1
|
Maiyo ZC, Njeru SN, Toroitich FJ, Indieka SA, Obonyo MA. Ethnobotanical study of medicinal plants used by the people of Mosop, Nandi County in Kenya. Front Pharmacol 2024; 14:1328903. [PMID: 38313073 PMCID: PMC10834697 DOI: 10.3389/fphar.2023.1328903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/27/2023] [Indexed: 02/06/2024] Open
Abstract
Background: Throughout the history, nature has provided mankind with most of their basic needs, which include food, shelter, medicine, clothes, flavours, scents as well as raw materials. Given that they are an integral part of cultural heritage, medicinal plants have played a significant role in human healthcare systems around the world. Investigating various biological resources for use as medicines requires ethnomedicinal studies. Methods: Data on utilization of ethnomedicinal plants from local healers in Kenya's Mosop Sub-County in Nandi County was documented through open-ended, semi-structured questionnaires. A number of quantitative indices, such as the Use Citation (UC), Informant Consensus Factor (ICF), Use Value (UV), Frequency of Citation (FoC) and Relative Frequency of Citation (RFC) were used to convey the potential medical benefits, vitality and variety of the ethnomedicine. Results: 102 informants provided information on 253 ethnomedicinal plant species, classified into 74 families. There were 249 native plant species identified, along with few exotic species: Senegalia senegal (L.) Britton, Persea americana Mill, Carica papaya L. and Solanum betaceum Cav. Of all recorded species, 32% and 27% were herbs and trees, respectively. Among plant parts, leaves were most frequently utilized (27%) and roots (26%), while decoctions (21%) were the most widely used formulations. The dominant family was Asteraceae, with 28 species, followed by Lamiaceae, with 19 species. The highest ICF value was 0.778 for a number of parasitic and infectious illnesses, including ringworms, athlete's foot rot, tetanus, typhoid, intestinal parasites, abscesses, malaria, and amoebiasis. The study's data validates the region's widespread use of traditional medicinal plant remedies. Conclusion: The current study will lay a foundation of knowledge for future research investigations. The abundance of knowledge regarding ethnomedicinal species and their medicinal applications will stimulate further phytochemical and pharmacological research, which could lead to the discovery of potentially significant pharmaceuticals.
Collapse
Affiliation(s)
- Z C Maiyo
- Faculty of Science, Department of Biochemistry and Molecular Biology, Njoro, Kenya
| | - S N Njeru
- Centre for Traditional Medicine and Drug Research (CTMDR), Kenya Medical Research Institute, Nairobi, Kenya
| | - F J Toroitich
- Faculty of Science, Department of Biological Sciences, Egerton University, Njoro, Kenya
| | - S A Indieka
- Faculty of Science, Department of Biochemistry and Molecular Biology, Njoro, Kenya
| | - M A Obonyo
- Faculty of Science, Department of Biochemistry and Molecular Biology, Njoro, Kenya
| |
Collapse
|
2
|
de Carvalho JCB, de Oliveira IM, Trindade C, Juchem ALM, da Silva Machado M, Guecheva TN, Moura S, de Souza LAG, Vainstein MH, Henriques JAP. Chemical characterization of Callingcard Vine (Entada polystachya (L.) DC. var. polystachya) aqueous seed extract and evaluation of its cytotoxic, genotoxic and mutagenic properties. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 891:503687. [PMID: 37770144 DOI: 10.1016/j.mrgentox.2023.503687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023]
Abstract
Callingcard Vine (Entada polystachya (L.) DC. var. polystachya - Fabaceae) is a common plant in coastal thickets from western Mexico through Central America to Colombia and Brazil, especially in Amazon biome. It has been popularly used as a urinary burning reliever and diuretic. However, the plant chemical constituents are poorly understood and Entada spp. genotoxic potential have not been previously investigated. In the present study we determined the chemical composition of the aqueous E. polystachya crude seed extract (EPCSE) and evaluated the cytotoxic, genotoxic and mutagenic properties of EPCSE in Salmonella typhimurium and Chinese hamster fibroblast (V79) cells. Cytotoxic activity was also evaluated in tumor cell lines (HT29, MCF7 and U87) and non-malignant cells (MRC5). The chemical analysis by High Resolution Mass Spectrometry (HRMS) of EPCSE indicated the presence of saponin and chalcone. The results of the MTT and clonal survival assays suggest that EPCSE is cytotoxic to V79 cells. Survival analysis showed higher IC50 in non-tumor compared with tumor cell lines. EPCSE showed induction of DNA strand breaks as revealed by the alkaline comet assay and micronucleus test. Using the modified comet assay, it was possible to detect the induction of oxidative DNA base damage by EPCSE in V79 cells. Consistently, the extract induced increase lipid peroxidation (TBARS), superoxide dismutase (SOD) and catalase (CAT) activities in V79 cells. In addition, EPCSE induced mutations in S. typhimurium TA98 and TA100 strains, confirming a mutagenic potential. Taken together, our results suggest that EPCSE is cytotoxic and genotoxic to V79 cells and mutagenic to S. typhimurium. These properties can be related to the pro-oxidant ability of the extract and induction of DNA lesions. Additionally, EPCSE could inhibit the growth of tumor cells, especially human colorectal adenocarcinoma (HT29) cell line, and can constitute a possible source of antitumor natural agents.
Collapse
Affiliation(s)
- Juliane Cristina Bugs de Carvalho
- Department of Biophysics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Iuri Marques de Oliveira
- Department of Biophysics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
| | - Cristiano Trindade
- Faculty of Basic and Biomedical Sciences, Simón Bolívar University, Barranquilla, Colombia
| | | | - Miriana da Silva Machado
- Department of Biophysics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; InnVitro Pesquisa e Desenvolvimento, Porto Alegre, RS, Brazil
| | - Temenouga Nikolova Guecheva
- Department of Biophysics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Sidnei Moura
- Laboratory of Natural and Synthetics Products, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | - Luiz Augusto Gomes de Souza
- Environment and Health Society Coordination of the National Institute for Research in the Amazon (COSAS/INPA), Manaus, AM, Brazil
| | - Marilene Henning Vainstein
- Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - João Antonio Pêgas Henriques
- Department of Biophysics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; InnVitro Pesquisa e Desenvolvimento, Porto Alegre, RS, Brazil; Postgraduate Programs in Biotechnology and Medical Sciences, University of Vale do Taquari - UNIVATES, Lajeado, RS, Brazil
| |
Collapse
|
3
|
Onikanni SA, Lawal B, Munyembaraga V, Bakare OS, Taher M, Khotib J, Susanti D, Oyinloye BE, Noriega L, Famuti A, Fadaka AO, Ajiboye BO. Profiling the Antidiabetic Potential of Compounds Identified from Fractionated Extracts of Entada africana toward Glucokinase Stimulation: Computational Insight. Molecules 2023; 28:5752. [PMID: 37570723 PMCID: PMC10420681 DOI: 10.3390/molecules28155752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Glucokinase plays an important role in regulating the blood glucose level and serves as an essential therapeutic target in type 2 diabetes management. Entada africana is a medicinal plant and highly rich source of bioactive ligands with the potency to develop new target drugs for glucokinase such as diabetes and obesity. Therefore, the study explored a computational approach to predict identified compounds from Entada africana following its intermolecular interactions with the allosteric binding site of the enzymes. We retrieved the three-dimensional (3D) crystal structure of glucokinase (PDB ID: 4L3Q) from the online protein data bank and prepared it using the Maestro 13.5, Schrödinger Suite 2022-3. The compounds identified were subjected to ADME, docking analysis, pharmacophore modeling, and molecular simulation. The results show the binding potential of the identified ligands to the amino acid residues, thereby suggesting an interaction of the amino acids with the ligand at the binding site of the glucokinase activator through conventional chemical bonds such as hydrogen bonds and hydrophobic interactions. The compatibility of the molecules was highly observed when compared with the standard ligand, thereby leading to structural and functional changes. Therefore, the bioactive components from Entada africana could be a good driver of glucokinase, thereby paving the way for the discovery of therapeutic drugs for the treatment of diabetes and its related complications.
Collapse
Affiliation(s)
- Sunday Amos Onikanni
- College of Medicine, Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan;
- Department of Chemical Sciences, Biochemistry Unit, Afe-Babalola University, Ado-Ekiti 360101, Ekiti State, Nigeria;
| | - Bashir Lawal
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Valens Munyembaraga
- Institute of Translational Medicine and New Drug Development, College of Medicine, China Medical University, Taichung 40402, Taiwan;
- University Teaching Hospital of Butare, Huye 15232, Rwanda
| | - Oluwafemi Shittu Bakare
- Department of Biochemistry, Faculty Science, Adekunle Ajasin University, Akungba Akoko 342111, Ondo State, Nigeria;
| | - Muhammad Taher
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia;
- Pharmaceutics and Translational Research Group, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia
| | - Junaidi Khotib
- Department of Pharmacy Practice, Faculty of Pharmacy, Airlangga University, Surabaya 60115, Indonesia
| | - Deny Susanti
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia;
| | - Babatunji Emmanuel Oyinloye
- Department of Chemical Sciences, Biochemistry Unit, Afe-Babalola University, Ado-Ekiti 360101, Ekiti State, Nigeria;
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
- Institute of Drug Research and Development, SE Bogoro Center, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Ekiti State, Nigeria;
| | - Lloyd Noriega
- College of Medicine, Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan;
| | - Ayodeji Famuti
- Honey T Scientific Company, Ibadan 234002, Oyo State, Nigeria;
| | | | - Basiru Olaitan Ajiboye
- Institute of Drug Research and Development, SE Bogoro Center, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Ekiti State, Nigeria;
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University, Oye-Ekiti 371104, Ekiti State, Nigeria
| |
Collapse
|
4
|
Siddique R, Mehmood MH, Hussain L, Malik A, Sethi A, Farrukh M, Kousar S. Role of medicinal herbs and phytochemicals in post burn management. Inflammopharmacology 2023:10.1007/s10787-023-01246-5. [PMID: 37204694 DOI: 10.1007/s10787-023-01246-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023]
Abstract
Burn management is a natural and distinctly programmed process involving overlapping phases of hemostasis, inflammation, proliferation and remodeling. Burn wound healing involves initiation of inflammation, re-epithelialization, granulation, neovascularization and wound contraction. Despite the availability of multiple preparations for management of burn wound, there is dire need for efficacious alternative agents. Current approaches for burn wound management include pharmaceutical agents and antibiotics. However, high cost of synthetic drugs and accelerated resistance to antibiotics is challenging for both developed and developing nations. Among alternative options, medicinal plants have been a biocompatible, safe and affordable source of preventive/curative approaches. Due to cultural acceptance and patient compliance, there has been a focus on the use of botanical drugs and phytochemicals for burn wound healing. Keeping in consideration of medicinal herbs and phytochemicals as suitable therapeutic/adjuvant agents for burn wound management, this review highlights therapeutic potential of 35 medicinal herbs and 10 phytochemicals. Among these, Elaeis guineensis, Ephedra ciliate and Terminalia avicennioides showed better burn wound healing potential with varied mechanisms such as modulation of TNF-alpha, inflammatory cytokines, nitric oxide, eicosanoids, ROS and leukocyte response. Phytochemicals (oleanolic acid, ursolic acid, kirenol) also showed promising role in burn wound management though various pathways involving such as down regulation of TNF-alpha, IL-6 and inflammatory mediators including plasma proteases and arachidonic acid metabolites. This review provides a pavement for therapeutic/adjuvant use of potential botanical drugs and novel druggable phyto-compounds to target skin burn injury with diverse mechanisms, affordability and safety profile.
Collapse
Affiliation(s)
- Rida Siddique
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Malik Hassan Mehmood
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan.
| | - Liaqat Hussain
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Abdul Malik
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Ayesha Sethi
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Maryam Farrukh
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Shaneel Kousar
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| |
Collapse
|
5
|
Simo Nemg FB, De S, Keshry SS, Mamidi P, Njayou FN, Demanou M, Moundipa Fewou P, Chattopadhyay S. Plants extracts from Cameroon pharmacopeia strongly inhibit the Chikungunya virus infection by targeting entry and replication steps. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115458. [PMID: 35728708 DOI: 10.1016/j.jep.2022.115458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 05/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cameroon is one of the sub-Saharan African countries affected by Chikungunya virus (CHIKV). With the absence of approved treatment, this disease represents globally a major public health concern. Several plants are traditionally used in Cameroon for the treatment of virus induced fever and arthralgia. But to date there is no study that validate the efficacy of these plants for the treatment of Chikungunya virus infection. AIM OF THE STUDY This study aims to explore the inhition effect, mechanism of action of plant extracts against Chikungunya virus. MATERIAL AND METHODS An ethnobotanical survey conducted in some regions of Cameroon, led to the identification of nine medicinal plants used in traditional medicine for the healing of fever-related diseases and arthritis. Crude hydro-ethanolic extracts of each plant were prepared by maceration and their effects against CHIKV infection were investigated. CHIKV S27 strain was used to infection in Vero cell line. The antiviral activities were determined by plaque assay and/or RT-PCR targeting E1 envelope gene of CHIKV. Dose-response studies of the active plants were also determined by flow cytometry and Western blot. RESULTS Four extracts, Entada africana Guill et Pers. (E4), Entandrophragma cylindricum Sprague (EI), Khaya grandifoliola C. D.C. Sapindales (E2) and Macaranga hurifolia Beille (E6) showed antiviral activity with the half-maximal inhibitory concentration of 8.29; 8.14; 12.81 and 26.89 μg/mL respectively. All extracts were nontoxic up to the concentration of 100 μg/μL. Entandrophragma cylindricum Sprague (EI), Khaya grandifoliola C. D.C. Sapindales (E2), and Entada africana Guill et Pers. (E4) showed strong inhibition on the entry step of viral infection. At the same time, only Entandrophragma cylindricum Sprague (EI) inhibited the viral titer significantly in replication and intercellular assembly steps. Four plant extracts namely Entandrophragma cylindricum Sprague (EI), Macaranga hurifolia Beille (E6), Phragmentera capitata (Sprengel) Balle (E12), and Detarium microcarpum (E13) were effective against egression step. CONCLUSIONS Together, the results of this study showed anti-chikungunya activities of Entandrophragma cylindricum Sprague (EI) and Macaranga hurifolia Beille (E6), with therapeutics perspectives and can be promising sources of the development of anti-CHIKV molecule in future.
Collapse
Affiliation(s)
- Fredy Brice Simo Nemg
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, University of Yaoundé 1, PO.BOX: 812, Yaounde, Cameroon; Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Chandrasekharpur, 751023, Bhubaneswar, Odisha, India.
| | - Saikat De
- Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Chandrasekharpur, 751023, Bhubaneswar, Odisha, India.
| | - Supriya Suman Keshry
- Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Chandrasekharpur, 751023, Bhubaneswar, Odisha, India.
| | - Prabhudutta Mamidi
- Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Chandrasekharpur, 751023, Bhubaneswar, Odisha, India.
| | - Frederic Nico Njayou
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, University of Yaoundé 1, PO.BOX: 812, Yaounde, Cameroon.
| | - Maurice Demanou
- Yellow Fever Regional Laboratory Coordinator, WHO IST West Africa, 158 Avenue de L'indépendance, 03 BP 7019, Ouagadougou, Burkina Faso.
| | - Paul Moundipa Fewou
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, University of Yaoundé 1, PO.BOX: 812, Yaounde, Cameroon.
| | - Soma Chattopadhyay
- Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Chandrasekharpur, 751023, Bhubaneswar, Odisha, India.
| |
Collapse
|
6
|
Codo Toafode NM, Marquardt P, Ahyi V, Fester K, Spiegler V, Vissiennon C. Anti-Inflammatory Potential of Phenolic Compounds Isolated From Entada africana Guill. & Perr. Used in the Republic of Benin. Front Pharmacol 2022; 13:931240. [PMID: 35847017 PMCID: PMC9280145 DOI: 10.3389/fphar.2022.931240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
In West African medicine, Entada africana Guill. & Perr. from the family of Fabaceae is used to treat inflammatory conditions in the management of fractures, wounds, and sprains in the northern region of the Republic of Benin. The aim of the present study was to isolate and elucidate phenolic compounds from a hydroalcoholic leaf extract from E. africana and to identify compounds with anti-inflammatory activity in vitro. Eleven compounds were purified from three fractions, which have shown strong to medium anti-inflammatory activity. The isolated compounds were characterized by HRESI-MS and NMR methods as gallic acid (1), ethyl gallate (2), 5,7-dihydroxychromen-4-one (3), 3′,4′,7-trihydroxyflavone (4), dihydrokaempferol-7-O-glucoside (5), catechin (6), quercetin-3-O-[β-apiosyl-(1‴→2″)-β-glucoside] (7), quercetin-3-O-glucoside (8), naringenin-7-O-glucoside (9), aromadendrin (10), and myricetin-3-O-glucoside (11). Nine of the major phenolic compounds were tested using TNF-α stimulated human keratinocytes (HaCaT) as skin inflammation model to identify molecules, which may explain the use of the plant leaves as an anti-inflammatory remedy by assessing the release of proinflammatory cytokines IL-8 and IL-6. The hydroacoholic leaf extract of E. africana exerted a medium inhibitory effect on the release of IL-8. 3′,4′,7-trihydroxyflavone, aromadendrin, dihydrokaempferol-7-O-glucoside and ethyl gallate demonstrated a strong to medium effect on the release of IL-6. For the release of IL-8, 3′,4′,7-trihydroxyflavone demonstrated a medium activity. This study provides for the first time a detailed screening of phenolic compounds occurring in the hydroethanolic leaf extract of E. africana. Additionally, it is shown that E. africana contains active compounds which may justify its traditional medicinal use as an anti-inflammatory remedy to treat inflammatory and pain-related skin conditions in the Republic of Benin.
Collapse
Affiliation(s)
- Nonvignon Murielle Codo Toafode
- Inter-Regional University of Industrial Engineering Biotechnologies and Applied Sciences, IRGIB Africa University, Cotonou, Benin
- Institute of Medical Physics and Biophysics, Leipzig University, Leipzig, Germany
- *Correspondence: Nonvignon Murielle Codo Toafode, ; Cica Vissiennon,
| | - Peter Marquardt
- Faculty of Natural and Environmental Sciences, Zittau/Görlitz University of Applied Sciences, Zittau, Germany
| | - Virgile Ahyi
- Inter-Regional University of Industrial Engineering Biotechnologies and Applied Sciences, IRGIB Africa University, Cotonou, Benin
| | - Karin Fester
- Faculty of Natural and Environmental Sciences, Zittau/Görlitz University of Applied Sciences, Zittau, Germany
| | - Verena Spiegler
- Institute for Pharmaceutical Biology and Phytochemistry, University of Münster, Münster, Germany
| | - Cica Vissiennon
- Institute of Medical Physics and Biophysics, Leipzig University, Leipzig, Germany
- Repha GmbH Biologische Arzneimittel, Langenhagen, Germany
- *Correspondence: Nonvignon Murielle Codo Toafode, ; Cica Vissiennon,
| |
Collapse
|
7
|
Obakiro SB, Kiprop A, Kigondu E, K'owino I, Kiyimba K, Drago Kato C, Gavamukulya Y. Sub-Acute Toxicity Effects of Methanolic Stem Bark Extract of Entada abyssinica on Biochemical, Haematological and Histopathological Parameters in Wistar Albino Rats. Front Pharmacol 2021; 12:740305. [PMID: 34557104 PMCID: PMC8452932 DOI: 10.3389/fphar.2021.740305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/25/2021] [Indexed: 11/30/2022] Open
Abstract
Background: Whereas the efficacy of Entada abyssinica (fabaceae) extracts against various ailments has been scientifically validated, its safety has not been established. This study was undertaken to evaluate the toxicity effects of methanolic stem bark extract of E. abyssinica on biochemical, haematological and histological parameters of Wistar albino rats following repeated oral administration. Methods: Wistar albino rats of both sexes were randomized into groups and orally administered daily with determined doses (150, 300 and 600 mg/kg) of E. abyssinica methanolic extract using 1% tween 80 in distilled water as a control for 28 days. On the 29th day, all the animals were sacrificed and dissected to collect blood and selected organs. The serum and whole blood were assayed for biochemical and haematological parameters respectively while selected organs were examined for histopathological lesions. Numerical data was analyzed using graph pad prism and expressed as mean ± standard error of mean. The differences between the treatment and control groups were tested for statistical significance using one-way analysis of variance and/or Student’s t-test. Results: In repeated daily oral doses (150, 300 and 600 mg/kg), the methanolic stem bark extract of E. abyssinica did not cause significant alteration in majority of the biochemical and hematological indices. However, the extract significantly elevated the level of uric acid (all doses), aspartate aminotransferase (300 and 600 mg/kg), low density lipoproteins (150 mg/kg) and mean corpuscular heamoglobin concentration (all doses). On the other hand, the extracts reduced high density lipoproteins (150 and 300 mg/kg), mean corpuscular volume (all doses), haematocrit (150 and 600 mg/kg), mean platelet volume (150 and 600 mg/kg) and procalcitonin (150 mg/kg). In the vital organs, there were no significant lesions observed except at the highest dose (600 mg/kg) where there was mild evidence of lymphocyte infiltration in the liver and focal interstitial nephritis. Conclusion: The methanolic stem bark extract of E. abyssinica is relatively safe in Wistar albino rats when repetitively administered orally in small doses for a prolonged period of time. We recommend more chronic toxicity studies and clinical trials on herbal remedies containing this plant to ensure that its use is free of potential toxicity to humans.
Collapse
Affiliation(s)
- Samuel Baker Obakiro
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, Mbale, Uganda.,Department of Chemistry and Biochemistry, School of Sciences and Aerospace Studies, Moi University, Eldoret, Kenya.,Africa Centre of Excellence II in Phytochemicals, Textile and Renewable Energy (ACE II PTRE), Moi University, Eldoret, Kenya
| | - Ambrose Kiprop
- Department of Chemistry and Biochemistry, School of Sciences and Aerospace Studies, Moi University, Eldoret, Kenya.,Africa Centre of Excellence II in Phytochemicals, Textile and Renewable Energy (ACE II PTRE), Moi University, Eldoret, Kenya
| | - Elizabeth Kigondu
- Centre of Traditional Medicine and Drug Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Isaac K'owino
- Africa Centre of Excellence II in Phytochemicals, Textile and Renewable Energy (ACE II PTRE), Moi University, Eldoret, Kenya.,Department of Pure and Applied Chemistry, Faculty of Science, Masinde-Muliro University, Kakamega, Kenya
| | - Kenedy Kiyimba
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, Mbale, Uganda.,Department of Pharmacology and Toxicology, School of Pharmacy, Kampala International University, Bushenyi, Uganda
| | - Charles Drago Kato
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Yahaya Gavamukulya
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, Busitema University, Mbale, Uganda
| |
Collapse
|
8
|
Production of a Complementary Food: Influence of Cowpea Soaking Time on the Nutritional, Antinutritional, and Antioxidant Properties of the Cassava-Cowpea-Orange-Fleshed Potato Blends. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2020; 2020:8873341. [PMID: 33195686 PMCID: PMC7641669 DOI: 10.1155/2020/8873341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/22/2020] [Accepted: 10/15/2020] [Indexed: 11/17/2022]
Abstract
Soaking and incorporation of legumes for fortification are essential to a complementary food production process. Cassava, orange-fleshed potato, and cowpeas are sustainably cheap, locally available, and underutilized for food biofortification. This study investigated the effect of cowpea soaking time (3, 6, and 9 h) on different composition ratios of cassava, cowpea, and orange-fleshed sweet potato (CCP) blends (50 : 40 : 10 (EC), 50 : 30 : 20 (FC), 50 : 20 : 30 (GC), and 50 : 50 : 0 (HC)). Each blend was assayed for pH, antinutrient, antioxidant, and proximate contents. Results obtained showed that the CCP blends were significantly influenced by the length of cowpea soaking. Moisture and fiber content decreased significantly (P ≤ 0.05) with increased steeping time (3 to 9 h) for the cassava-cowpea-OFSP blends. The blends were significantly different (P ≤ 0.05) in terms of their protein, fiber, fat, ash, and carbohydrate contents. The moisture content of the EC blend was significantly different from only FC and HC blends, respectively. Six (6) hours of soaking showed no significant difference in the nutritional composition of the flour samples compared with 9 hours. The soaking length optimizes the health and nutrient-promoting factors in the various blend samples while also reaffirming cowpeas as a viable biofortification option for use in complementary food production.
Collapse
|
9
|
Kouam AF, Owona BA, Fifen R, Njayou FN, Moundipa PF. Inhibition of CYP2E1 and activation of Nrf2 signaling pathways by a fraction from Entada africana alleviate carbon tetrachloride-induced hepatotoxicity. Heliyon 2020; 6:e04602. [PMID: 32904230 PMCID: PMC7452572 DOI: 10.1016/j.heliyon.2020.e04602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/13/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Entada africana is used in non-conventional medicine for the management of liver ailments. A fraction, designated EaF10 (methylene chloride/methanol 90:10, v/v) with promising hepatoprotective activity has been isolated. Since the mechanisms underlying EaF10 hepatoprotective action remain unknown, this study was undertaken to investigate the anti-hepatotoxic mechanism of the fraction against carbon tetrachloride (CCl4)-induced hepatotoxicity and its antioxidant properties. Antioxidant activities of EaF10 were assessed through four chemical antioxidant assays and its anti-hepatotoxic effect evaluated in vivo and in vitro by post-treatment (25 or 100 mg/Kg) or co-treatment (6.25-100 μg/mL) in CCl4-intoxicated mice and normal human liver cells line L-02 hepatocytes respectively; and biochemical and molecular parameters assessed respectively by spectrophotometry, and by quantitative real-time polymerase chain reaction and western blot analysis. EaF10 exhibited strong antioxidant activities correlated with its polyphenol content. Serum levels of alanine/aspartate aminotransferase (AST/ALT) and nitrite oxide, liver contents of glutathione (GSH) protein carbonylation and malondialdehyde (MDA), liver activities of catalase (CAT), glutathione-S-transferase (GST) and superoxide dismutase (SOD) and cell viability showed the anti-hepatotoxic effect of EaF10, supported by histopathological observations. The fraction decreased the protein level of Cytochrome P450 2E1 (CYP2E1) and Kelch-like ECH-associated protein-1 (Keap-1), induced nuclear translocation of Nuclear factor-erythroid 2-related factor-2 (Nrf2) coupled to an increase of the mRNA levels of CAT, SOD1 and GST in CCl4-intoxicated L-02 hepatocytes. These findings evidenced that the studied plant fraction possesses a strong antioxidant capacity and prevents CCl4-induced hepatotoxicity, likely through inhibition of CYP2E1 and activation of the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Arnaud Fondjo Kouam
- Medical Research and Applied Biochemistry Laboratory, Department of Biomedical Sciences, Faculty of Health Sciences, University of Buea, PO Box 63, Buea, Cameroon
- Laboratory of Molecular Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé 1, PO Box 812, Yaoundé, Cameroon
| | - Brice Ayissi Owona
- Laboratory of Molecular Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé 1, PO Box 812, Yaoundé, Cameroon
| | - Rodrigue Fifen
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, PO Box 812, Yaoundé, Cameroon
| | - Frédéric Nico Njayou
- Laboratory of Molecular Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé 1, PO Box 812, Yaoundé, Cameroon
| | - Paul Fewou Moundipa
- Laboratory of Molecular Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé 1, PO Box 812, Yaoundé, Cameroon
| |
Collapse
|