1
|
Chakraborty J, Mahali K, Henaish AMA, Ahmed J, Alshehri SM, Hossain A, Roy S. Exploring the solubility and intermolecular interactions of biologically significant amino acids l-serine and L-cysteine in binary mixtures of H 2O + DMF, H 2O + DMSO and H 2O + ACN in temperature range from T = 288.15 K to 308.15 K. Biophys Chem 2024; 311:107272. [PMID: 38824845 DOI: 10.1016/j.bpc.2024.107272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/14/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024]
Abstract
In the presented work, a study on the solubility and intermolecular interactions of l-serine and L-cysteine was carried out in binary mixtures of H2O + dimethylformamide (DMF), H2O + dimethylsulfoxide (DMSO), and H2O + acetonitrile (ACN) in the temperature range of T = 288.15 K to 308.15 K. l-serine exhibited the highest solubility in water, while L-cysteine was more soluble in water-DMF. The solvation process was assessed through standard Gibbs energy calculations, indicating the solvation stability order: water-ACN > water-DMSO > water-DMF for l-serine, and water-DMF > water-DMSO > water-ACN for L-cysteine. This study also explored the influence of these amino acids on solvent-solvent interactions, revealing changes in chemical entropies and self-association patterns within the binary solvent mixtures.
Collapse
Affiliation(s)
- Jit Chakraborty
- Department of Chemistry, University of Kalyani, Kalyani 741235, Nadia, India; Department of Chemistry, JIS College of Engineering, Kalyani 741235, Nadia, India
| | - Kalachand Mahali
- Department of Chemistry, University of Kalyani, Kalyani 741235, Nadia, India.
| | - A M A Henaish
- Physics Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; NANOTECH Center, Ural Federal University, Ekaterinburg 620002, Russia
| | - Jahangeer Ahmed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saad M Alshehri
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Aslam Hossain
- Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090 Rostov-on-Don, Russian Federation
| | - Sanjay Roy
- Department of Chemistry, School of Sciences, Netaji Subhas Open University, Kolkata, West Bengal, India.
| |
Collapse
|
2
|
Chakraborty J, Mahali K, Henaish AMA, Ahmed J, Alshehri SM, Roy S. Probing pharmaceutically important amino acids L-isoleucine and L-tyrosine Solubilities: Unraveling the solvation thermodynamics in diverse mixed solvent systems. Biophys Chem 2024; 309:107229. [PMID: 38555653 DOI: 10.1016/j.bpc.2024.107229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/15/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
The study specifically investigates the solubilities of L-isoleucine and L-tyrosine in water-mixed solvent systems (DMF, DMSO, and ACN), exploring the behaviour of amino acids in complex environments. The experimental methods prioritize meticulous solvent purification to ensure reliable results. The work explores solubility data, uncovering temperature-dependent trends and intricate interactions influencing solubility in the chosen mixed solvent systems. The study emphasizes the impact of thermodynamic properties, solvent-solvent interactions, and amino acid structure on solubility patterns. The broader implications highlight the relevance of understanding amino acid behaviour in diverse solvent environments, offering potential applications in cosmetics and pharmaceutical industries. The distinct solubility patterns contribute valuable insights, enhancing on the understanding of the solution stability and interactions of L-isoleucine and L-tyrosine in different solvent systems. In conclusion, work suggests the enhanced utilization of L-isoleucine and L-tyrosine in various industries, driven by a profound understanding of their solubility in mixed solvent systems. The research expands our knowledge of amino acid behaviour, paving the way for advancements in industries relying on protein-based products and technologies.
Collapse
Affiliation(s)
- Jit Chakraborty
- Department of Chemistry, University of Kalyani, Kalyani 741235, Nadia, India; Department of Chemistry, JIS College of Engineering, Kalyani 741235, Nadia, India
| | - Kalachand Mahali
- Department of Chemistry, University of Kalyani, Kalyani 741235, Nadia, India.
| | - A M A Henaish
- Physics Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; NANOTECH Center, Ural Federal University, Ekaterinburg 620002, Russia
| | - Jahangeer Ahmed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saad M Alshehri
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sanjay Roy
- Department of Chemistry, School of Sciences, Netaji Subhas Open University, Kolkata, West Bengal, India.
| |
Collapse
|
3
|
Sing N, Mahali K, Mondal P, Chakraborty J, Henaish AMA, Ahmed J, Hussain A, Roy S. Exploring solubility and energetics: Dissolution of biologically important l-threonine in diverse aqueous organic mixtures across the temperature range of 288.15 K to 308.15 K. Biophys Chem 2024; 306:107154. [PMID: 38142475 DOI: 10.1016/j.bpc.2023.107154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023]
Abstract
This research provides a thorough investigation into the solubility behavior and solution thermodynamics of l-threonine in significant organic solvent systems. The work was done on measuring the actual solubility and subsequently calculating overall transfer solvation free energetics (∆Genergetic0i) and transfer entropies (∆St0i) at a temperature of 298.15 K. These measurements were performed as l-threonine transitioned from water to different water-organic mixed solvents systems. The saturated solubilities of l-threonine were determined using the 'gravimetric method' at five equidistant temperatures namely 288.15 K, 293.15 K, 298.15 K, 303.15 K and 308.15 K. By analyzing the data on solubility, we further obtained the different energies involved in solvation related issues. In the case of single solvents, the nature of solubility of l-threonine was observed like: dimethylsulfoxide (DMSO) < acetonitrile (ACN) < N, N-dimethylformamide (DMF) < ethylene glycol (EG) < water (H2O), irrespective of the experimental conditions. Specifically, at 298.15 K, the solubilities of l-threonine in single solvents were found to be as follows: 0.8220 mol per kg of water, 0.3101 mol per kg of EG, 0.1337 mol per kg of DMF, 0.1107 mol per kg DMSO and 0.1188 mol per kg of ACN. This research critically examines the relationship between the experimental saturated solubility of l-threonine and the complex properties influencing its solvation energy in diverse aqueous organic solvent systems.
Collapse
Affiliation(s)
- Nilam Sing
- Department of Chemistry, University of Kalyani, Nadia, Kalyani 741235, India; Department of Chemistry, Vivekananda Mahavidhyalaya, Burdwan, West Bengal, India
| | - Kalachand Mahali
- Department of Chemistry, University of Kalyani, Nadia, Kalyani 741235, India.
| | - Pratima Mondal
- Department of Chemistry, University of Kalyani, Nadia, Kalyani 741235, India
| | - Jit Chakraborty
- Department of Chemistry, University of Kalyani, Nadia, Kalyani 741235, India; Department of Chemistry, JIS College of Engineering, Nadia, Kalyani, 741235, India
| | - A M A Henaish
- Physics Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; Nanotech Center, Ural Federal University, Ekaterinburg 620002, Russia
| | - Jahangeer Ahmed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Sanjay Roy
- Department of Chemistry, School of Sciences, Netaji Subhas Open University, Kolkata, West Bengal, India.
| |
Collapse
|
4
|
Wang R, Wang Q, Lin Z, Cong W. Effect of Ammonium Sulfate on the Solubility of α-Form and β-Form l-Glutamic Acid in Water and Actual Fermentation Mother Liquor from 278.15 to 333.15 K. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Rui Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Wang
- College of Bioengineering, Beijing Polytechnic, Beijing 100176, China
| | - Zhangnan Lin
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Cong
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
5
|
Aliyeva M, Brandão P, Gomes JRB, Coutinho JAP, Ferreira O, Pinho SP. Electrolyte Effects on the Amino Acid Solubility in Water: Solubilities of Glycine, l-Leucine, l-Phenylalanine, and l-Aspartic Acid in Salt Solutions of (Na +, K +, NH 4+)/(Cl –, NO 3–). Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Mehriban Aliyeva
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- CICECO − Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paula Brandão
- CICECO − Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - José R. B. Gomes
- CICECO − Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João A. P. Coutinho
- CICECO − Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Olga Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Simão P. Pinho
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|