1
|
Dogra R, Kumar M, Kumar A, Roverso M, Bogialli S, Pastore P, Mandal UK. Derivatization, an Applicable Asset for Conventional HPLC Systems without MS Detection in Food and Miscellaneous Analysis. Crit Rev Anal Chem 2022; 53:1807-1827. [PMID: 35201944 DOI: 10.1080/10408347.2022.2042671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
One of the most valuable practices for analyzing not-so-analytical-friendly analytes in complex, heterogenous matrices is derivatization. Availability of numerous derivatizing reagents (DRs) makes the modification of analyte more exploitable in terms of an analytical perspective. A wide array of derivatization techniques like pre or post-column, in-situ, enzymatic, ultrasound-assisted, microwave-assisted, photochemical derivatization has added much-needed methodological strength in analyzing intricate analytical matrices (food, water, and soil). In recent years, analytical chemistry has achieved greater heights through the development of new sensitive methods with simple conventional instruments like High-Performance Liquid Chromatography (HPLC) devoid of Mass detectors. The prompt availability of these straightforward instruments also makes it a favorable option for routine analysis in food, environmental, bioanalytical chemistry. Analyzing food, environmental or bioanalytical specimen has some of the most problematic aspects, like the low concentration of the analytes accompanied by not too suitable analytical properties. Even though conventional HPLC lacks the required sensitivity but merger with derivatization can lead to a remarkable increase in sensitivity. In recent years there has been a lot of application of diverse derivatizations to increase the sensitivity and selectivity of the analyte for available instruments, resulting in notable findings. Therefore, this review describes the application of derivatization principles in the analysis of analytes in food and additional matrices using conventional HPLC instruments such as HPLC-UV, HPLC-DAD, and HPLC-FD. In this article, we will briefly review the different modes and multiple types of derivatizing reagents with their mechanisms and importance for encouraging the use of established HPLC instruments.
Collapse
Affiliation(s)
- Raghav Dogra
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Mohit Kumar
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
| | - Arvind Kumar
- Maharaja Agrasen University, Baddi, Solan, Himachal Pradesh, India
| | - Marco Roverso
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Paolo Pastore
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Uttam Kumar Mandal
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
| |
Collapse
|
2
|
Da Ruos J, Baldo MA, Daniele S. Analytical Methods for the Determination of Major Drugs Used for the Treatment of COVID-19. A Review. Crit Rev Anal Chem 2022; 53:1698-1732. [PMID: 35195461 DOI: 10.1080/10408347.2022.2039094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
At the beginning of the COVID-19 outbreak (end 2019 - 2020), therapeutic treatments based on approved drugs have been the fastest approaches to combat the new coronavirus pandemic. Nowadays several vaccines are available. However, the worldwide vaccination program is going to take a long time and its success will depend on the vaccine public's acceptance. Therefore, outside of vaccination, the repurposing of existing antiviral, anti-inflammatory and other types of drugs, have been considered an alternative medical strategy for the COVI-19 infection. Due to the broad clinical potential of the drugs, but also to their possible side effects, analytical methods are needed to monitor the drug concentrations in biological fluids and pharmaceutical products. This review deals with analytical methods developed in the period 2015 - July 2021 to detect potential drugs that, according to a literature survey, have been taken into consideration for the treatment of COVID-19. The drugs considered here have been selected on the basis of the number of articles published in the period January 2020-July 2021, using the combination of the keywords: COVID-19 and drugs or SARS-CoV-2 and drugs. A section is also devoted to monoclonal antibodies. Over the period considered, the analytical methods have been employed in a variety of real samples, such as body fluids (plasma, blood and urine), pharmaceutical products, environmental matrices and food.
Collapse
Affiliation(s)
- Jessica Da Ruos
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari Venice, Mestre-Venezia, Italy
| | - M Antonietta Baldo
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari Venice, Mestre-Venezia, Italy
| | - Salvatore Daniele
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari Venice, Mestre-Venezia, Italy
| |
Collapse
|