1
|
Bitew D, Damtew B, Tesfaye A, Andualem B. Isolation of yeast from some Ethiopian traditional fermented beverages and in vitro evaluation for probiotic traits. Heliyon 2024; 10:e40520. [PMID: 39654710 PMCID: PMC11626069 DOI: 10.1016/j.heliyon.2024.e40520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
Traditional fermented foods and beverages are important sources of probiotic microbes. The purpose of this study was to isolate yeast from Ethiopian fermented beverages and assess their probiotic activity in an in vitro setting. Yeast isolation, identification, and in vitro probiotic trait screening were conducted in accordance with established protocols. Eleven isolates were obtained. Of them, GB1D5, RTj3D3 and DMTD2 were low hydrogen sulfide producers and were selected. The D1/2 genotyping of selected isolates revealed that they were strains of Saccharomyces cerevisiae. All strains grew well at low pH, body temperature, bile salt concentrations (0.3-0.6 (w/v)) and survived at simulated gastrointestinal conditions with survival percentages of 12.8 ± 4.9 to 14.4 ± 5.0 % and 5.3 ± 1.7-5.9 ± 1.8 %, respectively. They demonstrated surface hydrophobicity ranging from 61.3 to 68.7 %; and 80.7-86 % auto-aggregation percentages after 24 h of incubation. They also showed hydroxyl radical scavenging activity ranging between 91.6 and 92.3 % and mild inhibitory activity against Escherichia coli (ATCC 893614) and Staphylococcus aureus (ATCC 892760). The PCA revealed that two strains (DMTD2 and RTj3D3) have a strong association with most probiotic properties, which affirms their promising candidacy. Safety assessments indicated that they were resistant to antibacterial antibiotics, susceptible to antifungals, and negative for protease, gelatinase, biogenic amine production, and hemolytic activity. All these suggest that they are promising candidates for the production of food containing probiotics. Examining their performance in vivo circumstances is recommended.
Collapse
Affiliation(s)
- Dagnew Bitew
- Department of Biology, College of Natural and Computational Science, Mizan-Tepi University, Ethiopia
- Department of Industrial Biotechnology, Institute of Biotechnology, University of Gondar, Ethiopia
| | - Bogale Damtew
- Department of General Biotechnology, Institute of Biotechnology, University of Gondar, Ethiopia
| | - Anteneh Tesfaye
- Institute of Biotechnology, Addis Ababa University, Ethiopia
- BioTEI, Winnipeg, Manitoba, Canada
| | - Berhanu Andualem
- Department of Industrial Biotechnology, Institute of Biotechnology, University of Gondar, Ethiopia
| |
Collapse
|
2
|
Das M, Dam S. Evaluation of probiotic efficacy of indigenous yeast strain, Saccharomyces cerevisiae Y-89 isolated from a traditional fermented beverage of West Bengal, India having protective effect against DSS-induced colitis in experimental mice. Arch Microbiol 2024; 206:398. [PMID: 39254791 DOI: 10.1007/s00203-024-04128-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Increasing awareness regarding health promotion and disease prevention has driven inclusion of fermented foods and beverages in the daily diet. These are the enormous sources of beneficial microbes, probiotics. This study aims to isolate yeast strains having probiotic potential and effectivity against colitis. Initially, ninety-two yeast strains were isolated from Haria, an ethnic fermented beverage of West Bengal, India. Primary screening was done by their acid (pH 4) and bile salt (0.3%) tolerance ability. Four potent isolates were selected and found effective against Entamoeba histolytica, as this human pathogen is responsible to cause colitis. They were identified as Saccharomyces cerevisiae. They showed luxurious growth even at 37 oC, tolerance up to 5% of NaCl, resistance to gastric juice and high bile salt (2.0%) and oro-gastrointestinal transit tolerance. They exhibited good auto-aggregation and co-aggregation ability and strong hydrophobicity. Finally, heat map and principal component analysis revealed that strain Y-89 was the best candidate. It was further characterised and found to have significant protective effects against DSS-induced colitis in experimental mice model. It includes improvement in colon length, body weight and organ indices; reduction in disease activity index; reduction in cholesterol, LDL, SGPT, SGOT, urea and creatinine levels; improvement in HDL, ALP, total protein and albumin levels; decrease in coliform count and restoration of tissue damage. This study demonstrates that the S. cerevisiae strain Y-89 possesses remarkable probiotic traits and can be used as a potential bio-therapeutic candidate for the prevention of colitis.
Collapse
Affiliation(s)
- Moubonny Das
- Department of Microbiology, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Somasri Dam
- Department of Microbiology, The University of Burdwan, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
3
|
Maione A, Imparato M, Buonanno A, Salvatore MM, Carraturo F, de Alteriis E, Guida M, Galdiero E. Evaluation of Potential Probiotic Properties and In Vivo Safety of Lactic Acid Bacteria and Yeast Strains Isolated from Traditional Home-Made Kefir. Foods 2024; 13:1013. [PMID: 38611319 PMCID: PMC11011881 DOI: 10.3390/foods13071013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Probiotics are known for their health-promoting resources and are considered as beneficial microorganisms. The current study focuses on the isolation, and on a complete in vitro and in vivo characterization, of yeast and lactic acid bacteria acquired from traditional homemade kefir in order to assess their potentiality as probiotic candidates. In particular, the isolates Pichia kudriavzevii Y1, Lactococcus lactis subsp. hordniae LAB1 and Lactococcus lactis subsp. lactis LAB2 were subjected to in vitro characterization to evaluate their suitability as probiotics. Resistance to acid and bile salts, auto-aggregation, co-aggregation, hydrophobicity, and biofilm production capability were examined, as well as their antioxidant activity. A safety assessment was also conducted to confirm the non-pathogenic nature of the isolates, with hemolysis assay and antibiotic resistance assessment. Moreover, mortality in the invertebrate model Galleria mellonella was evaluated. Current findings showed that P. kudriavzevii exhibited estimable probiotic properties, placing them as promising candidates for functional foods. Both lactic acid bacteria isolated in this work could be classified as potential probiotics with advantageous traits, including antimicrobial activity against enteric pathogens and good adhesion ability on intestinal cells. This study revealed that homemade kefir could be a beneficial origin of different probiotic microorganisms that may enhance health and wellness.
Collapse
Affiliation(s)
- Angela Maione
- Department of Biology, University of Naples "Federico II", 80126 Naples, Italy
| | - Marianna Imparato
- Department of Biology, University of Naples "Federico II", 80126 Naples, Italy
| | - Annalisa Buonanno
- Department of Biology, University of Naples "Federico II", 80126 Naples, Italy
| | | | - Federica Carraturo
- Department of Biology, University of Naples "Federico II", 80126 Naples, Italy
| | | | - Marco Guida
- Department of Biology, University of Naples "Federico II", 80126 Naples, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| | - Emilia Galdiero
- Department of Biology, University of Naples "Federico II", 80126 Naples, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
4
|
Wang B, Rutherfurd-Markwick K, Liu N, Zhang XX, Mutukumira AN. Evaluation of the probiotic potential of yeast isolated from kombucha in New Zealand. Curr Res Food Sci 2024; 8:100711. [PMID: 38524400 PMCID: PMC10958227 DOI: 10.1016/j.crfs.2024.100711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/20/2024] [Accepted: 03/03/2024] [Indexed: 03/26/2024] Open
Abstract
The current study investigated the in vitro probiotic potential of yeast isolated from kombucha, a tea beverage fermented with a symbiotic culture of acetic acid bacteria and yeast. A total of 62 yeast strains were previously isolated from four different commercial kombucha samples sold in New Zealand. Fifteen representative isolates belonging to eight different species were evaluated for their growth under different conditions (temperature, low pH, concentrations of bile salts, and NaCl). Cell surface characteristics, functional and enzymatic activities of the selected strains were also studied in triplicate experiments. Results showed that six strains (Dekkera bruxellensis LBY1, Sachizosaccharomyces pombe LBY5, Hanseniaspora valbyensis DOY1, Brettanomyces anomalus DOY8, Pichia kudraivzevii GBY1, and Saccharomyces cerevisiae GBY2) were able to grow under low-acid conditions (at pH 2 and pH 3) and in the presence of bile salts. This suggests their potential to survive passage through the human gut. All 15 strains exhibited negative enzymatic activity reactions (haemolytic, gelatinase, phospholipase, and protease activities), and thus, they can be considered safe to consume. Notably, two of the fifteen strains (Pichia kudraivzevii GBY1 and Saccharomyces cerevisiae GBY2) exhibited desirable cell surface hydrophobicity (64.60-83.87%), auto-aggregation (>98%), co-aggregation, resistance to eight tested antibiotics (ampicillin, chloramphenicol, colistin sulphate, kanamycin, nalidixic acid, nitrofurantoin, streptomycin, and tetracycline), and high levels of antioxidant activities (>90%). Together, our data reveal the probiotic activities of two yeast strains GBY1 and GBY2 and their potential application in functional food production.
Collapse
Affiliation(s)
- Boying Wang
- School of Food and Advanced Technology, Massey University, Auckland, 0745, New Zealand
| | | | - Ninghui Liu
- School of Food and Advanced Technology, Massey University, Auckland, 0745, New Zealand
| | - Xue-Xian Zhang
- School of Natural Sciences, Massey University, Auckland, 0745, New Zealand
| | - Anthony N. Mutukumira
- School of Food and Advanced Technology, Massey University, Auckland, 0745, New Zealand
| |
Collapse
|
5
|
Schiavone M, François JM, Zerbib D, Capp JP. Emerging relevance of cell wall components from non-conventional yeasts as functional ingredients for the food and feed industry. Curr Res Food Sci 2023; 7:100603. [PMID: 37840697 PMCID: PMC10568300 DOI: 10.1016/j.crfs.2023.100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023] Open
Abstract
Non-conventional yeast species, or non-Saccharomyces yeasts, are increasingly recognized for their involvement in fermented foods. Many of them exhibit probiotic characteristics that are mainly due to direct contacts with other cell types through various molecular components of their cell wall. The biochemical composition and/or the molecular structure of the cell wall components are currently considered the primary determinant of their probiotic properties. Here we first present the techniques that are used to extract and analyze the cell wall components of food industry-related non-Saccharomyces yeasts. We then review the current understanding of the cell wall composition and structure of each polysaccharide from these yeasts. Finally, the data exploring the potential beneficial role of their cell wall components, which could be a source of innovative functional ingredients, are discussed. Such research would allow the development of high value-added products and provide the food industry with novel inputs beyond the well-established S. cerevisiae.
Collapse
Affiliation(s)
- Marion Schiavone
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Lallemand SAS, Blagnac, France
| | - Jean M. François
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Toulouse White Biotechnology (TWB), UMS INRAE/INSA/CNRS, Toulouse, France
| | - Didier Zerbib
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Jean-Pascal Capp
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| |
Collapse
|
6
|
Awaad SS, Sherief MA, Mousa SM, Orabi A, Abdel-Salam AB. A comparative study on the antifungal effect of potassium sorbate, chitosan, and nano-chitosan against Rhodotorula mucilaginosa and Candida albicans in skim milk acid-coagulated (Karish) cheese. Vet World 2023; 16:1991-2001. [PMID: 37859954 PMCID: PMC10583870 DOI: 10.14202/vetworld.2023.1991-2001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/01/2023] [Indexed: 10/21/2023] Open
Abstract
Background and Aim Yeasts are common contaminants in the cheese industry, which frequently arise from raw milk, the surrounding environment, and equipment, resulting in economic losses in addition to health hazards. This study aimed to compare the antifungal effect of chitosan and nano-chitosan as natural preservatives with a commonly used chemical preservative (potassium sorbate) against Rhodotorula mucilaginosa and Candida albicans. Materials and Methods Laboratory Karish cheese was manufactured with the addition of potassium sorbate, chitosan, nano-chitosan, and their combinations at different concentrations. The survival of R. mucilaginosa and C. albicans was monitored in different treatments (CR, PR1, PR2, CR1, CR2, NR1, NR2, MR, CC, PC1, PC2, CC1, CC2, NC1, NC2, MC) during storage in a refrigerator with continuous measurement of pH. The impact of using these antifungal agents on the organoleptic parameters of Karish cheese during storage was also evaluated. Results There was a significant decrease in the count of yeasts in all treatments from the 3rd day of storage, while the mixture of 0.1% potassium sorbate (MR) and 2% chitosan (MC) improved the antifungal effect of chitosan with a lower potassium sorbate concentration and showed the best antifungal effects against both R. mucilaginosa and C. albicans. This combination reduced the yeast count from 8.92 and 9.57 log10 colony-forming unit (CFU)/g in MR and MC treatments, respectively, until it became undetectable on the 9th day of storage, which was earlier than for all other treatments. It was noted that the addition of chitosan nanoparticles (ChNPs) at either 0.25% (NR1 and NC1) or 0.5% (NR2 and NC2) during the manufacturing of Karish cheese significantly lowered the counts of R. mucilaginosa and C. albicans compared with chitosan with a higher molecular weight, but significantly lower than potassium sorbate until 6th day of storage as all treatments of chitosan nanoparticles became significantly higher than potassium sorbate treatments. After 9 days of storage, NR2 and NC2 treatments showed the most significant decreases in count (3.78 and 4.93 log10 CFU/g, respectively), indicating better stability of ChNPs. At the end of the storage period, PR2, PC2, CR2, and CC2 showed significantly high pH values among the groups of 4.8, 5.0, 4.8, and 5.1, respectively. The overall acceptability was significantly higher in treated Karish cheese samples than in the control group, especially at the end of the storage period. Conclusion Potassium sorbate, chitosan, and ChNPs are effective antifungal preservatives against R. mucilaginosa and C. albicans. In addition, the combination of chitosan with potassium sorbate showed synergistic antifungal activity. These additives also preserve the sensorial criteria longer than for cheese without preservatives.
Collapse
Affiliation(s)
- Shimaa S. Awaad
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa A. Sherief
- Inorganic Chemistry Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, Giza, Egypt
| | - Sahar M. Mousa
- Inorganic Chemistry Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, Giza, Egypt
| | - A. Orabi
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ayah B. Abdel-Salam
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
7
|
Khotimah H, Astuti RI, Rafi M, Yuliana ND. Metabolomics Study Reveals Biomarker L-Proline as Potential Stress-Protectant Compound for High-Temperature Bioethanol Fermentation by Yeast Pichia kudriavzevii 1P4. Appl Biochem Biotechnol 2023; 195:5180-5198. [PMID: 37103737 DOI: 10.1007/s12010-023-04554-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
High-temperature ethanol fermentation (> 40 °C) can be applied as effective bioprocess technology to increase ethanol production. Thermotolerant yeast Pichia kudriavzevii 1P4 showed the ability to produce ethanol at optimum 37 °C. Thus, this study evaluated the ethanol productivity of isolate 1P4 at high-temperature ethanol fermentation (42 and 45 °C) and the identification of metabolite biomarkers using untargeted metabolomics with liquid chromatography-tandem mass spectrometry (LC-MS/MS). 1P4 showed tolerance to temperature stress up to 45 °C and thus relevant for high-temperature fermentation. As measured by gas chromatography (GC), bioethanol production of 1P4 at 30, 37, 42, and 45 °C was 5.8 g/l, 7.1 g/l, 5.1 g/l, and 2.8 g/l, respectively. The classification of biomarker compounds was based on orthogonal projection analysis to latent structure discriminant analysis (OPLS-DA), resulting in L-proline being a suspected biomarker compound for isolate 1P4 tolerance against high-temperature stress. Indeed, supplementation of L-proline on fermentation medium supported the growth of 1P4 at high temperatures (> 40 °C) than without L-proline. The bioethanol production with the addition of the L-proline resulted in the highest ethanol concentration (7.15 g/l) at 42 °C. Supplementation of L-proline as a stress-protective compound increased ethanol productivity at high-temperature fermentation of 42 and 45 °C by 36.35% and 83.33%, respectively, compared without the addition of L-proline. Preliminary interpretation of these results indicates that bioprocess engineering through supplementation of stress-protective compounds L-proline increases the fermentation efficiency of isolate 1P4 at higher temperatures (42 °C and 45 °C).
Collapse
Affiliation(s)
- Husnul Khotimah
- Graduate School of Biotechnology, IPB University, Bogor, West Java, 16680, Indonesia
| | - Rika Indri Astuti
- Department of Biology, IPB University, Bogor, West Java, 16680, Indonesia.
- Biotechnology Research Center, IPB University, Bogor, West Java, Indonesia.
| | - Mohamad Rafi
- Department of Chemistry, IPB University, Bogor, West Java, 16680, Indonesia
- Advance Research Laboratory, IPB University, Bogor, West Java, 16680, Indonesia
| | - Nancy Dewi Yuliana
- Department of Food Science and Technology, IPB University, Bogor, West Java, 16680, Indonesia
| |
Collapse
|
8
|
Ganapathiwar S, Bhukya B. In vitro assessment for the probiotic potential of Pichia kudriavzevii. Bioinformation 2023; 19:441-444. [PMID: 37822822 PMCID: PMC10563575 DOI: 10.6026/97320630019441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/30/2023] [Accepted: 04/30/2023] [Indexed: 10/13/2023] Open
Abstract
It is of interest to isolate the probiotic yeast Pichia kudriavzevii based on its probiotic characteristics and enzyme production. The isolate was able to withstand high acid, bile concentration and showed a high viability. Additionally, it showed auto aggregation ability that increases with time and hydrophobicity with xylene. It was resistant to different antibiotics and showed no hemolytic activity. The isolate was also capable of producing phytase that can break down phytate. Overall, the characteristics of P. kudriavzevii suggest that it could potentially have probiotic properties, and its ability to produce phytase could also make it useful in feed and animal industries.
Collapse
Affiliation(s)
- Swaruparani Ganapathiwar
- Centre for Microbial and Fermentation Technology, Department of Microbiology, University College of Science, Osmania University, Hyderabad 500007, Telangana State, India
| | - Bhima Bhukya
- Centre for Microbial and Fermentation Technology, Department of Microbiology, University College of Science, Osmania University, Hyderabad 500007, Telangana State, India
| |
Collapse
|
9
|
Li Y, Wang C, Wang J. Diversity analysis of the yeast and fungal community structure in Kazak cheese from the Yili Pastoral Area in Xinjiang. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
10
|
Advances in the Application of the Non-Conventional Yeast Pichia kudriavzevii in Food and Biotechnology Industries. J Fungi (Basel) 2023; 9:jof9020170. [PMID: 36836285 PMCID: PMC9961021 DOI: 10.3390/jof9020170] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Pichia kudriavzevii is an emerging non-conventional yeast which has attracted increased attention for its application in food and biotechnology areas. It is widespread in various habitats and often occurs in the spontaneous fermentation process of traditional fermented foods and beverages. The contributions of P. kudriavzevii in degrading organic acid, releasing various hydrolase and flavor compounds, and displaying probiotic properties make it a promising starter culture in the food and feed industry. Moreover, its inherent characteristics, including high tolerance to extreme pH, high temperature, hyperosmotic stress and fermentation inhibitors, allow it the potential to address technical challenges in industrial applications. With the development of advanced genetic engineering tools and system biology techniques, P. kudriavzevii is becoming one of the most promising non-conventional yeasts. This paper systematically reviews the recent progress in the application of P. kudriavzevii to food fermentation, the feed industry, chemical biosynthesis, biocontrol and environmental engineering. In addition, safety issues and current challenges to its use are discussed.
Collapse
|
11
|
Assessment of Tannin Tolerant Non- Saccharomyces Yeasts Isolated from Miang for Production of Health-Targeted Beverage Using Miang Processing Byproducts. J Fungi (Basel) 2023; 9:jof9020165. [PMID: 36836280 PMCID: PMC9964396 DOI: 10.3390/jof9020165] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
This research demonstrated an excellent potential approach for utilizing Miang fermentation broth (MF-broth), a liquid residual byproduct from the Miang fermentation process as a health-targeted beverage. One hundred and twenty yeast strains isolated from Miang samples were screened for their potential to ferment MF-broth and four isolates, P2, P3, P7 and P9 were selected, based on the characteristics of low alcoholic production, probiotic properties, and tannin tolerance. Based on a D1/D2 rDNA sequence analysis, P2 and P7 were identified to be Wikerhamomyces anomalus, while P3 and P9 were Cyberlindnera rhodanensis. Based on the production of unique volatile organic compounds (VOCs), W. anomalus P2 and C. rhodanensis P3 were selected for evaluation of MF-broth fermentation via the single culture fermentation (SF) and co-fermentation (CF) in combination with Saccharomyces cerevisiae TISTR 5088. All selected yeasts showed a capability for growth with 6 to 7 log CFU/mL and the average pH value range of 3.91-4.09. The ethanol content of the fermented MF-broth ranged between 11.56 ± 0.00 and 24.91 ± 0.01 g/L after 120 h fermentation, which is categorized as a low alcoholic beverage. Acetic, citric, glucuronic, lactic, succinic, oxalic and gallic acids slightly increased from initial levels in MF-broth, whereas the bioactive compounds and antioxidant activity were retained. The fermented MF-broth showed distinct VOCs profiles between the yeast groups. High titer of isoamyl alcohol was found in all treatments fermented with S. cerevisiae TISTR 5088 and W. anomalus P2. Meanwhile, C. rhodanensis P3 fermented products showed a higher quantity of ester groups, ethyl acetate and isoamyl acetate in both SF and CF. The results of this study confirmed the high possibilities of utilizing MF-broth residual byproduct in for development of health-targeted beverages using the selected non-Saccharomyces yeast.
Collapse
|
12
|
Vergara SC, Leiva MJ, Mestre MV, Vazquez F, Nally MC, Maturano YP. Non-saccharomyces yeast probiotics: revealing relevance and potential. FEMS Yeast Res 2023; 23:foad041. [PMID: 37777839 DOI: 10.1093/femsyr/foad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/22/2023] [Accepted: 09/29/2023] [Indexed: 10/02/2023] Open
Abstract
Non-Saccharomyces yeasts are unicellular eukaryotes that play important roles in diverse ecological niches. In recent decades, their physiological and morphological properties have been reevaluated and reassessed, demonstrating the enormous potential they possess in various fields of application. Non-Saccharomyces yeasts have gained relevance as probiotics, and in vitro and in vivo assays are very promising and offer a research niche with novel applications within the functional food and nutraceutical industry. Several beneficial effects have been described, such as antimicrobial and antioxidant activities and gastrointestinal modulation and regulation functions. In addition, several positive effects of bioactive compounds or production of specific enzymes have been reported on physical, mental and neurodegenerative diseases as well as on the organoleptic properties of the final product. Other points to highlight are the multiomics as a tool to enhance characteristics of interest within the industry; as well as microencapsulation offer a wide field of study that opens the niche of food matrices as carriers of probiotics; in turn, non-Saccharomyces yeasts offer an interesting alternative as microencapsulating cells of various compounds of interest.
Collapse
Affiliation(s)
- Silvia Cristina Vergara
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - María José Leiva
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - María Victoria Mestre
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - Fabio Vazquez
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
| | - María Cristina Nally
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - Yolanda Paola Maturano
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| |
Collapse
|
13
|
Diguță CF, Mihai C, Toma RC, Cîmpeanu C, Matei F. In Vitro Assessment of Yeasts Strains with Probiotic Attributes for Aquaculture Use. Foods 2022; 12:foods12010124. [PMID: 36613340 PMCID: PMC9818403 DOI: 10.3390/foods12010124] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
This study aimed to investigate in vitro the probiotic potential of three yeasts strains (BB06, OBT05, and MT07) isolated from agro-food natural sources. Screening was performed, including several functional, technological, and safety aspects of the yeast strains, in comparison to a reference Saccharomyces boulardii, to identify the ones with suitable probiotic attributes in aquaculture. The yeast strains were identified by 5.8S rDNA-ITS region sequencing as Metschnikowia pulcherrima OBT05, Saccharomyces cerevisiae BB06, and Torulaspora delbrueckii MT07. All yeast strains were tolerant to different temperatures, sodium chloride concentrations, and wide pH ranges. S. cerevisiae BB06 showed a strong and broad antagonistic activity. Moreover, the S. cerevisiae strain exhibited a high auto-aggregation ability (92.08 ± 1.49%) and good surface hydrophobicity to hexane as a solvent (53.43%). All of the yeast strains have excellent antioxidant properties (>55%). The high survival rate in the gastrointestinal tract (GIT) can promote yeast isolates as probiotics. All yeast strains presented a resistance pattern to the antibacterial antibiotics. Non-hemolytic activity was detected. Furthermore, freeze-drying with cryoprotective agents maintained a high survival rate of yeast strains, in the range of 74.95−97.85%. According to the results obtained, the S. cerevisiae BB06 strain was found to have valuable probiotic traits.
Collapse
Affiliation(s)
- Camelia Filofteia Diguță
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
| | - Constanța Mihai
- Faculty of Land Reclamation and Environmental Engineering, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
- Correspondence:
| | - Radu Cristian Toma
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
| | - Carmen Cîmpeanu
- Faculty of Land Reclamation and Environmental Engineering, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
| | - Florentina Matei
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
| |
Collapse
|
14
|
Tchamani Piame L, Kaktcham PM, Foko Kouam EM, Fotso Techeu UD, Ngouénam RJ, Zambou Ngoufack F. Technological characterisation and probiotic traits of yeasts isolated from Sha'a, a Cameroonian maize-based traditional fermented beverage. Heliyon 2022; 8:e10850. [PMID: 36247120 PMCID: PMC9557902 DOI: 10.1016/j.heliyon.2022.e10850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/12/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
The current trend in starter selection is to combine both technological and probiotic properties to standardise and make functional artisanal fermented beverages such as Sha'a whose properties are very variable due to the lack of a known starter. The objective of this work was to study technological and probiotic properties of yeasts isolated from Sha'a sold in Bamenda, Bafoussam, Bonabérie, Dschang, Foumbot, Mbouda and Njombé (Cameroon). The isolated yeasts were studied for their ability to produce CO2 from glucose, to grow in the presence of 8% ethanol, 20% glucose and pH 3, to assimilate maltose and to produce ethanol. Then, the survival of the pre-selected isolates was assessed in simulated gastric (pH 2 and 3) and intestinal juices, followed by self-aggregation, co-aggregation, hydrophobicity, haemolysin, gelatinase, biogenic amine production, antibiotic and antifungal susceptibility, bile salt hydrolase and antiradical activity. The selected isolates were identified by sequencing the 5.8S/28S rRNA gene. From the 98 isolates obtained, 66 produced CO2 from glucose and 16 were then selected for their ability to grow in the presence of 8% ethanol, 20% glucose, pH 3 and maltose. The overall survival of isolates ranged from 4.12 ± 1.63 to 104.25 ± 0.19% (LT16) and from 0.56 ± 0.20 to 96.74 ± 1.60% (LT66) at pH 3 and pH 2 respectively. All of them have remarkable surface hydrophobicity properties. Based on principal component analysis, 5 isolates were selected as the best. However, only 3 of them, LT16 (the most promising), LT25 identified as Saccharomyces cerevisiae and LT80 as Nakaseomyces delphensis, do not produce a virulence factor. The latter can deconjugate bile salts with a maximum percentage of 60.54 ± 0.12% (LT16) and the highest inhibition of DPPH° radicals was 55.94 ± 1.14% (LT25). In summary, the yeast flora of Sha'a contains yeasts capable of fermenting and producing ethanol while producing bioactive compounds that would benefit the consumer.
Collapse
|
15
|
Sadeghi A, Ebrahimi M, Shahryari S, Kharazmi MS, Jafari SM. Food applications of probiotic yeasts; focusing on their techno-functional, postbiotic and protective capabilities. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Lata P, Kumari R, Sharma KB, Rangra S, Savitri. In vitro evaluation of probiotic potential and enzymatic profiling of Pichia kudriavzevii Y33 isolated from traditional home-made mango pickle. J Genet Eng Biotechnol 2022; 20:132. [PMID: 36083419 PMCID: PMC9463414 DOI: 10.1186/s43141-022-00416-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/03/2022] [Indexed: 11/15/2022]
Abstract
Background Fermented foods are the results of metabolic activities of various microorganisms. People have traditionally known how to culture desirable microorganisms, primarily lactic acid bacteria, yeasts, and filamentous molds, for the manufacture of edible foods. Yeast isolated from home-made mango pickle from Hamirpur, Himachal Pradesh, was assessed for probiotic properties and their enzymatic profiling. Results Four yeast isolates were isolated out of which P. kudriavzevii Y33 was selected on the basis of high acid tolerance as well as broadest antimicrobial activity. The selected isolate was observed to have high acid tolerance at pH 2 and show strong antimicrobial activity against all the pathogens examined. P. kudriavzevii Y33 can also withstand high bile concentration and showed high viability index, i.e., 95% at concentration of 2% of bile. The isolate was able to demonstrate high cholesterol assimilation in medium containing ox bile and taurocholate, at 88.58 and 86.83%, respectively. The autoaggregation ability of isolate increases with increasing the time of incubation and showed 87% of autoaggregation after 24 h of incubation. P. kudriavzevii Y33 exhibited resistance towards different antibiotics, found to be positive for exopolysaccharide production and showed no hemolytic activity. The isolate was observed to produce several enzymes such as β-galactosidase, protease, amylase, phytase, and lipase. Conclusions The results of the current study revealed that P. kudriavzevii Y33 has various beneficial qualities that suggest it could be used as probiotics. Enzymes produced by yeast isolate help in improving flavor and mineral availability in the fermented products.
Collapse
Affiliation(s)
- Prem Lata
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
| | - Reena Kumari
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
| | - Kiran Bala Sharma
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
| | - Shailja Rangra
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
| | - Savitri
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, India.
| |
Collapse
|
17
|
Selection of Yeast and Lactic Acid Bacteria Strains, Isolated from Spontaneous Raw Milk Fermentation, for the Production of a Potential Probiotic Fermented Milk. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Probiotic milk is a class of fermented milk that possesses health-promoting effects, not only due to the lactic acid bacteria (LAB) presence but potentially also to yeast activity. Hence, the aim of this work was to isolate and select yeasts from spontaneous milk fermentations to be used as inoculum, together with LAB, for manufacturing a potentially probiotic acidic low-alcohol fermented milk. Six yeast species were detected from the spontaneous milk fermentation. A screening of 13 yeast strains and 14 previously isolated LAB strains, based on the resistance to bile salts and to acidic conditions, was carried out. The best performing strains were successively tested for in vitro gastrointestinal tolerance. A strain of Kluyveromyces marxianus and a strain of Lactococcus lactis were selected for the manufacturing of two different fermented milk. The values of the main technological and microbiological parameters (pH, organic acids, ethanol, and microbial concentrations) of the experimental milk were in the range of those reported for this category of products. The evaluation of microorganism survival in fermented milk samples subjected to simulated gastrointestinal conditions highlighted a high resistance of both strains. In conclusion, the selected microbial starter culture enabled the setting up of potential probiotic fermented milk.
Collapse
|
18
|
Rahmani B, Alimadadi N, Attaran B, Nasr S. Yeasts from Iranian traditional milk kefir samples: isolation, molecular identification and their potential probiotic properties. Lett Appl Microbiol 2022; 75:1264-1274. [PMID: 35879830 DOI: 10.1111/lam.13794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022]
Abstract
Milk kefir is a fermented dairy product with numerous attributed health benefits due to the presence of a complex eukaryotic and prokaryotic microbiota. In this study, a total number of 26 yeast isolates were obtained from eight kefir samples from three different cities of Iran. The isolates belonged to Kluyveromyces marxianus, Saccharomyces cerevisiae, Pichia fermentans and P. kudriavzevii. The potential probiotic characteristics of the isolates were evaluated based on their ability to tolerate the stimulated condition of the gastrointestinal tract. In addition, hemolytic activity, adherence to different solvents, auto-aggregation, adhesion to the epithelial intestine-derived cells and antimicrobial activity of the selected isolates were evaluated. Overall, four yeast strains (three strains of S. cerevisiae and one strain of P. fermentans) showed resistance and survival ability against the gastrointestinal physiological conditions including acidic pH, presence of bile salt and digestive enzymes. They were able to grow at 37 °C and had the capacity to adhere to epithelial intestine-derived cells. These results suggest that the selected strains can be proper candidates as probiotic yeast strains for the development of novel functional foods.
Collapse
Affiliation(s)
- B Rahmani
- Department of Microbial Biotechnology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - N Alimadadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - B Attaran
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - S Nasr
- Department of Microbial Biotechnology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran.,Microorganisms Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| |
Collapse
|
19
|
Alkalbani NS, Osaili TM, Al-Nabulsi AA, Olaimat AN, Liu SQ, Shah NP, Apostolopoulos V, Ayyash MM. Assessment of Yeasts as Potential Probiotics: A Review of Gastrointestinal Tract Conditions and Investigation Methods. J Fungi (Basel) 2022; 8:jof8040365. [PMID: 35448596 PMCID: PMC9027893 DOI: 10.3390/jof8040365] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 12/22/2022] Open
Abstract
Probiotics are microorganisms (including bacteria, yeasts and moulds) that confer various health benefits to the host, when consumed in sufficient amounts. Food products containing probiotics, called functional foods, have several health-promoting and therapeutic benefits. The significant role of yeasts in producing functional foods with promoted health benefits is well documented. Hence, there is considerable interest in isolating new yeasts as potential probiotics. Survival in the gastrointestinal tract (GIT), salt tolerance and adherence to epithelial cells are preconditions to classify such microorganisms as probiotics. Clear understanding of how yeasts can overcome GIT and salt stresses and the conditions that support yeasts to grow under such conditions is paramount for identifying, characterising and selecting probiotic yeast strains. This study elaborated the adaptations and mechanisms underlying the survival of probiotic yeasts under GIT and salt stresses. This study also discussed the capability of yeasts to adhere to epithelial cells (hydrophobicity and autoaggregation) and shed light on in vitro methods used to assess the probiotic characteristics of newly isolated yeasts.
Collapse
Affiliation(s)
- Nadia S. Alkalbani
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Tareq M. Osaili
- Department Clinical Nutrition and Dietetics, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Anas A. Al-Nabulsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P. O. Box 330127, Zarqa 13133, Jordan;
| | - Shao-Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, S14 Level 5, Science Drive 2, Singapore 117542, Singapore;
| | - Nagendra P. Shah
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong 999077, China;
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia;
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Mutamed M. Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Correspondence:
| |
Collapse
|
20
|
Gürkan Özlü B, Terzi Y, Uyar E, Shatila F, Yalçın HT. Characterization and determination of the potential probiotic yeasts isolated from dairy products. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01032-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
21
|
Tamang JP, Lama S. Probiotic Properties of Yeasts in Traditional Fermented Foods and Beverages. J Appl Microbiol 2022; 132:3533-3542. [DOI: 10.1111/jam.15467] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Jyoti Prakash Tamang
- DAICENTER (DBT‐AIST International Centre for Translational and Environmental Research) and Bioinformatics Centre, Department of Microbiology, School of Life Sciences Sikkim University Gangtok Sikkim India
| | - Sonam Lama
- DAICENTER (DBT‐AIST International Centre for Translational and Environmental Research) and Bioinformatics Centre, Department of Microbiology, School of Life Sciences Sikkim University Gangtok Sikkim India
| |
Collapse
|
22
|
SOUZA HFD, CAROSIA MF, PINHEIRO C, CARVALHO MVD, OLIVEIRA CAFD, KAMIMURA ES. On probiotic yeasts in food development: Saccharomyces boulardii, a trend. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.92321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
White Brined Cheese Production by Incorporation of a Traditional Milk-Cereal Prebiotic Matrix with a Candidate Probiotic Bacterial Strain. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11136182] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aim of the present study is the evaluation of a novel potentially probiotic Lactobacillus paracasei SP5, previously isolated from dairy products, as a starter culture of white brined cheese production, either free or immobilized on a traditional food, “trahanas”, in order to provide protection to the starter culture and a prebiotic effect. All produced cheeses were compared with cheese manufactured by renin enzyme. Several parameters that affect the acceptability, quality, and shelf life of white brined cheese were investigated, including microbial populations, physicochemical characteristics, and cheese volatiles through 70 days of ripening and storage. White brined cheese production by free or immobilized L. paracasei SP5 resulted in significantly higher acidity (over 0.8 g of lactic acid/100 g of cheese at the 70th day of ripening) and significantly reduced counts (around 50%) of coliforms, yeasts, and fungi compared to cheese produced with no starter culture. The use of the freeze-dried novel starter culture, either free or immobilized, improved the aromatic profile of cheeses as was proven through a GC-MS analysis. In addition, it should be underlined that the application of the novel strain led to white brined cheese with improved overall quality and sensory characteristics. The results indicate the potential industrial use of freeze-dried L. paracasei SP5 as a starter culture for the production of good-quality functional white brined cheeses.
Collapse
|
24
|
Hsiung RT, Fang WT, LePage BA, Hsu SA, Hsu CH, Chou JY. In Vitro Properties of Potential Probiotic Indigenous Yeasts Originating from Fermented Food and Beverages in Taiwan. Probiotics Antimicrob Proteins 2021; 13:113-124. [PMID: 32472389 DOI: 10.1007/s12602-020-09661-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Probiotics are live microorganisms that may be able to help prevent and treat some illnesses. Most probiotics on the market are bacterial, primarily Lactobacillus. Yeast are an inevitable part of the microbiota of various fermented foods and beverages and have several beneficial properties that bacteria do not have. In this study, yeast strains were isolated from fermented food and beverages. Various physiological features of the candidate probiotic isolates were preliminarily investigated, including bile salt and acid tolerance, cell surface hydrophobicity, autoaggregation, antioxidant activity, and β-galactosidase activity. Several yeast strains with probiotic potential were selected. Overall, Kluyveromyces marxianus JYC2614 adapted well to the bile salt and acid tolerance test; it also had favorable autoaggregation and good cell-surface hydrophobicity. Klu. marxianus JYC2610 grew well according to the bile salt and acid tolerance test and performed well regarding cell surface hydrophobicity and β-galactosidase activity. Selected yeast species can survive in a gastrointestinal environment and should be further evaluated in vivo as probiotics in the future. Our findings should encourage further studies on the application of the strains in this study as food and feed supplements.
Collapse
Affiliation(s)
- Ruo-Ting Hsiung
- Department of Biology, National Changhua University of Education, Changhua, 500, Taiwan
| | - Wei-Ta Fang
- Graduate Institute of Environmental Education, National Taiwan Normal University, Taipei, 116, Taiwan
| | - Ben A LePage
- Pacific Gas and Electric Company, 3401 Crow Canyon Road,, San Ramon, CA, 94583, USA.,Academy of Natural Sciences, 1900 Benjamin Franklin Parkway, Philadelphia, PA, 19103, USA
| | - Shih-An Hsu
- Department of Biology, National Changhua University of Education, Changhua, 500, Taiwan
| | - Chia-Hsuan Hsu
- School of Forestry and Resource Conservation, National Taiwan University, Taipei City, 10617, Taiwan
| | - Jui-Yu Chou
- Department of Biology, National Changhua University of Education, Changhua, 500, Taiwan.
| |
Collapse
|
25
|
Ayyash MM, Abdalla AK, AlKalbani NS, Baig MA, Turner MS, Liu SQ, Shah NP. Invited review: Characterization of new probiotics from dairy and nondairy products-Insights into acid tolerance, bile metabolism and tolerance, and adhesion capability. J Dairy Sci 2021; 104:8363-8379. [PMID: 33934857 DOI: 10.3168/jds.2021-20398] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
The selection of potential probiotic strains that possess the physiological capacity of performing successfully in the gastrointestinal tract (GIT) is a critical challenge. Probiotic microorganisms must tolerate the deleterious effects of various stresses to survive passage and function in the human GIT. Adhesion to the intestinal mucosa is also an important aspect. Recently, numerous studies have been performed concerning the selection and evaluation of novel probiotic microorganisms, mainly probiotic bacteria isolated from dairy and nondairy products. Therefore, it would be crucial to critically review the assessment methods employed to select the potential probiotics. This article aims to review and discuss the recent approaches, methods used for the selection, and outcomes of the evaluation of novel probiotic strains with the main purpose of supporting future probiotic microbial assessment studies. The findings and approaches used for assessing acid tolerance, bile metabolism and tolerance, and adhesion capability are the focus of this review. In addition, probiotic bile deconjugation and bile salt hydrolysis are explored. The selection of a new probiotic strain has mainly been based on the in vitro tolerance of physiologically related stresses including low pH and bile, to ensure that the potential probiotic microorganism can survive the harsh conditions of the GIT. However, the varied experimental conditions used in these studies (different types of media, bile, pH, and incubation time) hamper the comparison of the results of these investigations. Therefore, standardization of experimental conditions for characterizing and selecting probiotics is warranted.
Collapse
Affiliation(s)
- Mutamed M Ayyash
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates.
| | - Abdelmoneim K Abdalla
- Food Science Department, College of Agriculture, South Valley University, 83523 Qena, Egypt
| | - Nadia S AlKalbani
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates
| | - Mohd Affan Baig
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates
| | - Mark S Turner
- School of Agriculture and Food Sciences, The University of Queensland (UQ), Brisbane, QLD 4072, Australia
| | - Shao-Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, S14 Level 5, Science Drive 2 117542, Singapore
| | - Nagendra P Shah
- Food and Nutritional Science, School of Biological Sciences, the University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
| |
Collapse
|
26
|
Li S, Zhang Y, Yin P, Zhang K, Liu Y, Gao Y, Li Y, Wang T, Lu S, Li B. Probiotic potential of γ-aminobutyric acid (GABA)-producing yeast and its influence on the quality of cheese. J Dairy Sci 2021; 104:6559-6576. [PMID: 33685696 DOI: 10.3168/jds.2020-19845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/22/2021] [Indexed: 01/23/2023]
Abstract
Kazakh cheese is a traditional dairy product in Xinjiang, China. To study the function and potential probiotic characteristics of yeast in Kazakh cheese and its contribution to cheese fermentation, we screened the γ-aminobutyric acid (GABA)-producing yeasts Pichia kudriavzevii 1-21, Kluyveromyces marxianus B13-5, Saccharomyces cerevisiae DL6-20, and Kluyveromyces lactis DY1-10. We investigated the potential probiotic properties of these strains and their use in cheese fermentation (cheeses designated CSP, CSM, CSS, and CSI, respectively); a control with no added yeast was designated CS. The results showed that the 4 yeast strains all showed high self-polymerization (2- and 24-h autoaggregation capacity of >80 and 90%, respectively), hydrophobicity (40-92% variation, low hydrophobicity in xylene, but within the range of probiotics), and the ability to survive the gastrointestinal tract (survival rate >75% after simulation), indicating the probiotic ability of the strains in vitro. The GABA production capacity of the CSM cheese increased (to 95.6 mg/100 g), but its protein content did not change significantly, and amino acid degradation was obvious. The GABA production capacity of the CSS cheese decreased (to 450 mg/kg); its protein content declined, and its amino acid content increased. Except for water and protein, we found no obvious differences in most physical and chemical indicators. Kluyveromyces marxianus B13-5 helped to form the desired texture. Multivariate statistical analysis showed that fermentation of the cheese with the 4 yeasts improved the production of esters and alcohols. The CSS cheese had good aroma production performance, because S. cerevisiae DL6-20 produced high concentrations of isoamyl alcohol, hexanoic acid ethyl ester, benzyl alcohol, octanoic acid ethyl ester, 3-hydroxy-2-butanone, and hexanoic acid; the content of 2-methyl-propanoic acid was low. Compared with the CSP cheese, the CSI and CSM cheeses had a fruitier aroma and a milder odor, but the CSI and CSM cheeses had high concentrations of ethyl acetate, butanoic acid, ethyl ester, 3-methyl-1-butanol-acetate, ethyl hexanoate, ethyl octanoate, acetic acid 2-phenylethyl ester, and ethyl lactate; concentrations of 3-methyl-butanoic acid, propanoic acid, acetic acid, and butanoic acid were low. The CSP cheese had stronger acid-producing ability. The order of fragrance production performance was CSS > CSI, CSM > CSP > CS. Research into the fermentation mechanisms of GABA-producing yeast in cheese will provide a theoretical basis for the quality control and industrial production of Kazakh cheese.
Collapse
Affiliation(s)
- Shan Li
- School of Food Science and Technology and Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of the Ministry of Education, Shihezi University, Shihezi, Xinjiang 832000, P. R. China
| | - Yan Zhang
- School of Food Science and Technology and Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of the Ministry of Education, Shihezi University, Shihezi, Xinjiang 832000, P. R. China
| | - Pingping Yin
- School of Food Science and Technology and Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of the Ministry of Education, Shihezi University, Shihezi, Xinjiang 832000, P. R. China
| | - Kaili Zhang
- School of Food Science and Technology and Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of the Ministry of Education, Shihezi University, Shihezi, Xinjiang 832000, P. R. China
| | - Yue Liu
- School of Food Science and Technology and Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of the Ministry of Education, Shihezi University, Shihezi, Xinjiang 832000, P. R. China
| | - Yunyun Gao
- School of Food Science and Technology and Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of the Ministry of Education, Shihezi University, Shihezi, Xinjiang 832000, P. R. China
| | - Yandie Li
- School of Food Science and Technology and Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of the Ministry of Education, Shihezi University, Shihezi, Xinjiang 832000, P. R. China
| | - Tong Wang
- School of Food Science and Technology and Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of the Ministry of Education, Shihezi University, Shihezi, Xinjiang 832000, P. R. China
| | - Shiling Lu
- School of Food Science and Technology and Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of the Ministry of Education, Shihezi University, Shihezi, Xinjiang 832000, P. R. China
| | - Baokun Li
- School of Food Science and Technology and Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of the Ministry of Education, Shihezi University, Shihezi, Xinjiang 832000, P. R. China.
| |
Collapse
|
27
|
Souza PVD, Grecellé CBZ, Barreto F, Ramírez-Castrillon M, Valente P, Costa MD. Bacteria and yeasts associated to Colonial cheese production chain and assessment of their hydrolytic potential. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2021. [DOI: 10.1590/1981-6723.28620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract Different types of microorganisms are important in cheese-making because of the contributions their metabolism offers during the process. Few microorganisms present in Colonial cheese are known, in addition to the ones that are introduced to kick-start the processes or the ones that are associated with infections or poisonings. This study aimed to identify, by MALDI-TOF and/or DNA sequencing, the bacteria and yeasts isolated from samples collected in the main stages of Colonial cheese production, i.e., a type of cheese produced in the southern region of Brazil. The lytic capacity of these microorganisms at 5 °C and 30 °C was also evaluated. The 58 bacterial strains were distributed in 10 species among the genera Bacillus, Citrobacter, Klebsiella, Lactococcus, Paenibacillus, Staphylococcus and Raoutella. From the 13 yeasts strains analyzed, three species were identified as following: Candida pararugosa; Meyerozyma guilliermondii; and Rhodotorula mucilaginosa. In three yeasts isolates it was possible to identify only the genus Candida sp. and Trichosporon sp. The species L. lactis (48%) and M. guilliermondii (46%) were, respectively, the predominant bacteria and yeasts species isolated. The highest microbial lytic activity observed was at 30 °C. Lipase activity on isolates was proportionally more observed with yeasts and proteolytic activity with bacteria. Lower caseinase and lipase activity was observed at 5 °C, demonstrating the importance of refrigeration in controlling microbial activity. This research highlighted the cultivation of some microorganisms that are part of the Colonial cheese microbiota as well as that several of them can hydrolyze various compounds present in milk and that could be associated with its maturation or, in uncontrolled circumstances, could be the cause of product deterioration.
Collapse
|
28
|
Chourasia R, Abedin MM, Chiring Phukon L, Sahoo D, Singh SP, Rai AK. Biotechnological approaches for the production of designer cheese with improved functionality. Compr Rev Food Sci Food Saf 2020; 20:960-979. [PMID: 33325160 DOI: 10.1111/1541-4337.12680] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/27/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022]
Abstract
Cheese is a product of ancient biotechnological practices, which has been revolutionized as a functional food product in many parts of the world. Bioactive compounds, such as peptides, polysaccharides, and fatty acids, have been identified in traditional cheese products, which demonstrate functional properties such as antihypertensive, antioxidant, immunomodulation, antidiabetic, and anticancer activities. Besides, cheese-making probiotic lactic acid bacteria (LAB) exert a positive impact on gut health, aiding in digestion, and improved nutrient absorption. Advancement in biotechnological research revealed the potential of metabolite production with prebiotics and bioactive functions in several strains of LAB, yeast, and filamentous fungi. The application of specific biocatalyst producing microbial strains enhances nutraceutical value, resulting in designer cheese products with multifarious health beneficial effects. This review summarizes the biotechnological approaches applied in designing cheese products with improved functional properties.
Collapse
Affiliation(s)
- Rounak Chourasia
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Md Minhajul Abedin
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Loreni Chiring Phukon
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Dinabandhu Sahoo
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India.,Department of Botany, University of Delhi, New Delhi, India
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing, SAS Nagar, Mohali, India
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| |
Collapse
|
29
|
Andrade RP, Oliveira DR, Lopes ACA, de Abreu LR, Duarte WF. Survival of Kluyveromyces lactis and Torulaspora delbrueckii to simulated gastrointestinal conditions and their use as single and mixed inoculum for cheese production. Food Res Int 2019; 125:108620. [PMID: 31554038 DOI: 10.1016/j.foodres.2019.108620] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 12/31/2022]
Abstract
The demand for new probiotic products has shown recent increases alongside a growing interest in studying starter cultures of cheeses. This study thus aims to evaluate the ability to survive under simulated gastrointestinal conditions and impact of Torulaspora delbrueckii B14 and Kluyveromyces lactis B10 as single and mixed inocula for cheese production. These two yeast strains were subjected to simulated gastrointestinal tracts and tested for self-aggregation, hydrophobicity, pathogen inhibition, antibiotic resistance, and β-galactosidase production. The yeast strains were also assessed for their ability to survive in different NaCl concentrations (2.5%, 5%, and 10% w/v), multiple temperatures (4 °C and 40 °C), and used as single and mixed starter cultures for cheese production. Yeasts population levels were monitored by YPD plating and MALDI-TOF and metabolites were analyzed by HPLC and GC-MS over the course of the 21 days cheese maturation process. T. delbrueckii B14 and K. lactis B10 both showed >80% viability after the passage through the simulated gastrointestinal tract, had self-aggregation rates >90%, and displayed β-galactosidase activities of 0.35 U/g and 0.53 U/g, respectively. Both yeasts survived at 2.5%, 5%, and 10% NaCl for 21 days and showed growth at 4 °C. In cheese, the single inoculum of K. lactis B10 and mixed inoculum showed the highest levels of lactose consumption. HS-SPME GC-MS analysis of cheese samples allowed the identification of 38 volatile compounds. The highest concentrations of most of these compounds were observed after 21 days of maturation for the cheese produced with mixed inoculum. The most abundant acids detected were hexanoic and decanoic acid; the most abundant alcohols were 2,3-butanediol, 2-phenylethanol and isoamyl alcohol, and the most prevalent ester compounds were isoamyl acetate and phenethyl acetate. Our results therefore show that T. delbrueckii B14 and K. lactis B10 are interesting yeasts for further studies in the context of probiotics and positively impact the composition of desirable volatile compounds in cheeses, particularly when used as mixed inoculum.
Collapse
|