1
|
Anne Cazier E, Brethauer S, Claude Bühler P, Hans-Peter Studer M. Steam explosion pretreatment of separated dairy cattle manure: Mass balances and effect on biomethane potential. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 193:180-189. [PMID: 39667111 DOI: 10.1016/j.wasman.2024.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 11/08/2024] [Accepted: 11/24/2024] [Indexed: 12/14/2024]
Abstract
Manure is a renewable feedstock, whose theoretical potential for biogas production is scarcely deployed due to modest methane yields that prevent economic feasible operation of anaerobic digestion plants. Steam explosion pretreatment has the potential to improve the digestibility of manure, however it is energy intensive, and the optimal conditions depend on the feedstock. In this work, the solid and the liquid fraction of separated dairy cattle manure were pretreated between 130 and 210 °C for 5 to 40 min by steam explosion to individually determine the optimal conditions for each fraction. Additionally, mass balances for volatile solids (VS), cellulose, hemicellulose and proteins were performed to better understand the effects of the pretreatment. For the manure solids, a pretreatment at 130 °C for 20 min was most effective, the biomethane potential (BMP) improved by 40 %. In contrast, the BMP of the liquid fraction could not be improved at any pretreatment condition. The mass balances showed that at more severe conditions up to 18 % of the VS were lost by decomposition and/or evaporation, with the proteins being the most thermolabile fraction. Based on the observation, that a pretreatment of the liquid phase can be omitted, a heat integrated plant concept is suggested where the necessary heat input is only as large as in conventional anaerobic digestion. Taken together, this work underlined the benefits of steam explosion pretreatment of manure and identified the prevention of VS loss as a promising avenue for further improving the process.
Collapse
Affiliation(s)
- Elisabeth Anne Cazier
- Bern University of Applied Sciences, School of Agricultural, Forest and Food Sciences, Länggasse 85 3052, Zollikofen, Switzerland
| | - Simone Brethauer
- Bern University of Applied Sciences, School of Agricultural, Forest and Food Sciences, Länggasse 85 3052, Zollikofen, Switzerland
| | - Patrice Claude Bühler
- Bern University of Applied Sciences, School of Agricultural, Forest and Food Sciences, Länggasse 85 3052, Zollikofen, Switzerland
| | - Michael Hans-Peter Studer
- Bern University of Applied Sciences, School of Agricultural, Forest and Food Sciences, Länggasse 85 3052, Zollikofen, Switzerland.
| |
Collapse
|
2
|
Jo S, Bae J, Kadam R, Lee J, Park J, Jun H. Enhanced anaerobic co-digestion of cattle manure with food waste and pig manure: Statistical optimization of pretreatment condition and substrate mixture ratio. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 183:32-41. [PMID: 38714120 DOI: 10.1016/j.wasman.2024.04.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/09/2024]
Abstract
This study investigated the optimal pretreatment condition and mixture ratio of cattle manure (CM) for its efficient anaerobic co-digestion (AcoD) with food waste (FW) and pig manure (PM). The pretreatment performances of thermal (TM), microwave (MW), and ultrasound (US) technologies and the AcoD performance were statistically and experimentally evaluated at various mixture ratios of CM, FW, and PM. The results revealed that the most effective pretreatment condition with the TM, MW, and US pretreatments was 129.3 °C for 49.6 min, 824.2 W for 7.3 min, and 418.0 W for 36.3 min, respectively. The best AcoD performance of optimally pretreated CM (PCM) was achieved when 30.5 % PCM was mixed with 42.5 % FW and 27.0 % PM. A long-term evaluation showed that the start-up rate for the anaerobic mono-digestion of PCM was 2.3 times faster than that of CM and the amount of methane produced was 4.7 times higher; process stability was thus preferentially maintained under a higher organic loading rate (OLR) (2.0 kg-VS/m3∙d). The start-up rate for the AcoD of PCM with FW and PM was 1.2 times higher than that of the AcoD of CM with FW and PM. Although the performance gap between the AcoD reactors after steady state was not significantly different, the PCM AcoD reactor provided a more stable operation under a higher OLR (5.0 kg-VS/m3∙d). This study demonstrates that the pretreatment and co-digestion of CM could significantly enhance the production of biogas and improve process stability.
Collapse
Affiliation(s)
- Sangyeol Jo
- Department of Advanced Energy Engineering, Chosun University, Gwangju 61452, Republic of Korea.
| | - Jonghun Bae
- Department of Management Strategy, Livestock Environmental Management Institute, Sejong 30127, Republic of Korea
| | - Rahul Kadam
- Department of Advanced Energy Engineering, Chosun University, Gwangju 61452, Republic of Korea
| | - Jonghwa Lee
- Department of Advanced Energy Engineering, Chosun University, Gwangju 61452, Republic of Korea
| | - Jungyu Park
- Department of Advanced Energy Engineering, Chosun University, Gwangju 61452, Republic of Korea
| | - Hangbae Jun
- Department of Environmental Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea.
| |
Collapse
|
3
|
Mainali K, Haghighi Mood S, Chen S, Garcia-Perez M. Partial wet oxidation of dairy manure as a pretreatment process to produce acetic acid 'a Source Growth of Methanogens'. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2024; 42:206-217. [PMID: 37486123 DOI: 10.1177/0734242x231180652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Wet oxidation can be an effective process for the pretreatment of complex biomass such as lignocellulose. However, studies on the use of wet oxidation for treating solid waste such as dairy manure are limited. The use of partial wet oxidation to convert dairy manure into low molecular weight carboxylic acids as final products were investigated. This work focuses on the performance of the sub-critical wet oxidation treatment of dairy cattle manure as a conversion/pretreatment process to release matter from the lignocellulosic fraction rather than a destructive process. The operating conditions were controlled at the short residence time and optimal temperature in the presence of oxygen under a pressure of 120 psi. The thermal hydrolysis under wet oxidation significantly affected conversion manure slurry into organic acids. The concentration of acetic acid reached 1778 mg L-1, achieved at 190°C (60 minutes reaction time) as the reaction temperature increased within the range of 150°C-200°C, total organic carbon was reduced and monomers in the process liquids decreased. On the other hand, soluble COD in process liquids increased with an increment in reaction temperature. The results provide insights into technical options to pretreat dairy manure to improve biochemical conversion yield.
Collapse
Affiliation(s)
- Kalidas Mainali
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, USA
- Sustainable Biofuels and Co-products Research Unit, Eastern Regional Research Center, US Department of Agriculture, Agricultural Research Service, Wyndmoor, PA, USA
| | - Sohrab Haghighi Mood
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, USA
| | - Shulin Chen
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, USA
| | - Manuel Garcia-Perez
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, USA
| |
Collapse
|
4
|
Bella K, Pilli S, Venkateswara Rao P, Tyagi RD. Bio-conversion of whey lactose using enzymatic hydrolysis with β-galactosidase: an experimental and kinetic study. ENVIRONMENTAL TECHNOLOGY 2024; 45:1234-1247. [PMID: 36282727 DOI: 10.1080/09593330.2022.2139639] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Lactose in cheese whey is increasingly challenging to metabolise under normal conditions. The hydrolysis of whey lactose into glucose and galactose using enzymatic methods has been acclaimed to confer benefits like enhanced substrate availability for better degradation in anaerobic digestion. In the present study, whey lactose was subjected to hydrolysis using the enzyme β-galactosidase derived from Aspergillus oryzae fungus to reduce the difficulty of lipid and fat transformation in anaerobic digestion. The individual and combined effects of hydrolysis parameters, pH, enzyme load, reaction time and temperature were studied using Response Surface Methodology by Central Composite Design. The optimum conditions were determined based on variance analyses and surface plots; pH 4.63, temperature 40.47°C, reaction time 25.96 min and enzyme load 0.49%. Results showed a maximum lactose hydrolysis value of 86.21%, while the predicted value was 87.44%. Indeed, enzyme hydrolysis induced a change of soluble chemical oxygen demand around 24.6% and 75.8% reduction in volatile fatty acid concentration. Upon anaerobic digestion, the pre-hydrolysed whey revealed a 3.6-fold higher bio-methane production than that of raw hey, and a visible decrease in volatile fatty acid concentrations. The resultant data agreed with the Gompertz model, and lag phase times were significantly reduced for hydrolysed whey.
Collapse
Affiliation(s)
- K Bella
- Department of Civil Engineering, National Institute of Technology Warangal, Warangal, India
| | - Sridhar Pilli
- Department of Civil Engineering, National Institute of Technology Warangal, Warangal, India
| | - P Venkateswara Rao
- Department of Civil Engineering, National Institute of Technology Warangal, Warangal, India
| | | |
Collapse
|
5
|
Zaki M, Rowles LS, Adjeroh DA, Orner KD. A Critical Review of Data Science Applications in Resource Recovery and Carbon Capture from Organic Waste. ACS ES&T ENGINEERING 2023; 3:1424-1467. [PMID: 37854077 PMCID: PMC10580293 DOI: 10.1021/acsestengg.3c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023]
Abstract
Municipal and agricultural organic waste can be treated to recover energy, nutrients, and carbon through resource recovery and carbon capture (RRCC) technologies such as anaerobic digestion, struvite precipitation, and pyrolysis. Data science could benefit such technologies by improving their efficiency through data-driven process modeling along with reducing environmental and economic burdens via life cycle assessment (LCA) and techno-economic analysis (TEA), respectively. We critically reviewed 616 peer-reviewed articles on the use of data science in RRCC published during 2002-2022. Although applications of machine learning (ML) methods have drastically increased over time for modeling RRCC technologies, the reviewed studies exhibited significant knowledge gaps at various model development stages. In terms of sustainability, an increasing number of studies included LCA with TEA to quantify both environmental and economic impacts of RRCC. Integration of ML methods with LCA and TEA has the potential to cost-effectively investigate the trade-off between efficiency and sustainability of RRCC, although the literature lacked such integration of techniques. Therefore, we propose an integrated data science framework to inform efficient and sustainable RRCC from organic waste based on the review. Overall, the findings from this review can inform practitioners about the effective utilization of various data science methods for real-world implementation of RRCC technologies.
Collapse
Affiliation(s)
- Mohammed
T. Zaki
- Wadsworth
Department of Civil and Environmental Engineering, West Virginia University, Morgantown, West Virginia 26505, United States
| | - Lewis S. Rowles
- Department
of Civil Engineering and Construction, Georgia
Southern University, Statesboro, Georgia 30458, United States
| | - Donald A. Adjeroh
- Lane
Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, West Virginia 26505, United States
| | - Kevin D. Orner
- Wadsworth
Department of Civil and Environmental Engineering, West Virginia University, Morgantown, West Virginia 26505, United States
| |
Collapse
|
6
|
Low-Temperature Pretreatment of Biomass for Enhancing Biogas Production: A Review. FERMENTATION 2022. [DOI: 10.3390/fermentation8100562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Low-temperature pretreatment (LTPT, Temp. < 100 °C or 140 °C) has the advantages of low input, simplicity, and energy saving, which makes engineering easy to use for improving biogas production. However, compared with high-temperature pretreatment (>150 °C) that can destroy recalcitrant polymerized matter in biomass, the action mechanism of heat treatment of biomass is unclear. Improving LTPT on biogas yield is often influenced by feedstock type, treatment temperature, exposure time, and fermentation conditions. Such as, even when belonging to the same algal biomass, the response to LTPT varies between species. Therefore, forming a unified method for LTPT to be applied in practice is difficult. This review focuses on the LTPT used in different biomass materials to improve anaerobic digestion performance, including food waste, sludge, animal manure, algae, straw, etc. It also discusses the challenge and cost issues faced during LTPT application according to the energy balance and proposes some proposals for economically promoting the implementation of LTPT.
Collapse
|
7
|
Hydrothermal Pretreatment of Wheat Straw—Evaluating the Effect of Substrate Disintegration on the Digestibility in Anaerobic Digestion. Processes (Basel) 2022. [DOI: 10.3390/pr10061048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The increasing demand for renewable energy sources and demand-oriented electricity provision makes anaerobic digestion (AD) one of the most promising technologies. In addition to energy crops, the use of lignocellulosic residual and waste materials from agriculture is becoming increasingly important. However, AD of such feedstocks is often associated with difficulties due to the high content of lignocellulose and its microbial persistence. In the present work, the effect of hydrothermal pretreatment (HTP) on the digestibility of wheat straw is investigated and evaluated. Under different HTP temperatures (160–180 °C) and retention times (15–45 min), a significant increase in biomethane potential (BMP) can be observed in all cases. The highest BMP (309.64 mL CH4 g−1 volatile solid (VS) is achieved after pretreatment at 160 °C for 45 min, which corresponds to an increase of 19% of untreated wheat straw. The results of a multiple linear regression model show that the solubilization of organic materials is influenced by temperature and time. Furthermore, using two different first-order kinetic models, an enhancement of AD rate during hydrolysis due to pretreatment is observed. However, the increasing intensity of pretreatment conditions is accompanied by a decreasing trend in the conversion of intermediates to methane.
Collapse
|
8
|
Feasibility of Coupling Anaerobic Digestion and Hydrothermal Carbonization: Analyzing Thermal Demand. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112411660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Anaerobic digestion is a biological process with wide application for the treatment of high organic-containing streams. The production of biogas and the lack of oxygen requirements are the main energetic advantages of this process. However, the digested stream may not readily find a final disposal outlet under certain circumstances. The present manuscript analyzed the feasibility of valorizing digestate by the hydrothermal carbonization (HTC) process. A hypothetical plant treating cattle manure and cheese whey as co-substrate (25% v/w, wet weight) was studied. The global performance was evaluated using available data reported in the literature. The best configuration was digestion as a first stage with the subsequent treatment of digestate in an HTC unit. The treatment of manure as sole substrate reported a value of 752 m3/d of biogas which could be increased to 1076 m3/d (43% increase) when coupling an HTC unit for digestate post-treatment and the introduction of the co-substrate. However, the high energy demand of the combined configurations indicated, as the best alternative, the valorization of just a fraction (15%) of digestate to provide the benefits of enhancing biogas production. This configuration presented a much better energy performance than the thermal hydrolysis pre-treatment of manure. The increase in biogas production does not compensate for the high energy demand of the pre-treatment unit. However, several technical factors still need further research to make this alternative a reality, as it is the handling and pumping of high solid slurries that significantly affects the energy demand of the thermal treatment units and the possible toxicity of hydrochar when used in a biological process.
Collapse
|
9
|
López I, Benzo M, Passeggi M, Borzacconi L. A simple kinetic model applied to anaerobic digestion of cow manure. ENVIRONMENTAL TECHNOLOGY 2021; 42:3451-3462. [PMID: 32072868 DOI: 10.1080/09593330.2020.1732473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
A simple model of anaerobic degradation in a continuous stirred digester is presented. The hydrolysis of cow manure was modelled as consisting of two fractions, one rapidly degradable and the other more slowly degradable, and both processes were represented by first-order kinetics in a two-substrate first-order (TSFO) model. The fractions were separated by water flushing. Biomethane potential (BMP) tests were performed to determine the hydrolysis constant and biodegradability of each fraction. The hydrolysis constants of the rapidly and slowly degradable fractions were 0.278 and 0.069 d-1, respectively. Coupled with a simple anaerobic digestion model, the TSFO model was used to simulate the digester behaviour and predict methane production. Experiments in a 3.0 L digester were used to determine the decay constant and yield values and to validate the model. Two solid loads (2.9 and 4.4 gVS/L.d) were applied to the digester, and the dynamics of both biodegradable fractions, the non-biodegradable fraction and the microorganism concentration were reproduced by the model. These results approximate the actual biodegradable solids removal to within 85%. A parametric sensitivity study was performed, and the results show that the hydrolysis constant mainly influences the biodegradable fractions and that the decay and yield parameters mainly influence the microorganism concentration.
Collapse
Affiliation(s)
- Iván López
- Chemical Engineering Department, Universidad de la República, Montevideo, Uruguay
| | - Martín Benzo
- Chemical Engineering Department, Universidad de la República, Montevideo, Uruguay
| | - Mauricio Passeggi
- Chemical Engineering Department, Universidad de la República, Montevideo, Uruguay
| | - Liliana Borzacconi
- Chemical Engineering Department, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
10
|
Varma VS, Parajuli R, Scott E, Canter T, Lim TT, Popp J, Thoma G. Dairy and swine manure management - Challenges and perspectives for sustainable treatment technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146319. [PMID: 33721638 DOI: 10.1016/j.scitotenv.2021.146319] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Global dairy and swine production growth has increased significantly over the past decades, resulting in higher manure generation in certain areas and environmental concerns. Therefore, manure management is an essential focus for farmers and environmental regulators. Systematic selection of manure management practices can provide environmental benefits, but accounting for local constraints, economics and farming practices are significant challenges. All these factors drive the selection of appropriate manure management systems (MMSs). MMSs are highly varied for their design, partly due to individual farm settings, geography, and the end-use applications of manure. However, the benefits of technological advancements in MMSs provide higher manure treatment efficiency and co-production of value-added products such as recycled water, fiber, sand bedding, and nutrient-rich bio-solids, among others. To achieve higher environmental benefits, advanced manure treatment technologies have to be implemented, which comes with additional costs. So, there is a tradeoff between environmental benefits and cost. With the above prospects, this article reviews: 1) the different treatment technologies used in dairy and swine farms, 2) the life cycle assessment (LCA) method's importance in evaluating various treatment technologies for better environmental returns, and 3) decision support tools (DST) and their significance in MMSs prioritization. We found considerable heterogeneity in the available datasets, mainly on crucial parameters such as water consumption, types and amount of bedding materials, manure removal frequency, manure treatment technologies, and the extent of resource recovery. Thus, suitable environmental impact assessment inventory models are needed to evaluate a more comprehensive range of treatment technologies in MMSs, representing the spatial and farming system heterogeneities. There is also a need for user-friendly DST with adjustable inputs for the functional components of MMSs and evaluation criteria, which can rapidly evaluate the techno-economic feasibility of alternative systems.
Collapse
Affiliation(s)
- Vempalli Sudharsan Varma
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Ranjan Parajuli
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Erin Scott
- Department of Agricultural Economics and Agribusiness, University of Arkansas, Fayetteville, AR 72701, USA
| | - Tim Canter
- Food Systems and Bioengineering Division, University of Missouri, Columbia, MO 65211, USA
| | - Teng Teeh Lim
- Food Systems and Bioengineering Division, University of Missouri, Columbia, MO 65211, USA
| | - Jennie Popp
- Department of Agricultural Economics and Agribusiness, University of Arkansas, Fayetteville, AR 72701, USA
| | - Greg Thoma
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
11
|
Luna-Avelar KD, Barrena R, Font X, Sánchez A, Santos-Ballardo DU, Germán-Báez LJ, Valdez-Ortiz A. A preliminary assessment of anaerobic co-digestion potential of mango and microalgal residue biomass using a design of experiments approach: Effect of thermal, physical and biological pretreatments. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Şenol H. Effects of NaOH, thermal, and combined NaOH-thermal pretreatments on the biomethane yields from the anaerobic digestion of walnut shells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:21661-21673. [PMID: 33410085 DOI: 10.1007/s11356-020-11984-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion (AD) of walnut shells (WS) results in only a limited biomethane yield because of their high fibre content, which ultimately represents an essentially nonbiodegradable lignocellulosic biomass. In the present study, thermal (i.e. 50-250 °C), alkaline (i.e. 1-5% w/w NaOH) and combined alkaline-thermal (i.e. 4% w/w NaOH + 150 °C thermal) pretreatment methods have been applied to increase the anaerobic biodegradation of WS. The highest biomethane yields of 159.9 ± 6.8 mL CH4.g VS-1 and 169.8 ± 6.8 mL CH4.g VS-1 were achieved after pretreatment at both 250 °C and with 4% NaOH. After combined NaOH-thermal pretreatments, the AD process showed the largest total VFA concentration (i.e. 1280.1 mg Hac L-1) but a relatively high lag phase (i.e. 3.90 days) compared to thermal and NaOH pretreatments alone, from which the highest biomethane yield (i.e. 192.4 ± 8.2 mL CH4.g VS-1 ) was achieved at the end of the AD process. The highest biomethane yield from the combined NaOH-thermal pretreated WS was corroborated by the corresponding highest SCOD/TCOD ratio (i.e. 0.37 ± 0.02) and the highest lignocellulosic fibre removal (i.e. 41.1 ± 2.7% cellulose, 35.6 ± 1.8% hemicellulose, and 58.7 ± 3.2% lignin). The cumulative biomethane yields were further simulated via a modified Gompertz model. This study provides a promising strategy in the sense that the biomethane yield of WS containing large amounts of lignin can be significantly increased via thermal, NaOH, and combined NaOH-thermal pretreatment methods.
Collapse
Affiliation(s)
- Halil Şenol
- Genetic and Bioengineering Department, Giresun University, 28200, Giresun, Turkey.
| |
Collapse
|
13
|
Biogas Plant Exploitation in a Middle-Sized Dairy Farm in Poland: Energetic and Economic Aspects. ENERGIES 2020. [DOI: 10.3390/en13226058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Although cow manure is a valuable natural fertilizer, it is also a source of extreme greenhouse gas emissions, mainly methane. For this reason, this study aims to determine the impact of investments in a biogas plant on the energy and economic aspects of the operation of a dairy farm. A farm with a breeding size of 600 livestock units (LSU) was adopted for the analysis. In order to reach the paper’s aim, the analysis of two different scenarios of dairy farm functioning (conventional–only milk production, and modern–with biogas plant exploitation) was conducted. The analysis showed that the investment in biogas plant operations at a dairy farm and in using cow manure as one of the main substrates is a more profitable scenario compared to traditional dairy farming. Taking into account the actual Polish subsidies for electricity produced by small biogas plants, the scenario with a functioning biogas plant with a capacity of 500 kW brings €332,000/a more profit compared to the conventional scenario, even when taking into account additional costs, including the purchase of straw to ensure a continuous operation of the installation. Besides, in the traditional scenario, building a biogas plant allows for an almost complete reduction of greenhouse gas emissions during manure storage.
Collapse
|
14
|
Abstract
The objective of this research is to present a review of the current technologies and pretreatments used in the fermentation of cow, pig and poultry manure. Pretreatment techniques were classified into physical, chemical, physicochemical, and biological groups. Various aspects of these different pretreatment approaches are discussed in this review. The advantages and disadvantages of its applicability are highlighted since the effects of pretreatments are complex and generally depend on the characteristics of the animal manure and the operational parameters. Biological pretreatments were shown to improve methane production from animal manure by 74%, chemical pretreatments by 45%, heat pretreatments by 41% and physical pretreatments by 30%. In general, pretreatments improve anaerobic digestion of the lignocellulosic content of animal manure and, therefore, increase methane yield.
Collapse
|