1
|
Decsi K, Ahmed M, Abdul-Hamid D, Tóth Z. The Role of Salicylic Acid in Activating Plant Stress Responses-Results of the Past Decade and Future Perspectives. Int J Mol Sci 2025; 26:4447. [PMID: 40362684 PMCID: PMC12072644 DOI: 10.3390/ijms26094447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/23/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025] Open
Abstract
Salicylic acid (SA) is one of the most commonly used natural plant protection compounds, considered one of the most effective in mitigating the damage caused by abiotic and biotic stressors. The current review article summarizes the most significant achievements in stress management over the past ten years. We also provide insights into new perspectives on the use of salicylic acid. The article summarizes the role of SA in signaling, its effects on biotic, abiotic and oxidative stress, evaluates the possibilities of its use in combination with other active compounds, and presents the promising application opportunities offered by new techniques that may become available in the coming decades.
Collapse
Affiliation(s)
- Kincső Decsi
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary;
| | - Mostafa Ahmed
- Festetics Doctoral School, Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary
- Department of Agricultural Biochemistry, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Donia Abdul-Hamid
- Heavy Metals Department, Central Laboratory for the Analysis of Pesticides and Heavy Metals in Food (QCAP), Dokki, Cairo 12311, Egypt;
| | - Zoltán Tóth
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary;
| |
Collapse
|
2
|
Ramírez
Hernandez MC, Nogueira Bandeira J, Rosero Alpala DA, Pacheco Batista L, Silvestre Araújo MA, das Chagas PSF, Valadao Silva D, Costa de Morais ER. Aquatic Macrophytes in the Remediation of Atrazine in Water: A Study on Herbicide Tolerance and Degradation Using Eichhornia crassipes, Pistia stratiotes, and Salvinia minima. ACS OMEGA 2025; 10:11264-11273. [PMID: 40160780 PMCID: PMC11948152 DOI: 10.1021/acsomega.4c10903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 04/02/2025]
Abstract
Aquatic macrophytes can be used for herbicide remediation provided they exhibit tolerance to the contaminants. This research assessed the remediation potential of Salvinia minima, Echhornia crassipes, and Pistia stratiotes, some common aquatic macrophytes native to Brazil, and their tolerance to atrazine, an herbicide commonly detected in waterbodies. Plants were cultivated under controlled conditions with five atrazine concentrations (0, 2, 20, 200, and 1000 μg L-1) for 15 days. S. minima and E. crassipes tolerated atrazine concentrations equal to or less than 20 μg L-1 and died at 200 and 1000 μg L-1, indicating the herbicide's potential toxicity and its selectivity against sensitive species. P. stratiotes tolerated the herbicide concentration up to 200 μg L-1 and had its growth reduced at 1000 μg L-1. All species demonstrated the ability to reduce atrazine concentrations in water at 20 μg L-1 or lower, E. crassipes being the most efficient, reducing concentrations by 43% and 22% at 2 and 20 μg L-1, respectively. Atrazine levels within Brazilian (2 μg L-1 by CONAMA 2005) and European (0.1 μg L-1 by Directive 2013/33) regulatory limits do not selectively affect these species. Thus, they show potential for use in arazine phytoremediation programs.
Collapse
Affiliation(s)
- María Carolina Ramírez
Hernandez
- Department
of Agronomic and Forest Sciences, Federal
University of the Semiarid-UFERSA, AV. Francisco Mota, 572 - Pres. Costa E Silva, RN, Mossoró, 59625-900 Rio Grande do Norte, Brazil
| | - Jesley Nogueira Bandeira
- Department
of Agronomic and Forest Sciences, Federal
University of the Semiarid-UFERSA, AV. Francisco Mota, 572 - Pres. Costa E Silva, RN, Mossoró, 59625-900 Rio Grande do Norte, Brazil
| | - Deisy Alexandra Rosero Alpala
- Department
of Agronomic and Forest Sciences, Federal
University of the Semiarid-UFERSA, AV. Francisco Mota, 572 - Pres. Costa E Silva, RN, Mossoró, 59625-900 Rio Grande do Norte, Brazil
| | - Lucrecia Pacheco Batista
- Department
of Agronomic and Forest Sciences, Federal
University of the Semiarid-UFERSA, AV. Francisco Mota, 572 - Pres. Costa E Silva, RN, Mossoró, 59625-900 Rio Grande do Norte, Brazil
| | - Mayara Alana Silvestre Araújo
- Department
of Agronomic and Forest Sciences, Federal
University of the Semiarid-UFERSA, AV. Francisco Mota, 572 - Pres. Costa E Silva, RN, Mossoró, 59625-900 Rio Grande do Norte, Brazil
| | - Paulo Sergio Fernandes das Chagas
- Department
of Agronomic and Forest Sciences, Federal
University of the Semiarid-UFERSA, AV. Francisco Mota, 572 - Pres. Costa E Silva, RN, Mossoró, 59625-900 Rio Grande do Norte, Brazil
| | - Daniel Valadao Silva
- Department
of Agronomic and Forest Sciences, Federal
University of the Semiarid-UFERSA, AV. Francisco Mota, 572 - Pres. Costa E Silva, RN, Mossoró, 59625-900 Rio Grande do Norte, Brazil
| | - Elis Regina Costa de Morais
- Engineering
Center, Federal University of the Semiarid-UFERSA, AV. Francisco Mota, 572 - Pres.
Costa E Silva, RN, Mossoró, 59625-900 Rio Grande do Norte, Brazil
| |
Collapse
|
3
|
Chu H, Gouda M, He Y, Li X, Li Y, Zhao Y, Zhang X, Liu Y. Developing fluorescence hyperspectral imaging methods for non-invasive detection of herbicide safeners action mechanism and effectiveness. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 218:109309. [PMID: 39577163 DOI: 10.1016/j.plaphy.2024.109309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/07/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
Herbicide safeners are considered key agents for plant protection that reduce the harmful impacts of herbicides on crops and the environment in general, but traditional evaluation methods for their effectiveness are time-consuming and labor-intensive. In this study, a rapid and non-destructive method was proposed using chlorophyll fluorescence and hyperspectral imaging that combined with machine learning models. Besides, chemometric analysis was utilized to reveal the action mechanism between the wheat crop (Triticum aestivum L.) understudy and the herbicide isoproturon (ISO) and safener gibberellin acid (GA3). The results showed that ISO caused oxidative stress and disrupted the photosynthesis mechanism in wheat by hindering the electron transport pathway from primary acceptor quinone to secondary acceptor. Meanwhile, GA3 stimulated wheat to synthesize more glutathione (GSH) that accelerated the herbicide action metabolism. It's worth noting that excessive GA3 has decreased significantly the GSH and photosynthetic pigment concentrations, while the malondialdehyde concentration was significantly (p < 0.05) increased. Additionally, competitive adaptive reweighted sampling proved the best performance when combined with partial least squares regression for predicting the phytochemical concentrations that characterized the effectiveness of GA3. In conclusion, the novelty of the current study came from the accurate real-time tracking method for GA3 action mechanism and its effectiveness on ISO toxicity. Where, that model holds great value for reducing the traditional methods' limitations in safener developments.
Collapse
Affiliation(s)
- Hangjian Chu
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Mostafa Gouda
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Department of Nutrition & Food Science, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yu Li
- Zhejiang Society for Agricultural Machinery, Hangzhou, 310003, China
| | - Yiying Zhao
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaobin Zhang
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Yufei Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Viswam AKS, Johnson S, Koyyappurath S, Mujeeb A. Non-invasive laser bio-speckle technique for the study of optical irradiation on plant leaf lamina: Application to monitor salicylic acid modulated response in Zamioculcas zamiifolia. Biochem Biophys Res Commun 2024; 739:150955. [PMID: 39531909 DOI: 10.1016/j.bbrc.2024.150955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/17/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The intensity of light is one of the major factors influencing the rate of plant physiological activity. For optimization of the agricultural lighting necessary for plant growth, it is vital to understand the plant behavioral response under different light intensities. In the present study, the dynamic activity due to the physiological phenomena in the leaf of a plant when exposed to optical radiation from artificial LED sources is quantified non-destructively. The laser bio-speckle algorithm of obtaining Inertia Moment (IM) values from the Time History of Speckle Patterns (THSP) is utilized as a quantitative measure of the plant leaf dynamic activity. The plant leaf laminas were probed using the laser and the IM values were generated. The dynamic activity variations with the increase in optical intensity were studied on the leaves of Philodendron erubescens, Syngonium podophyllum, Piper nigrum, Plectranthus amboinicus and Epipremnum aureum. The obtained results reveal a unique pattern for each plant leaf and displayed consistent repeatability under fixed experimental conditions. The method was extended to monitor dynamic activity variation with optical irradiation intensity in Zamioculas zamiifolia leaves before and after treatment with salicylic acid, a measure to induce hormonal cross-talks. The obtained results were validated using biochemical estimation techniques and can be useful insights for the development of a non-invasive sensor for analyzing the plant's physiological activity under various light intensity conditions. The present study is the first of its kind to elucidate the viability of conducting a non-invasive analysis of abiotic stress effects on a sample and control plant using laser speckle technique.
Collapse
Affiliation(s)
- A K Sooraj Viswam
- International School of Photonics, Cochin University of Science and Technology, Kochi, Kerala, India.
| | - Sinoy Johnson
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Sayuj Koyyappurath
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala, India
| | - A Mujeeb
- International School of Photonics, Cochin University of Science and Technology, Kochi, Kerala, India; Digital University Kerala, India
| |
Collapse
|
5
|
Coêlho EDS, Ribeiro JEDS, Lopes WDAR, de Oliveira AKS, Oliveira PHDA, dos Santos GL, Barbosa EDS, Silva VNSE, Lins HA, Benedito CP, da Silveira LM, de Araujo Filho AC, Silva DV, Barros Júnior AP. Time of Application of Desiccant Herbicides Affects Photosynthetic Pigments, Physiological Indicators, and the Quality of Cowpea Seeds. J Xenobiot 2024; 14:1312-1331. [PMID: 39311153 PMCID: PMC11417823 DOI: 10.3390/jox14030074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024] Open
Abstract
Chemical desiccation is widely used in agriculture to anticipate harvest and mitigate the effects of adverse environmental conditions. It is applied to both grains and seeds. Although this practice is widely used, there are still significant gaps in understanding the effects of different herbicide application times on seed quality and plant physiological responses. The objective of this study was to evaluate the effects of different herbicide application times on cowpea, focusing on seed quality, physiological responses, and biochemical composition, including chlorophylls, carotenoids, sugars, and proline, under nocturnal desiccation. In the first experiment, eight herbicides and two mixtures were applied at night: diquat, flumioxazin, diquat + flumioxazin, glufosinate ammonium, saflufenacil, carfentrazone, diquat + carfentrazone, atrazine, and glyphosate. All of the tested herbicides caused a reduction in normal seedling formation, with the diquat + carfentrazone combination resulting in 100% abnormal seedlings. A significant decrease in chlorophyll levels (chlorophyll a: 63.5%, chlorophyll b: 50.2%) was observed using diquat, which indicates damage to photosynthetic processes, while the carotenoid content increased. Total soluble sugars and proline were also negatively impacted, reflecting physiological stress and metabolic changes in seedlings. In the second experiment, three application times were tested with diquat, diquat + flumioxazin, and diquat + carfentrazone. Nocturnal application showed the most significant reduction in chlorophyll levels and increased carotenoid levels. Application at noon and late afternoon also significantly changed the soluble sugar and proline levels. These results indicate that the herbicide application time directly influences the seeds' physiological quality.
Collapse
Affiliation(s)
- Ester dos Santos Coêlho
- Agricultural Sciences Center, Federal Rural University of the Semi-Arid Region, Mossoró 59625-900, Brazil; (E.d.S.C.); (W.d.A.R.L.); (A.K.S.d.O.); (P.H.d.A.O.); (G.L.d.S.); (V.N.S.e.S.); (H.A.L.); (C.P.B.); (L.M.d.S.); (A.C.d.A.F.); (D.V.S.); (A.P.B.J.)
| | - João Everthon da Silva Ribeiro
- Agricultural Sciences Center, Federal Rural University of the Semi-Arid Region, Mossoró 59625-900, Brazil; (E.d.S.C.); (W.d.A.R.L.); (A.K.S.d.O.); (P.H.d.A.O.); (G.L.d.S.); (V.N.S.e.S.); (H.A.L.); (C.P.B.); (L.M.d.S.); (A.C.d.A.F.); (D.V.S.); (A.P.B.J.)
| | - Welder de Araújo Rangel Lopes
- Agricultural Sciences Center, Federal Rural University of the Semi-Arid Region, Mossoró 59625-900, Brazil; (E.d.S.C.); (W.d.A.R.L.); (A.K.S.d.O.); (P.H.d.A.O.); (G.L.d.S.); (V.N.S.e.S.); (H.A.L.); (C.P.B.); (L.M.d.S.); (A.C.d.A.F.); (D.V.S.); (A.P.B.J.)
| | - Anna Kézia Soares de Oliveira
- Agricultural Sciences Center, Federal Rural University of the Semi-Arid Region, Mossoró 59625-900, Brazil; (E.d.S.C.); (W.d.A.R.L.); (A.K.S.d.O.); (P.H.d.A.O.); (G.L.d.S.); (V.N.S.e.S.); (H.A.L.); (C.P.B.); (L.M.d.S.); (A.C.d.A.F.); (D.V.S.); (A.P.B.J.)
| | - Pablo Henrique de Almeida Oliveira
- Agricultural Sciences Center, Federal Rural University of the Semi-Arid Region, Mossoró 59625-900, Brazil; (E.d.S.C.); (W.d.A.R.L.); (A.K.S.d.O.); (P.H.d.A.O.); (G.L.d.S.); (V.N.S.e.S.); (H.A.L.); (C.P.B.); (L.M.d.S.); (A.C.d.A.F.); (D.V.S.); (A.P.B.J.)
| | - Gisele Lopes dos Santos
- Agricultural Sciences Center, Federal Rural University of the Semi-Arid Region, Mossoró 59625-900, Brazil; (E.d.S.C.); (W.d.A.R.L.); (A.K.S.d.O.); (P.H.d.A.O.); (G.L.d.S.); (V.N.S.e.S.); (H.A.L.); (C.P.B.); (L.M.d.S.); (A.C.d.A.F.); (D.V.S.); (A.P.B.J.)
| | | | - Valécia Nogueira Santos e Silva
- Agricultural Sciences Center, Federal Rural University of the Semi-Arid Region, Mossoró 59625-900, Brazil; (E.d.S.C.); (W.d.A.R.L.); (A.K.S.d.O.); (P.H.d.A.O.); (G.L.d.S.); (V.N.S.e.S.); (H.A.L.); (C.P.B.); (L.M.d.S.); (A.C.d.A.F.); (D.V.S.); (A.P.B.J.)
| | - Hamurábi Anizio Lins
- Agricultural Sciences Center, Federal Rural University of the Semi-Arid Region, Mossoró 59625-900, Brazil; (E.d.S.C.); (W.d.A.R.L.); (A.K.S.d.O.); (P.H.d.A.O.); (G.L.d.S.); (V.N.S.e.S.); (H.A.L.); (C.P.B.); (L.M.d.S.); (A.C.d.A.F.); (D.V.S.); (A.P.B.J.)
| | - Clarisse Pereira Benedito
- Agricultural Sciences Center, Federal Rural University of the Semi-Arid Region, Mossoró 59625-900, Brazil; (E.d.S.C.); (W.d.A.R.L.); (A.K.S.d.O.); (P.H.d.A.O.); (G.L.d.S.); (V.N.S.e.S.); (H.A.L.); (C.P.B.); (L.M.d.S.); (A.C.d.A.F.); (D.V.S.); (A.P.B.J.)
| | - Lindomar Maria da Silveira
- Agricultural Sciences Center, Federal Rural University of the Semi-Arid Region, Mossoró 59625-900, Brazil; (E.d.S.C.); (W.d.A.R.L.); (A.K.S.d.O.); (P.H.d.A.O.); (G.L.d.S.); (V.N.S.e.S.); (H.A.L.); (C.P.B.); (L.M.d.S.); (A.C.d.A.F.); (D.V.S.); (A.P.B.J.)
| | - Antonio Cesar de Araujo Filho
- Agricultural Sciences Center, Federal Rural University of the Semi-Arid Region, Mossoró 59625-900, Brazil; (E.d.S.C.); (W.d.A.R.L.); (A.K.S.d.O.); (P.H.d.A.O.); (G.L.d.S.); (V.N.S.e.S.); (H.A.L.); (C.P.B.); (L.M.d.S.); (A.C.d.A.F.); (D.V.S.); (A.P.B.J.)
| | - Daniel Valadão Silva
- Agricultural Sciences Center, Federal Rural University of the Semi-Arid Region, Mossoró 59625-900, Brazil; (E.d.S.C.); (W.d.A.R.L.); (A.K.S.d.O.); (P.H.d.A.O.); (G.L.d.S.); (V.N.S.e.S.); (H.A.L.); (C.P.B.); (L.M.d.S.); (A.C.d.A.F.); (D.V.S.); (A.P.B.J.)
| | - Aurélio Paes Barros Júnior
- Agricultural Sciences Center, Federal Rural University of the Semi-Arid Region, Mossoró 59625-900, Brazil; (E.d.S.C.); (W.d.A.R.L.); (A.K.S.d.O.); (P.H.d.A.O.); (G.L.d.S.); (V.N.S.e.S.); (H.A.L.); (C.P.B.); (L.M.d.S.); (A.C.d.A.F.); (D.V.S.); (A.P.B.J.)
| |
Collapse
|
6
|
Hammami H, Eslami SV. Physiological and growth responses of milk thistle (Silybum marianum (L.) Gaertn.) to soil-applied herbicides. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121420. [PMID: 38897086 DOI: 10.1016/j.jenvman.2024.121420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/27/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
Milk thistle (Silybum marianum (L.) Gaertn.) is cultivated globally as a valuable medicinal plant. The presence of weeds poses numerous challenges to milk thistle production, making weed management the primary concern in milk thistle fields. Chemical weed management is an economical and promising approach to controlling weeds in cropping systems. Therefore, to investigate the tolerance of milk thistle to soil-applied herbicides, in the spring of 2022, we conducted a pot experiment as a completely randomized factorial design with four replications at the research greenhouse of the University of Birjand, Iran. The applied herbicides included metribuzin, pendimethalin, trifluralin, and ethalfluralin at six doses (0, 50, 75, 100, 125, and 150% of the recommended dose (ai ha-1)). Herbicide treatments had adverse effects on the root and shoot growth of milk thistle. Compared to the control, ethalfluralin at 150% (-60.1%) and metribuzin at 50% (-13.3%) had the highest and lowest herbicide negative effects on root dry weight, respectively. In contrast to the control, we found that ethalfluralin at 150% (-64.4%) and metribuzin at 50% (-9.3%) of the recommended dose had the highest and lowest impacts on shoot dry weight, respectively. Furthermore, herbicide applications decreased the membrane stability index (MSI) and relative water content (RWC). Root and leaf levels of malondialdehyde (MDA), total phenol, DPPH scavenging, soluble carbohydrates, and proline increased after all herbicide treatments, compared to the control. Metribuzin and pendimethalin had fewer negative effects on milk thistle growth. Consequently, these herbicides could be considered as potential options for weed control in milk thistle fields.
Collapse
Affiliation(s)
- Hossein Hammami
- Department of Plant Production and Genetic Engineering, Faculty of Agriculture, University of Birjand, Birjand, Iran; Member of the Plant and Environmental Stresses Research Group, University of Birjand, Birjand, Iran.
| | - Seyed Vahid Eslami
- Department of Plant Production and Genetic Engineering, Faculty of Agriculture, University of Birjand, Birjand, Iran; Member of the Plant and Environmental Stresses Research Group, University of Birjand, Birjand, Iran
| |
Collapse
|
7
|
Wang P, Liu WC, Han C, Wang S, Bai MY, Song CP. Reactive oxygen species: Multidimensional regulators of plant adaptation to abiotic stress and development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:330-367. [PMID: 38116735 DOI: 10.1111/jipb.13601] [Citation(s) in RCA: 82] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Reactive oxygen species (ROS) are produced as undesirable by-products of metabolism in various cellular compartments, especially in response to unfavorable environmental conditions, throughout the life cycle of plants. Stress-induced ROS production disrupts normal cellular function and leads to oxidative damage. To cope with excessive ROS, plants are equipped with a sophisticated antioxidative defense system consisting of enzymatic and non-enzymatic components that scavenge ROS or inhibit their harmful effects on biomolecules. Nonetheless, when maintained at relatively low levels, ROS act as signaling molecules that regulate plant growth, development, and adaptation to adverse conditions. Here, we provide an overview of current approaches for detecting ROS. We also discuss recent advances in understanding ROS signaling, ROS metabolism, and the roles of ROS in plant growth and responses to various abiotic stresses.
Collapse
Affiliation(s)
- Pengtao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Situ Wang
- Faculty of Science, McGill University, Montreal, H3B1X8, Canada
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
8
|
Kumar V, Khan A, Srivastava A, Saxena G. Toxicity assessment of metribuzin and its amelioration through plant growth regulators in Vigna radiata (L.) R. Wilczek. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33307-33321. [PMID: 36478549 DOI: 10.1007/s11356-022-24534-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The present experiment was conducted to evaluate the metribuzin-induced stress response in Vigna radiata and to explore the ameliorative role of exogenous application of plant growth regulators (PGRs) against metribuzin toxicity by assessing important biochemical and yield parameters. Prior to the field experiment, dose standardization experiments were performed, and EC50 was calculated for metribuzin. On day 21, field grown V. radiata plants were treated with graded concentrations of metribuzin (0-1000 mg [Formula: see text]). Plants treated with 600 mg [Formula: see text] (EC50) and 1000 mg [Formula: see text] (highest dose) of metribuzin were co-treated individually and simultaneously with gibberellic acid-3 (GA), indole-3 acetic acid (IAA), and salicylic acid (SA). After 7 days of treatment, leaf tissues were analyzed for biochemical parameters, whereas those related to yield were recorded during harvest. The result of this study indicated that metribuzin treatment to V. radiata resulted in increase in lipid peroxidation and reduce chlorophyll and carotenoid contents as well as yield parameters. However, metribuzin-treated plants induced proline accumulation and activity of antioxidant enzymes. Exogenous application of GA, IAA, and SA significantly reduced lipid peroxidation and increased contents of photosynthetic pigments, proline, and antioxidant enzymes thereby increasing yield parameters. It was observed that during metribuzin stress, SA exhibited a better ameliorative response out of the three exogenously applied PGRs, while the combined use of all PGRs exhibited much improved ameliorative response on biochemical and yield parameters of plants.
Collapse
Affiliation(s)
- Vaibhav Kumar
- In Vitro Culture and Plant Genetics Unit, Department of Botany, University of Lucknow, Lucknow, 226007, Uttar Pradesh, India
| | - Adiba Khan
- In Vitro Culture and Plant Genetics Unit, Department of Botany, University of Lucknow, Lucknow, 226007, Uttar Pradesh, India
| | - Alka Srivastava
- In Vitro Culture and Plant Genetics Unit, Department of Botany, University of Lucknow, Lucknow, 226007, Uttar Pradesh, India
| | - Gauri Saxena
- In Vitro Culture and Plant Genetics Unit, Department of Botany, University of Lucknow, Lucknow, 226007, Uttar Pradesh, India.
| |
Collapse
|
9
|
UVB-Pretreatment-Enhanced Cadmium Absorption and Enrichment in Poplar Plants. Int J Mol Sci 2022; 24:ijms24010052. [PMID: 36613496 PMCID: PMC9820001 DOI: 10.3390/ijms24010052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The phenomenon of cross adaptation refers to the ability of plants to improve their resistance to other stress after experiencing one type of stress. However, there are limited reports on how ultraviolet radiation B (UVB) pretreatment affects the enrichment, transport, and tolerance of cadmium (Cd) in plants. Since an appropriate UVB pretreatment has been reported to change plant tolerance to stress, we hypothesized that this application could alter plant uptake and tolerance to heavy metals. In this study, a woody plant species, 84K poplar (Populus alba × Populus glandulosa), was pretreated with UVB and then subjected to Cd treatment. The RT-qPCR results indicated that the UVB-treated plants could affect the expression of Cd uptake, transport, and detoxification-related genes in plants, and that the UVB-Pretreatment induced the ability of Cd absorption in plants, which significantly enriched Cd accumulation in several plant organs, especially in the leaves and roots. The above results showed that the UVB-Pretreatment further increased the toxicity of Cd to plants in UVB-Cd group, which was shown as increased leaf malonaldehyde (MDA) and hydrogen peroxide (H2O2) content, as well as downregulated activities of antioxidant enzymes such as Superoxide Dismutase (SOD), Catalase (CAT), and Ascorbate peroxidase (APX). Therefore, poplar plants in the UVB-Cd group presented a decreased photosynthesis and leaf chlorosis. In summary, the UVB treatment improved the Cd accumulation ability of poplar plants, which could provide some guidance for the potential application of forest trees in the phytoremediation of heavy metals in the future.
Collapse
|
10
|
Physiological and biochemical responses of selected weed and crop species to the plant-based bioherbicide WeedLock. Sci Rep 2022; 12:19602. [PMID: 36379972 PMCID: PMC9666524 DOI: 10.1038/s41598-022-24144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
WeedLock is a broad-spectrum plant-based bioherbicide that is currently on the market as a ready-to-use formulation. In this study, we investigated the physiological and biochemical effects of WeedLock (672.75 L ha-1) on Ageratum conyzoides L., Eleusine indica (L.) Gaertn, Zea mays L., and Amaranthus gangeticus L. at four different time points. WeedLock caused significant reductions in chlorophyll pigment content and disrupted photosynthetic processes in all test plants. The greatest inhibition in photosynthesis was recorded in A. conyzoides at 24 h post-treatment with a 74.88% inhibition. Plants treated with WeedLock showed increased malondialdehyde (MDA) and proline production, which is indicative of phytotoxic stress. Remarkably, MDA contents of all treated plants increased by more than 100% in comparison to untreated. The activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) was elevated following treatment with WeedLock. Significant increases were observed in the SOD activity of A. conyzoides ranging from 69.66 to 118.24% from 6 to 72 h post-treatment. Our findings confirm that WeedLock disrupts the normal physiological and biochemical processes in plants following exposure and that its mode of action is associated with ROS (reactive oxygen species) production, similar to that of PPO (protoporphyrinogen oxidase) inhibitors, although specific site-of-action of this novel bioherbicide warrants further investigation.
Collapse
|
11
|
Zhou C, Cheng H, Wu Y, Zhang J, Li D, Pan C. Bensulfuron-Methyl, Terbutylazine, and 2,4-D Butylate Disturb Plant Growth and Resistance by Deteriorating Rhizosphere Environment and Plant Secondary Metabolism in Wheat Seedlings. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12796-12806. [PMID: 36135711 DOI: 10.1021/acs.jafc.2c03126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Frequent and improper use of herbicides disrupts a plant's metabolism, causing oxidative stress that degrades crop quality. However, few studies have examined the inhibitory effects of herbicides on plant growth and defense mechanisms in terms of their impact on soil quality and crop rhizosphere. Therefore, the current study investigated the detrimental impacts of six typical and multilevel herbicides on the microbial community and signal molecules in the soil as well as on the levels of hormones and secondary metabolites in wheat seedlings. Interestingly, bensulfuron-methyl, terbutylazine (TBA), and 2,4-D butylate significantly induced oxidative damage while reducing the number of phytohormones (salicylic acid and jasmonic acid) and secondary metabolites (tricin, quercetin, and caffeic acid) in the roots and leaves compared with the controls, isoproturon, fenoxaprop-p-ethyl, and pretilachlor. At twice the recommended levels (2×), they also decreased the microbial α diversity and, in particular, the abundance of Gammaproteobacteria, Alphaproteobacteria, Actinobacteria, Bacteroidia, Verrucomicrobia, Bacilli, Acidimicrobiia, Deltaproteobacteria, and Gemmatimonadetes by disrupting the level of enzymes (e.g., urease and sucrase) and metabolites (indole-3-acetic acid, salicylic acid, apigenin, 4-hydroxybenzoic acid, DIMBOA, and melatonin) in the rhizosphere soil. Overall, significant exposure to herbicides may inhibit wheat growth by disturbing the microbial composition in the rhizosphere soil and the distribution of secondary metabolites in wheat seedlings.
Collapse
Affiliation(s)
- Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, People's Republic of China
| | - Haiyan Cheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, People's Republic of China
| | - Yangliu Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, People's Republic of China
| | - Jingbang Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, People's Republic of China
| | - Dong Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, People's Republic of China
| |
Collapse
|
12
|
Shivani, Grewal SK, Gill RK, Kaur Virk H, Bhardwaj RD. Impact of post-emergent imazethapyr on morpho-physiological and biochemical responses in lentil ( Lens culinaris Medik.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1681-1693. [PMID: 36387978 PMCID: PMC9636367 DOI: 10.1007/s12298-022-01244-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Yield reduction in lentil crop due to weed infestation is a key hindrance to its growth due to poor weed-crop competition. Imazethapyr (IM), a selective herbicide, target acetolactate synthase (ALS) which catalyzes the first reaction in biosynthesis of branched chain amino acids, required for plant growth and development. The objective of the present study was to investigate the impact of IM treatment on weeds, ALS enzyme activity, antioxidant capacity, osmolyte accumulation, growth and yield related parameters in lentil genotypes. Two IM tolerant (LL1397 and LL1612) and two susceptible (FLIP2004-7L and PL07) lentil genotypes were cultivated under weed free, weedy check and IM treatments. Weed control efficiency reached its peak at 21 days after spray (DAS). Imazethapyr treatment decreased chlorophyll and carotenoid content up to 28 DAS with higher reduction in susceptible genotypes. FLIP2004-7L and PL07 had reduced plant height and lower number of pods under IM treatment which resulted in decreased seed yield. Higher ALS activity in LL1397 and LL1612 at 21 DAS, higher antioxidant capacity and glycine betaine content both at 21 and 28 DAS and lower decrease in relative leaf water content might be mediating herbicide tolerance in these genotypes that led to higher seed yield. The identified IM tolerance mechanism can be used to impart herbicide resistance in lentil. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01244-x.
Collapse
Affiliation(s)
- Shivani
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, India
| | - Satvir Kaur Grewal
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, India
| | - Ranjit Kaur Gill
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Harpreet Kaur Virk
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | | |
Collapse
|
13
|
How to Cope with the Challenges of Environmental Stresses in the Era of Global Climate Change: An Update on ROS Stave off in Plants. Int J Mol Sci 2022; 23:ijms23041995. [PMID: 35216108 PMCID: PMC8879091 DOI: 10.3390/ijms23041995] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/30/2022] [Accepted: 02/06/2022] [Indexed: 02/06/2023] Open
Abstract
With the advent of human civilization and anthropogenic activities in the shade of urbanization and global climate change, plants are exposed to a complex set of abiotic stresses. These stresses affect plants’ growth, development, and yield and cause enormous crop losses worldwide. In this alarming scenario of global climate conditions, plants respond to such stresses through a highly balanced and finely tuned interaction between signaling molecules. The abiotic stresses initiate the quick release of reactive oxygen species (ROS) as toxic by-products of altered aerobic metabolism during different stress conditions at the cellular level. ROS includes both free oxygen radicals {superoxide (O2•−) and hydroxyl (OH−)} as well as non-radicals [hydrogen peroxide (H2O2) and singlet oxygen (1O2)]. ROS can be generated and scavenged in different cell organelles and cytoplasm depending on the type of stimulus. At high concentrations, ROS cause lipid peroxidation, DNA damage, protein oxidation, and necrosis, but at low to moderate concentrations, they play a crucial role as secondary messengers in intracellular signaling cascades. Because of their concentration-dependent dual role, a huge number of molecules tightly control the level of ROS in cells. The plants have evolved antioxidants and scavenging machinery equipped with different enzymes to maintain the equilibrium between the production and detoxification of ROS generated during stress. In this present article, we have focused on current insights on generation and scavenging of ROS during abiotic stresses. Moreover, the article will act as a knowledge base for new and pivotal studies on ROS generation and scavenging.
Collapse
|
14
|
Ma YN, Ni YX, Cao ZY, Pan JY, Tuwang MC, Yang H, Chen MX, Mou RX. Chemistry-specific responses due to rice-microbe interactions in the rhizosphere to counteract mefenacet stress. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 179:104970. [PMID: 34802520 DOI: 10.1016/j.pestbp.2021.104970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
The widespread use of herbicides has raised considerable concern with regard to their harmful consequences on plant growth, crop yield and the soil ecological environment. It has been well documented that colonization of rhizobacteria in the plant root system has a positive effect on activation of plant defenses to protect the plant from damage. Using the platform of high-throughput analysis with tandem mass spectrometry and Illumina sequencing, we identified the specific activated rhizobacteria, the key growth stimulating substances and the metabolic pathways involved in seedling stage tolerance to mefenacet stress in rice. The relative abundance of beneficial rhizospheremicrobes such as Acidobacteria and Firmicutes increased with mefenacet treatment, indicating that the rhizosphere recruited some beneficial microbes to resist mefenacet stress. Mefenacet treatment induced alterations in several interlinked metabolic pathways, many of which were related to activation of defense response signaling, especially the indole-3-pyruvate pathway. Indole-3-acetaldehyde and indole-3-ethanol from this pathway may act as flexible storage pools for indole-3-acetic acid (IAA). Our findings also suggest that a significant increase of IAA produced by the enrichment of beneficial rhizospheremicrobes, for example genus Bacillus, alleviated the dwarfing phenomenon observed in hydroponic medium following mefenacet exposure, which may be a key signaling molecule primarily for phytostimulation and phytotolerance in microbe-plant interactions.
Collapse
Affiliation(s)
- You-Ning Ma
- China National Rice Research Institute, Hangzhou 310006, China
| | - Yan-Xia Ni
- China National Rice Research Institute, Hangzhou 310006, China
| | - Zhao-Yun Cao
- China National Rice Research Institute, Hangzhou 310006, China
| | - Jiu-Yue Pan
- China National Rice Research Institute, Hangzhou 310006, China
| | - Man-Cuo Tuwang
- China National Rice Research Institute, Hangzhou 310006, China
| | - Huan Yang
- China National Rice Research Institute, Hangzhou 310006, China
| | - Ming-Xue Chen
- China National Rice Research Institute, Hangzhou 310006, China
| | - Ren-Xiang Mou
- China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
15
|
Effect of New Pre-Emergence Herbicides on Quality and Yield of Potato and Its Associated Weeds. SUSTAINABILITY 2021. [DOI: 10.3390/su13179796] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Potato is an economically important vegetable crop in Egypt. Weed infestation, especially broad-leafed, during the vegetative growth stage substantially affects both crop yield and tuber quality. In the current study, the impact of new ready-mix pre-emergent herbicides on broadleaf weeds, tuber yield, and quality was evaluated. The two-year field experiment comprised the following treatments: (1) Un-weeded control, (2) Hand hoeing, (3) Sencor, (4) Ecopart, (5) Zeus, (6) Kroki, and (7) Flomex. The results showed that weed control treatments significantly reduced the weed density compared to un-weeded control and the herbicides efficacy reached over 90%. The herbicidal treatments also significantly increased the activity of antioxidant enzymes peroxidases (POX) and catalase (CAT) and improved the non-enzymatic antioxidant (carotenoids) compared to un-weeded control. Conversely, the higher content of malondialdehyde (MDA) in potato leaves was obtained for un-weeded control. Moreover, weed control treatments caused significant enhancement in plant growth parameters, yield, and its components in addition to tuber quality of potato. Compared to the un-weeded control, maximum tuber yield was observed in Flomex followed by Ecopart, Kroki, Zeus, and Sencor, respectively. The higher number of tubers and total yield were recorded in plants treated with Flomex plus compared to all the other treatments. Higher content of total soluble sugar, total soluble protein, and total starch content was observed in weed control treatments compared with un-weeded control. Based on Pearson’s correlation and heatmap analysis, the changes in agro-physiological parameters data are linked to the herbicidal treatments. The results indicate that the applied herbicides could be alternative products for Sencor and an option for controlling broadleaved weeds. However, further studies are needed to ensure their efficacy and safety under other conditions.
Collapse
|
16
|
Understanding the Integrated Pathways and Mechanisms of Transporters, Protein Kinases, and Transcription Factors in Plants under Salt Stress. Int J Genomics 2021; 2021:5578727. [PMID: 33954166 PMCID: PMC8057909 DOI: 10.1155/2021/5578727] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/06/2021] [Indexed: 12/31/2022] Open
Abstract
Abiotic stress is the major threat confronted by modern-day agriculture. Salinity is one of the major abiotic stresses that influence geographical distribution, survival, and productivity of various crops across the globe. Plants perceive salt stress cues and communicate specific signals, which lead to the initiation of defence response against it. Stress signalling involves the transporters, which are critical for water transport and ion homeostasis. Various cytoplasmic components like calcium and kinases are critical for any type of signalling within the cell which elicits molecular responses. Stress signalling instils regulatory proteins and transcription factors (TFs), which induce stress-responsive genes. In this review, we discuss the role of ion transporters, protein kinases, and TFs in plants to overcome the salt stress. Understanding stress responses by components collectively will enhance our ability in understanding the underlying mechanism, which could be utilized for crop improvement strategies for achieving food security.
Collapse
|
17
|
Tavanti TR, Melo AARD, Moreira LDK, Sanchez DEJ, Silva RDS, Silva RMD, Reis ARD. Micronutrient fertilization enhances ROS scavenging system for alleviation of abiotic stresses in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:386-396. [PMID: 33556754 DOI: 10.1016/j.plaphy.2021.01.040] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/26/2021] [Indexed: 05/06/2023]
Abstract
Reactive oxygen species (ROS) such as hydrogen peroxide at low concentrations act as signaling of several abiotic stresses. Overproduction of hydrogen peroxide causes the oxidation of plant cell lipid phosphate layer promoting senescence and cell death. To mitigate the effect of ROS, plants develop antioxidant defense mechanisms (superoxide dismutase, catalase, guaiacol peroxidase), ascorbate-glutathione cycle enzymes (ASA-GSH) (ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase), which have the function of removing and transforming ROS into non-toxic substances to maintain cellular homeostasis. Foliar or soil application of fertilizers containing B, Cu, Fe, Mn, Mo, Ni, Se and Zn at low concentrations has the ability to elicit and activate antioxidative enzymes, non-oxidizing metabolism, as well as sugar metabolism to mitigate damage by oxidative stress. Plants treated with micronutrients show higher tolerance to abiotic stress and better nutritional status. In this review, we summarized results indicating micronutrient actions in order to reduce ROS resulting the increase of photosynthetic capacity of plants for greater crop yield. This meta-analysis provides information on the mechanism of action of micronutrients in combating ROS, which can make plants more tolerant to several types of abiotic stress such as extreme temperatures, salinity, heavy metals and excess light.
Collapse
Affiliation(s)
- Tauan Rimoldi Tavanti
- São Paulo State University "Júlio de Mesquita Filho" (UNESP), 15385-000, Ilha Solteira, SP, Brazil
| | | | | | | | - Rafael Dos Santos Silva
- São Paulo State University "Júlio de Mesquita Filho" (UNESP), 15385-000, Ilha Solteira, SP, Brazil
| | - Ricardo Messias da Silva
- São Paulo State University "Júlio de Mesquita Filho" (UNESP), 15385-000, Ilha Solteira, SP, Brazil
| | - André Rodrigues Dos Reis
- São Paulo State University "Júlio de Mesquita Filho" (UNESP), Rua Domingos da Costa Lopes 780, 17602-496, Tupã, SP, Brazil.
| |
Collapse
|
18
|
Sachdev S, Ansari SA, Ansari MI, Fujita M, Hasanuzzaman M. Abiotic Stress and Reactive Oxygen Species: Generation, Signaling, and Defense Mechanisms. Antioxidants (Basel) 2021; 10:277. [PMID: 33670123 PMCID: PMC7916865 DOI: 10.3390/antiox10020277] [Citation(s) in RCA: 435] [Impact Index Per Article: 108.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
Climate change is an invisible, silent killer with calamitous effects on living organisms. As the sessile organism, plants experience a diverse array of abiotic stresses during ontogenesis. The relentless climatic changes amplify the intensity and duration of stresses, making plants dwindle to survive. Plants convert 1-2% of consumed oxygen into reactive oxygen species (ROS), in particular, singlet oxygen (1O2), superoxide radical (O2•-), hydrogen peroxide (H2O2), hydroxyl radical (•OH), etc. as a byproduct of aerobic metabolism in different cell organelles such as chloroplast, mitochondria, etc. The regulatory network comprising enzymatic and non-enzymatic antioxidant systems tends to keep the magnitude of ROS within plant cells to a non-damaging level. However, under stress conditions, the production rate of ROS increases exponentially, exceeding the potential of antioxidant scavengers instigating oxidative burst, which affects biomolecules and disturbs cellular redox homeostasis. ROS are similar to a double-edged sword; and, when present below the threshold level, mediate redox signaling pathways that actuate plant growth, development, and acclimatization against stresses. The production of ROS in plant cells displays both detrimental and beneficial effects. However, exact pathways of ROS mediated stress alleviation are yet to be fully elucidated. Therefore, the review deposits information about the status of known sites of production, signaling mechanisms/pathways, effects, and management of ROS within plant cells under stress. In addition, the role played by advancement in modern techniques such as molecular priming, systems biology, phenomics, and crop modeling in preventing oxidative stress, as well as diverting ROS into signaling pathways has been canvassed.
Collapse
Affiliation(s)
- Swati Sachdev
- Department of Environmental Science, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rae Bareli Road, Lucknow 226 025, India;
| | | | | | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| |
Collapse
|
19
|
Daniel D, de Alkimin GD, Nunes B. Single and combined effects of the drugs salicylic acid and acetazolamide: Adverse changes in physiological parameters of the freshwater macrophyte, Lemna gibba. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 79:103431. [PMID: 32479818 DOI: 10.1016/j.etap.2020.103431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Pharmaceutical drugs are among the most used chemicals, for human and veterinary medicines, aquaculture and agriculture. Pharmaceuticals are biologically active molecules, having also environmental persistence, thereby exerting biological effects on non-target species. Among the most used pharmaceuticals, one may find salicylic acid (SA), a non-steroid anti-inflammatory drugs (NSAIDs), and acetazolamide (ACZ), a diuretic drug that acts by inhibiting the activity of carbonic anhydrase (CA). In this work, single and combined effects of SA and ACZ were assessed in the aquatic macrophyte Lemna gibba L., focusing on physiological parameters, namely photosynthetic pigments, (chlorophyll a, b and total (Chl a, b and TChl) as well as carotenoids (Car)). In addition, chemical biomarkers, namely, glutathione S-transferases (GSTs), catalase (CAT) and carbonic anhydrase (CA) activities, were also determined. The highest concentrations of ACZ, caused a decrease in the contents of all chlorophylls; this effect was however reverted by SA exposure. Both ACZ and SA levels caused a decrease in CA activity. Nevertheless, when in combination, this inhibition was not observed in plants exposed to the lowest concentration of these drugs. In conclusion, both pharmaceuticals have the capacity to cause alterations in L. gibba enzymatic activity and photosynthetic pigments content. Additionally, SA seems to exert a protective effect on this species against deleterious effects caused by ACZ.
Collapse
Affiliation(s)
- David Daniel
- Departamento De Biologia, Universidade De Aveiro, Campusde Santiago, 3810-193 Aveiro, Portugal
| | - Gilberto Dias de Alkimin
- Departamento De Biologia, Universidade De Aveiro, Campusde Santiago, 3810-193 Aveiro, Portugal; Centro De Estudos Do Ambiente e Do Mar (CESAM), Universidade De Aveiro, Campus De Santiago, 3810-193 Aveiro, Portugal
| | - Bruno Nunes
- Departamento De Biologia, Universidade De Aveiro, Campusde Santiago, 3810-193 Aveiro, Portugal; Centro De Estudos Do Ambiente e Do Mar (CESAM), Universidade De Aveiro, Campus De Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
20
|
Teófilo TMDS, Mendes KF, Fernandes BCC, Oliveira FSD, Silva TS, Takeshita V, Souza MDF, Tornisielo VL, Silva DV. Phytoextraction of diuron, hexazinone, and sulfometuron-methyl from the soil by green manure species. CHEMOSPHERE 2020; 256:127059. [PMID: 32447109 DOI: 10.1016/j.chemosphere.2020.127059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
The herbicides diuron, hexazinone, and sulfometuron-methyl present a potential risk of environmental contamination and are widely used for weed control in sugarcane cultivation. Our objectives were to measure the tolerance of Canavalia ensiformes (L.) DC., Stilizobium aterrimum L., Raphanus sativus L., Crotalaria spectabilis Röth, Lupinus albus L., and Pennisetum glaucum (L.) R. Br. To the herbicides diuron, hexazinone, and sulfometuron-methyl to assess the capacity of these species to extract and accumulate the herbicides in their tissues. Before sowing the green manure species, the soils were individually contaminated with the three 14C-radiolabeled herbicides. 14C-diuron and 14C-sulfometuron-methyl showed higher values remaining in the soil (>90%) for all species of green manure compared to hexazinone (<80%). The green manure species analyzed showed greater potential to remedy soils contaminated with hexazinone than the other herbicides. C. ensiformes showed high phytoextraction of hexazinone when compared to the other species, removing 11.2% of the pollutant from the soil, followed by L. albus (8.6%), S. aterrimum (7.3%), R. sativus (4.8%), C. spectabilis (2.5%), and P. glaucum (1.1%). The results indicate that the phytoextraction of diuron, hexazinone and sulfometuron-methyl is dependent on the species of green manure and can be an important tool for the decontamination of areas polluted by these herbicides.
Collapse
Affiliation(s)
- Taliane Maria da Silva Teófilo
- Universidade Federal Rural Do Semi-Árido, Centro de Ciências Vegetais, Departamento de Ciências Agronômicas e Florestais, Av. Francisco Mota, 572, Costa e Silva, CEP 59625-900, Mossoró, RN, Brazil.
| | | | - Bruno Caio Chaves Fernandes
- Universidade Federal Rural Do Semi-Árido, Centro de Ciências Vegetais, Departamento de Ciências Agronômicas e Florestais, Av. Francisco Mota, 572, Costa e Silva, CEP 59625-900, Mossoró, RN, Brazil
| | - Fernando Sarmento de Oliveira
- Universidade Federal Rural Do Semi-Árido, Centro de Ciências Vegetais, Departamento de Ciências Agronômicas e Florestais, Av. Francisco Mota, 572, Costa e Silva, CEP 59625-900, Mossoró, RN, Brazil
| | - Tatiane Severo Silva
- Universidade Federal Rural Do Semi-Árido, Centro de Ciências Vegetais, Departamento de Ciências Agronômicas e Florestais, Av. Francisco Mota, 572, Costa e Silva, CEP 59625-900, Mossoró, RN, Brazil
| | - Vanessa Takeshita
- Centro de Energia Nuclear Na Agricultura, Piracicaba, São Paulo, Brazil
| | - Matheus de Freitas Souza
- Universidade Federal Rural Do Semi-Árido, Centro de Ciências Vegetais, Departamento de Ciências Agronômicas e Florestais, Av. Francisco Mota, 572, Costa e Silva, CEP 59625-900, Mossoró, RN, Brazil
| | | | - Daniel Valadão Silva
- Universidade Federal Rural Do Semi-Árido, Centro de Ciências Vegetais, Departamento de Ciências Agronômicas e Florestais, Av. Francisco Mota, 572, Costa e Silva, CEP 59625-900, Mossoró, RN, Brazil
| |
Collapse
|
21
|
Time-Dependent Effects of Bentazon Application on the Key Antioxidant Enzymes of Soybean and Common Ragweed. SUSTAINABILITY 2020. [DOI: 10.3390/su12093872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The presence or absence of light is one of the most significant environmental factors affecting plant growth and defence. Therefore, the selection of the most appropriate time of application may maximize the benefits of photosynthetic inhibitors. In this work, the concentration and daytime or night-time-dependent effects of bentazon were tested in soybean and common ragweed. The recommended dose (1440 g ha−1) and also half the recommended dose significantly reduced the maximum quantum yield (Fv/Fm) and increased H2O2 levels in common ragweed. Interestingly, bentazon did not change Fv/Fm in soybean. The activity of superoxide dismutase changed in a dose-dependent manner only in common ragweed. The activity of ascorbate peroxidase, catalase and glutathione S-transferase (GST), as well as the contents of ascorbate (AsA) and glutathione (GSH) did not change significantly in this plant species. In soybean, alterations in H2O2 levels were lower but GST and APX activity, as well as AsA and GSH levels were higher compared to common ragweed. At the same time, the rate of lipid peroxidation and ion leakage increased upon bentazon, and were higher in the light phase-treated leaves in the case of both plant species. These results can contribute to optimizing the effects and uses of herbicides in agriculture.
Collapse
|