISiS”, Leninsky Prospect 4, 119049 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
4
|
Vatanpour V, Naziri Mehrabani SA, Keskin B, Arabi N, Zeytuncu B, Koyuncu I. A Comprehensive Review on the Applications of Boron Nitride Nanomaterials in Membrane Fabrication and Modification. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02102] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Vahid Vatanpour
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran, 15719-14911, Iran
- Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Seyed Ali Naziri Mehrabani
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
- Nano Science and Nano Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Basak Keskin
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
- Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Negar Arabi
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
- Nano Science and Nano Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Bihter Zeytuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
- Metallurgical and Materials Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
- Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| |
Collapse
|
5
|
The effect of unique structural flower-like TiO2 towards polysulfone mixed matrix membrane as efficient antifouling and antibacterial for humic acid removal. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02644-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Verma A, Zhang W, van Duin ACT. ReaxFF reactive molecular dynamics simulations to study the interfacial dynamics between defective h-BN nanosheets and water nanodroplets. Phys Chem Chem Phys 2021; 23:10822-10834. [PMID: 33908500 DOI: 10.1039/d1cp00546d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this work, the authors have developed a reactive force field (ReaxFF) to investigate the effect of water molecules on the interfacial interactions with vacancy defective hexagonal boron nitride (h-BN) nanosheets by introducing parameters suitable for the B/N/O/H chemistry. Initially, molecular dynamics simulations were performed to validate the structural stability and hydrophobic nature of h-BN nanosheets. The water molecule dissociation mechanism in the vicinity of vacancy defective h-BN nanosheets was investigated, and it was shown that the terminal nitrogen and boron atoms bond with a hydrogen atom and hydroxyl group, respectively. Furthermore, it is predicted that the water molecules arrange themselves in layers when compressed in between two h-BN nanosheets, and the h-BN nanosheet fracture nucleates from the vacancy defect site. Simulations at elevated temperatures were carried out to explore the water molecule trajectory near the functionalized h-BN pores, and it was observed that the intermolecular hydrogen bonds lead to agglomeration of water molecules near these pores when the temperature was lowered to room temperature. The study was extended to observe the effect of pore sizes and temperatures on the contact angle made by a water nanodroplet on h-BN nanosheets, and it was concluded that the contact angle would be less at higher temperatures and larger pore sizes. This study provides important information for the use of h-BN nanosheets in nanodevices for water desalination and underwater applications, as these h-BN nanosheets possess the desired adsorption capability and structural stability.
Collapse
Affiliation(s)
- Akarsh Verma
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA-16802, USA. and Department of Mechanical and Industrial Engineering, Indian Institute of Technology, Roorkee-247667, India and Department of Mechanical Engineering, University of Petroleum and Energy Studies, Dehradun-248007, India
| | - Weiwei Zhang
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA-16802, USA.
| | - Adri C T van Duin
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA-16802, USA.
| |
Collapse
|
7
|
Ikram M, Wakeel M, Hassan J, Haider A, Naz S, Ul-Hamid A, Haider J, Ali S, Goumri-Said S, Kanoun MB. Impact of Bi Doping into Boron Nitride Nanosheets on Electronic and Optical Properties Using Theoretical Calculations and Experiments. NANOSCALE RESEARCH LETTERS 2021; 16:82. [PMID: 33978872 PMCID: PMC8116421 DOI: 10.1186/s11671-021-03542-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/03/2021] [Indexed: 05/16/2023]
Abstract
In the present work, boron nitride (BN) nanosheets were prepared through bulk BN liquid phase exfoliation while various wt. ratios (2.5, 5, 7.5 and 10) of bismuth (Bi) were incorporated as dopant using hydrothermal technique. Our findings exhibit that the optical investigation showed absorption spectra in near UV region. Density functional theory calculations indicate that Bi doping has led to various modifications in the electronic structures of BN nanosheet by inducing new localized gap states around the Fermi level. It was found that bandgap energy decrease with the increase of Bi dopant concentrations. Therefore, in analysis of the calculated absorption spectra, a redshift has been observed in the absorption edges, which is consistent with the experimental observation. Additionally, host and Bi-doped BN nanosheets were assessed for their catalytic and antibacterial potential. Catalytic activity of doped free and doped BN nanosheets was evaluated by assessing their performance in dye reduction/degradation process. Bactericidal activity of Bi-doped BN nanosheets resulted in enhanced efficiency measured at 0-33.8% and 43.4-60% against S. aureus and 0-38.8% and 50.5-85.8% against E. coli, respectively. Furthermore, In silico molecular docking predictions were in good agreement with in-vitro bactericidal activity. Bi-doped BN nanosheets showed good binding score against DHFR of E. coli (- 11.971 kcal/mol) and S. aureus (- 8.526 kcal/mol) while binding score for DNA gyrase from E. coli (- 6.782 kcal/mol) and S. aureus (- 7.819 kcal/mol) suggested these selected enzymes as possible target.
Collapse
Affiliation(s)
- Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore, 54000, Punjab, Pakistan.
| | - Muhammad Wakeel
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore, Pakistan
| | - Jahanzeb Hassan
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore, Pakistan
| | - Ali Haider
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences Lahore, Lahore, 54000, Punjab, Pakistan
| | - Sadia Naz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Junaid Haider
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Salamat Ali
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore, Pakistan
| | - Souraya Goumri-Said
- College of Science, Physics Department, Alfaisal University, P.O. Box 50927, Riyadh, 11533, Saudi Arabia
| | - Mohammed Benali Kanoun
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa, 31982, Saudi Arabia.
| |
Collapse
|
8
|
Functionalized boron nitride nanosheet as a membrane for removal of Pb2+ and Cd2+ ions from aqueous solution. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114920] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
9
|
Ihsanullah I. Boron nitride-based materials for water purification: Progress and outlook. CHEMOSPHERE 2021; 263:127970. [PMID: 32835978 DOI: 10.1016/j.chemosphere.2020.127970] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Analogous to the carbon family, boron nitride (BN)-based materials have gained considerable attention in recent times for applications in various fields. Owing to their extraordinary characteristics, i.e., high surface area, low density, superior thermal stability, mechanical strength, and conductivity, excellent corrosion, and oxidation resistance, the BN nanomaterials have been explored in water remediation. This article critically evaluates the latest development in applications of BN-based materials in water purification with focus on adsorption, synthesis of novel membranes and photocatalytic degradation of pollutants. The adsorption of various noxious pollutants, i.e., dyes, organic compounds, antibiotics, and heavy metals from aqueous medium BN-based materials are described in detail by illustrating the adsorption mechanism and regeneration potential. The major hurdles and opportunities related to the synthesis and water purification applications of BN-based materials are underscored. Finally, a roadmap is suggested for future research to assure the effective applications of BN-based materials in water purification. This review is beneficial in understanding the current status of these unique materials in water purification and accelerating the research focusing their future water remediation applications.
Collapse
Affiliation(s)
- Ihsanullah Ihsanullah
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
10
|
Vatanpour V, Karimi H, Imanian Ghazanlou S, Mansourpanah Y, Ganjali MR, Badiei A, Pourbashir E, Saeb MR. Anti-fouling polyethersulfone nanofiltration membranes aided by amine-functionalized boron nitride nanosheets with improved separation performance. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2020; 8:104454. [DOI: 10.1016/j.jece.2020.104454] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
|
11
|
Sui X, Yuan Z, Yu Y, Goh K, Chen Y. 2D Material Based Advanced Membranes for Separations in Organic Solvents. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003400. [PMID: 33217172 DOI: 10.1002/smll.202003400] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/25/2020] [Indexed: 06/11/2023]
Abstract
2D materials have shown high potentials for fabricating next-generation membranes. To date, extensive studies have focused on the applications of 2D material membranes in gas and aqueous media. Recently, compelling opportunities emerge for 2D material membranes in separation applications in organic solvents because of their unique properties, such as ultrathin mono- to few-layers, outstanding chemical resistance toward organic solvents. Hence, this review aims to provide a timely overview of the current state-of-the-art of 2D material membranes focusing on their applications in organic solvent separations. 2D material membranes fabricated using graphene materials and a few representative nongraphene-based 2D materials, including covalent organic frameworks and MXenes, are summarized. The key membrane design strategies and their effects on separation performances in organic solvents are also examined. Last, several perspectives are provided in terms of the critical challenges for 2D material membranes, including standardization of membrane performance evaluation, improving understandings of separation mechanisms, managing the trade-off of permeability and selectivity, issues related to application versatility, long-term stability, and fabrication scalability. This review will provide a useful guide for researchers in creating novel 2D material membranes for advancing new separation techniques in organic solvents.
Collapse
Affiliation(s)
- Xiao Sui
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Ziwen Yuan
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yanxi Yu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Kunli Goh
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
| | - Yuan Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
12
|
Sivasankar VS, Etha SA, Sachar HS, Das S. Theoretical study on the massively augmented electro-osmotic water transport in polyelectrolyte brush functionalized nanoslits. Phys Rev E 2020; 102:013103. [PMID: 32794997 DOI: 10.1103/physreve.102.013103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/08/2020] [Indexed: 11/07/2022]
Abstract
We demonstrate that functionalizing nanoslits with pH-responsive polyelectrolyte brushes can lead to extremely fast electro-osmotic (EOS) water transport, where the maximum centreline velocity and the volume flow rate can be an order of magnitude larger than these quantities in identically charged brush-free nanochannels for a wide range of system parameters. Such an enhancement is most remarkable given that the brushes have been known to retard the transport by imparting additional drag on the fluid flow. We argue that this enhancement stems from the localization of the charge density of the brush-induced electric double layer (and, hence, the EOS body force) away from the nanochannel wall (or the location of the wall-induced drag force). This ensures a much larger impact of the EOS body force triggering such fast water transport. Finally, the calculated flux values for the present brush-grafted nanochannels are found to be significantly larger than those for a wide range of nanofluidic membranes and channels, suggesting that the brush functionalization can be considered as a mechanism for enabling such superfast nanofluidic transport.
Collapse
Affiliation(s)
| | - Sai Ankit Etha
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Harnoor Singh Sachar
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
13
|
Raza A, Qumar U, Hassan J, Ikram M, Ul-Hamid A, Haider J, Imran M, Ali S. A comparative study of dirac 2D materials, TMDCs and 2D insulators with regard to their structures and photocatalytic/sonophotocatalytic behavior. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01475-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Ikram M, Jahan I, Haider A, Hassan J, Ul-Hamid A, Imran M, Haider J, Shahzadi A, Shahbaz A, Ali S. Bactericidal behavior of chemically exfoliated boron nitride nanosheets doped with zirconium. APPLIED NANOSCIENCE 2020; 10:2339-2349. [PMID: 32341906 PMCID: PMC7183257 DOI: 10.1007/s13204-020-01412-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 04/12/2020] [Indexed: 12/13/2022]
Abstract
In this work, boron nitride nanosheets (BNNS) were produced through chemical exfoliation of bulk boron nitride (BN). Furthermore, hydrothermal technique was used to incorporate various concentrations (2.5, 5, 7.5, and 10 wt%) of zirconium (Zr) as a dopant. The prepared undoped and doped BN samples were evaluated for its antimicrobial activity against E. coli and S. aureus. Structural analysis was undertaken using x-ray diffraction which identified the presence of hexagonal BN. FTIR and Raman spectroscopy were utilized to outline IR fingerprint and electronic properties of the synthesized material. Morphological information was obtained through micrographs extracted using field emission scanning electron spectroscope (FESEM) and high resolution transmission electron microscope (HRTEM), while d-spacing was also calculated through HRTEM analysis. Optical properties and emission spectra were examined by applying UV–vis and photoluminescence spectroscope (PL); whereas, band gap analysis was carried out via Tauc plot. Zr-doped BN nanosheets at increasing concentrations (0.5, 1.0 mg/50 μl) revealed enhanced antibacterial activity against E. coli compared to S. aureus (p < 0.05).
Collapse
Affiliation(s)
- M Ikram
- 1Solar Cell Applications Research Laboratory, Department of Physics, Government College University Lahore, Punjab, 54000 Pakistan
| | - I Jahan
- 1Solar Cell Applications Research Laboratory, Department of Physics, Government College University Lahore, Punjab, 54000 Pakistan.,2Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore, Pakistan
| | - A Haider
- 3Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences, LahorePunjab, 54000 Pakistan
| | - J Hassan
- 2Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore, Pakistan
| | - A Ul-Hamid
- 4Centre for Engineering Research, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
| | - M Imran
- 5State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing Engineering Centre for Hierarchical Catalysts, Beijing, 100029 China
| | - J Haider
- 6Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - A Shahzadi
- 7University College of Pharmacy, University of the Punjab, Lahore, 54000 Pakistan
| | - A Shahbaz
- 8Department of Physics, Government College University Lahore, Punjab, 54000 Pakistan
| | - S Ali
- 2Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore, Pakistan
| |
Collapse
|
15
|
Budi A, Walsh TR. A Bespoke Force Field To Describe Biomolecule Adsorption at the Aqueous Boron Nitride Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16234-16243. [PMID: 31714785 DOI: 10.1021/acs.langmuir.9b03121] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Reliable manipulation of the interface between 2D nanomaterials and biomolecules represents a current frontier in nanoscience. The ability to resolve the molecular-level structures of these biointerfaces would provide a fundamental data set that is needed to enable systematic and knowledge-based progress in this area. These structures are challenging to obtain via experiment alone, and molecular simulations offer a complementary approach to address this problem. Compared with graphene, the interface between hexagonal boron nitride (h-BN) and biomolecules is relatively understudied at present. While several force fields are currently available for modeling the h-BN/water interface, there is a lack of a suitable force field that can describe the interactions between h-BN, liquid water, and biomolecules. Here, we use density functional theory calculations to create a force field, BoNi-CHARMM, to describe biomolecular interactions at the aqueous h-BN interface. Verifying our force field presents an additional challenge, given the scarcity of available experimental data for these interfaces. We test our force field against experimental evidence regarding the water/surface contact angle and confirm that the force field provides experimentally consistent values. We also present preliminary data regarding predictions of the free energy of adsorption of a selection of amino acids at the aqueous h-BN interface, revealing arginine and tryptophan to be among the strongest binders. This force field provides an opportunity to initiate a systematic progression in our current understanding of how to capture the intermolecular interactions at the h-BN biointerface.
Collapse
Affiliation(s)
- Akin Budi
- Institute for Frontier Materials , Deakin University , 75 Pigdon's Rd. , Geelong , Victoria 3216 , Australia
| | - Tiffany R Walsh
- Institute for Frontier Materials , Deakin University , 75 Pigdon's Rd. , Geelong , Victoria 3216 , Australia
| |
Collapse
|