1
|
Mirdan GA, Hassan QMA, Kadhum MY, Emshary CA, Hussein KA, Sultan HA, Ismael SMH, Abdullmajed HA. Study of DFT, Synthesis, and Nonlinear Optical Properties of a Schiff Base Compound. J Fluoresc 2025:10.1007/s10895-025-04235-9. [PMID: 40056324 DOI: 10.1007/s10895-025-04235-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/27/2025] [Indexed: 03/10/2025]
Abstract
A Schiff base (LS2) compound is synthesized via a reaction of a hot ethanolic solution of (3-ethoxy salcyaldehyde) and a hot ethanolic solution of amine(methyl-4-amino benzoate). The LS2 compound is characterized via 1H and 13C NMR spectra, Mass spectrum, and FT-IR spectrum. We observed multiple diffraction patterns of a cw 473 nm laser beam from the LS2 compound caused by spatial self-phase modulation (SSPM). The nonlinear refractive index (NLRI) of the LS2 compound is estimated at the high-power input of the laser beam and found equals to 5.387 × 10-7 cm2/W. The Z-scan techniques are used to estimate the NLRI and found equals to 0.12 × 10-7 cm2/W. The all-optical switching (AOS) effect can be seen when 473 nm is used as the controlling beam and 532 nm is used as the controlled beam.
Collapse
Affiliation(s)
- Ghufran A Mirdan
- Ministry of Education, General Directorate of Education, Basrah, Iraq
| | - Qusay M A Hassan
- Department of Physics, College of Education for Pure Sciences, University of Basrah, Basrah, 61001, Iraq.
| | - Mouayed Y Kadhum
- Department of Chemistry, College of Education for Pure Sciences, University of Basrah, Basrah, 61001, Iraq
| | - C A Emshary
- Department of Physics, College of Education for Pure Sciences, University of Basrah, Basrah, 61001, Iraq
| | - Kawkab Ali Hussein
- Department of Chemistry, College of Education for Pure Sciences, University of Basrah, Basrah, 61001, Iraq
| | - H A Sultan
- Department of Physics, College of Education for Pure Sciences, University of Basrah, Basrah, 61001, Iraq
| | - Sadiq M H Ismael
- Department of Chemistry, College of Education for Pure Sciences, University of Basrah, Basrah, 61001, Iraq
| | | |
Collapse
|
2
|
Ismael SMH, Hashim NS, Al-Saymari FA, Sultan HA, Hassan QMA, Hussein KA, Emshary CA, Jarallah HM. Synthesize of an Azo Compound: Investigation its Optical Nonlinear Properties and DFT Study. J Fluoresc 2024:10.1007/s10895-024-04082-0. [PMID: 39710821 DOI: 10.1007/s10895-024-04082-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/05/2024] [Indexed: 12/24/2024]
Abstract
In the present work, a diazonium salt is prepared by a diazonium reaction of sulfamerazine in the presence of aqueous hydrochloric acid and sodium nitrate. Structural confirmation of azo compounds synthesize is achieved by mass spectrometry, infrared spectroscopy, and 1H, 13C nuclear magnetic resonance. The sample geometry is derived using Density Functional Theory (DFT) and DT-DFT applied to the basis set B3LYPL6-311 + G(d,p). An investigation is conducted on the optical nonlinear (ONL) properties of the azo compounds formed under the excitation with a low power 532 nm laser beam using diffraction patterns (DPs) and a typical Z-scan combined with optical limiting. The Fresnel-Kirchhoff integral provides numerically obtained boundary conditions in the sense of experimentally obtained values. As high as 2 × 10-7 cm2/W of nonlinear refractive index (NLRI), n2, 1.24 × 10-3 cm/W of the nonlinear absorption coefficient (NLAC), β, and 15.5 mW of the optical limiting (OL) threshold, TH, are obtained.
Collapse
Affiliation(s)
- Sadiq M H Ismael
- Department of Chemistry, College of Education for Pure Sciences, University of Basrah, Basrah, 61001, Iraq
| | - Numan S Hashim
- Department of Physics, College of Education for Pure Sciences, University of Basrah, Basrah, 61001, Iraq
| | - F A Al-Saymari
- Department of Physics, College of Education for Pure Sciences, University of Basrah, Basrah, 61001, Iraq
| | - H A Sultan
- Department of Physics, College of Education for Pure Sciences, University of Basrah, Basrah, 61001, Iraq
| | - Qusay M A Hassan
- Department of Physics, College of Education for Pure Sciences, University of Basrah, Basrah, 61001, Iraq.
| | - Kawkab Ali Hussein
- Department of Chemistry, College of Education for Pure Sciences, University of Basrah, Basrah, 61001, Iraq
| | - C A Emshary
- Department of Physics, College of Education for Pure Sciences, University of Basrah, Basrah, 61001, Iraq
| | - Hanadi M Jarallah
- Department of Chemistry, College of Education for Pure Sciences, University of Basrah, Basrah, 61001, Iraq
| |
Collapse
|
3
|
Virtual screening and computational simulation analysis of antimicrobial photodynamic therapy using propolis-benzofuran A to control of Monkeypox. Photodiagnosis Photodyn Ther 2023; 41:103208. [PMID: 36417972 PMCID: PMC9675939 DOI: 10.1016/j.pdpdt.2022.103208] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/05/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Monkeypox is a viral zoonotic disease and there are no available treatments that specifically target the monkeypox virus. Antimicrobial photodynamic therapy (aPDT) is a non-invasive approach that has been introduced as a targeted adjuvant treatment against various microbial infections. In this study, we used a computational strategy to investigate the potential of aPDT using propolis-benzofuran A against the Monkeypox virus. METHODS In this in silico study, the evaluation of drug-likeness, molecular properties, and bioactivity of propolis-benzofuran A was carried out using SwissADME. Pro-Tox II and OSIRIS servers were used to identify the organ toxicities and toxicological endpoints of propolis-benzofuran A. Molecular docking approach was employed to screen the potential binding modes of propolis-benzofuran A ligand with the Monkeypox virus A48R protein (PDB ID: 2V54). RESULTS The results of the computational investigation revealed that propolis-benzofuran A obeyed all the criteria of Lipinski's rule of five and exhibited drug-likeness. The photosensitizing agent tested was categorized as toxicity class-5 and was found to be non-hepatotoxic, non-carcinogenic, non-mutagenic, and non-cytotoxic. The docking studies employing a predicted three-dimensional model of Monkeypox virus A48R protein with propolis-benzofuran A ligand exhibited good binding affinity (-7.84 kcal/mol). DISCUSSION The computational simulation revealed that propolis-benzofuran A had a strong binding affinity with the Monkeypox virus A48R protein. Hence, aPDT based on this natural photosensitizer can be proposed as an adjuvant treatment against the Monkeypox virus.
Collapse
|
4
|
UPLC-MS/MS Analysis of Naturally Derived Apis mellifera Products and Their Promising Effects against Cadmium-Induced Adverse Effects in Female Rats. Nutrients 2022; 15:nu15010119. [PMID: 36615776 PMCID: PMC9823550 DOI: 10.3390/nu15010119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Honeybee products arouse interest in society due to their natural origin and range of important biological properties. Propolis (P) and royal jelly (RJ) attract scientists' attention because they exhibit antioxidant, anti-inflammatory, anti-bacterial, anti-tumor, and immunomodulatory abilities. In this study, we tested whether P and RJ could mitigate the adverse effects of cadmium (Cd) exposure, with particular emphasis on the reproductive function in female rats. In this line, one week of pretreatment was established. Six experimental groups were created, including (i) the control group (without any supplementation), (ii) the Cd group (receiving CdCl2 in a dose of 4.5 mg/kg/day), (iii) the P group (50 mg of P/kg/day), (iv) RJ group (200 mg of RJ/kg/day), (v) P + Cd group (rats pretreated with P and then treated with P and Cd simultaneously), (vi) RJ + Cd group (animals pretreated with RJ before receiving CdCl2 simultaneously with RJ). Cd treatment of rats adversely affected a number of measured parameters, including body weight, ovarian structure and ultrastructure, oxidative stress parameters, increased ovarian Cd content and prolonged the estrous cycle. Pretreatment and then cotreatment with P or RJ and Cd alleviated the adverse effects of Cd, transferring the clusters in the PCA analysis chart toward the control group. However, clusters for cotreated groups were still distinctly separated from the control and P, or RJ alone treated groups. Most likely, investigated honeybee products can alter Cd absorption in the gut and/or increase its excretion through the kidneys and/or mitigate oxidative stress by various components. Undoubtedly, pretreatment with P or RJ can effectively prepare the organism to overcome harmful insults. Although the chemical composition of RJ and P is relatively well known, focusing on proportion, duration, and scheme of treatment, as well as the effects of particular components, may provide interesting data in the future. In the era of returning to natural products, both P and RJ seem valuable materials for further consideration as anti-infertility agents.
Collapse
|
5
|
Thermodynamic and kinetic models for acid chloride formation: A computational and theoretical mechanistic study. J Mol Graph Model 2022; 112:108139. [DOI: 10.1016/j.jmgm.2022.108139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/20/2022]
|
6
|
Gholamirad P, Rouhani M. DFT study about the effects of BX3 (X = H, F, Cl and Br) derivatives on the C–H acidity enhancement. MAIN GROUP CHEMISTRY 2021. [DOI: 10.3233/mgc-210070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A computational study about the effect of BX3 (X = H, F, Cl and Br) interaction in C–H acidity enhancement of some aldehyde, ketone and imine molecules is performed by B3LYP/6- 311++G(d,p) method in gas phase. The boron derivatives of model molecules show more acidity in comparison with their pure forms. This acidity improvement is attributed to the effective interaction of the C = O/C = N group with the B atom of BX3. The acidity enhancement is according to the BBr3 > BCl3 > BF3 > BH3 order which shows that boron compounds with electron withdrawing groups and especially BBr3 can be used as an effective and promising C–H activator in various organic reactions.
Collapse
Affiliation(s)
- Parisa Gholamirad
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Morteza Rouhani
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
7
|
Serdaroğlu G, Uludağ N. Structural, electronic, and spectroscopic study on 1,5-methanoazocino[4,3-b]indole synthesized by TFB-based route. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01683-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Rouhani M. Evaluation of structural properties and antioxidant capacity of Proxison: A DFT investigation. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2020.113096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
|
10
|
Motlagh NM, Rouhani M, Mirjafary Z. Aminated C20 fullerene as a promising nanosensor for detection of A-234 nerve agent. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Sheikhsoleimani N, Rouhani M, Saeidian H. Computational evaluation of Ga-doped phagraphene as a work function-based sensor for detection of some air pollutant molecules. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Rouhani M. A deeper computational look at Mumm rearrangement: Evaluation of substituent, solvent, and temperature effects. J PHYS ORG CHEM 2020. [DOI: 10.1002/poc.4106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Morteza Rouhani
- Department of Chemistry, Science and Research Branch Islamic Azad University Tehran Iran
| |
Collapse
|
13
|
Uludağ N, Serdaroğlu G. New route for synthesis of 2-(2,2-dimethoxyethyl)-1,2,3,4,5,6-hexahydro-1,5-methanoazocino[4,3- b]indole and DFT investigation. Heliyon 2020; 6:e04105. [PMID: 32548324 PMCID: PMC7286972 DOI: 10.1016/j.heliyon.2020.e04105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 01/27/2023] Open
Abstract
Development of efficient sequences for the synthesis of the title compound (2-(2,2-dimethoxyethyl)-1,2,3,4,5,6-hexahydro-1,5-methanoazocino[4,3-b]indole) (7) was described. The title compound was synthesized through several steps starting from phenylhydrazine hydrochloride and dimethyl (R)-2-(3-oxocyclohexyl)malonate. In this route, all synthesized compounds were observed by spectroscopic tools (FT-IR, NMR): Methyl-2-(2,3,4,9-1H-carbazol-2-yl)acetate (3), 2-(2,3,4,9-tetrahydro-1H-carbazol-2-yl)acetic acid (4), N-(2,2-dimethoxyethyl)-2-(2,3,4,9-tetrahydro-1H-carbazol-2-yl)acetamide (5), 2-(2,2-dimethoxyethyl)-1,2,4,5,6,7-hexahydro-3H-1,5-methanoazocino[4,3-b]indol-3-one (6), 2-(2,2-dimethoxyethyl)-2,3,4,5,6,7-hexahydro-1H-1,5-methanoazocino[4,3-b]indole (7). The central step in these syntheses is the dehydrogenative reaction, which constructs the tetracyclic ring system from a much simpler tetracyclic precursor. The six-stable conformers of the compound (7) were used for further calculations such as FT-IR, NMR, NLO, and FMO analyses, performed at the B3LYP/6-311++G(d,p) level. This work revealed that (7) can be a good material to use in the non-linear optical material because its β tensor is greater ten times than that of the urea.
Collapse
Affiliation(s)
- Nesimi Uludağ
- Namık Kemal University, Department of Chemistry, 59030, Tekirdag, Turkey
| | - Goncagül Serdaroğlu
- Sivas Cumhuriyet University, Department of Science Education, 58040, Sivas, Turkey
- Corresponding author.
| |
Collapse
|