1
|
Shaltout WA, Hafez H, Elsayed MS, Hassan AF. A novel Araucaria gum/carrageenan/Mg-Fe LDH nanocomposite for advanced batch and fixed-bed adsorption of mercuric ions from aqueous medium. RSC Adv 2025; 15:16901-16920. [PMID: 40395798 PMCID: PMC12090986 DOI: 10.1039/d5ra02081f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 05/08/2025] [Indexed: 05/22/2025] Open
Abstract
In the present work, several meticulously planned batch and fixed-bed adsorption experiments were performed to compare the adsorption capacities of the synthesized magnesium-ferric layered double hydroxide (Mg-Fe LDH, MFL), carrageenan/Mg-Fe LDH nanocomposite (MFC), and Araucaria gum/carrageenan/Mg-Fe LDH nanocomposite (MFAC) for mercuric ion removal from aqueous medium. Various physicochemical approaches were conducted to characterize the fabricated adsorbents, proving the successful incorporation of potassium κ-carrageenan and Araucaria gum on the LDH surface. The relatively greater particle size (130 nm), irregular pore distribution, average pore radius (3.2086 nm), and pHPZC (6.25) of MFAC were mainly responsible for its superior Hg2+ adsorption. Through a series of batch adsorption tests, Hg2+ adsorption on the MFAC nanocomposite exhibited a maximum adsorption capacity of 505.74 mg g-1 at 20 °C, pH 6, and a solid dosage of 2 g L-1 after 30 min. Several kinetics and isotherms were well-fitted for the adsorption process. Fixed-bed column tests proved that MFAC achieved 550.50 mg g-1 at a bed height of 1 cm, a Hg2+ solution concentration of 80 mg L-1, and a flow rate of 30 mL min-1 at 20 °C and pH 6 over 300 min. Thus, MFAC can be efficiently applied in wastewater treatment, offering major support for further research into practical applications.
Collapse
Affiliation(s)
- Walaa A Shaltout
- Survey of Natural Resources Department, Environmental Studies and Research Institute, University of Sadat City Sadat City, Minufiya 32897, Egypt
| | - H Hafez
- Nanotechnology Department, Environmental Studies and Research Institute, University of Sadat City Sadat City Minufiya 32897 Egypt
| | - Maha S Elsayed
- Central Laboratory of Date Palm Research and Development, Agricultural Research Center Giza 12619 Egypt
| | - Asaad F Hassan
- Chemistry Department, Faculty of Science, Damanhour University Damanhour 22511 Egypt
| |
Collapse
|
2
|
El-Fattah WA, Guesmi A, Hamadi NB, El-Desouky MG, El-Bindary AA. Smart nanocomposite of carbon quantum dots in double hydrogel (carboxymethyl cellulose/chitosan) for effectively adsorb and remove diquat herbicide: Characterization, thermodynamics, isotherms, kinetics, and optimizing through Box-Behnken Design. Int J Biol Macromol 2025; 309:142806. [PMID: 40188922 DOI: 10.1016/j.ijbiomac.2025.142806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/22/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
This research synthesized carbon quantum dots (CQDs) encapsulated in a chitosan (CS) and carboxymethyl cellulose (CMC) matrix. The crosslinking with epichlorohydrin formed (CQDs-CS/CMC) hydrogel beads for effective removal of diquat (DQ) herbicides. Various techniques like XRD, FT-IR, FESEM, EDX, XPS, and nitrogen adsorption/desorption isotherm analysis were used to evaluate the textural properties. The textural properties of the CQDs-CS/CMC were investigated through nitrogen adsorption/desorption isotherms. The surface area was found to be 95.72 m2/g, pore size 6.57 nm, and pore volume 0.313 cc/g. Post-DQ adsorption, these values decreased to 68.44 m2/g, 4.2 nm, and 0.162 cc/g, indicating DQ blocked mesopores and adsorption sites. The study also examined the effects of dosage, pH, temperature, and initial DQ concentration on adsorption, employing equilibrium and kinetic studies. The system conformed to pseudo-second-order kinetics and Langmuir isotherm models. Chemisorption was the main adsorption process, with an energy of 32.3 kJ/mol. Increased metal uptake at higher temperatures shows the process is spontaneous and endothermic. The Box-Behnken Design software identified optimal adsorption parameters: a pH of 8 and a dosage of 0.02 g of CQDs-CS/CMC per 25 mL of DQ solution, achieving 449.6 mg/g adsorption capability. Extensive testing using Design-Expert software substantially improved the adsorption procedure. The assessment of adsorbent stability involved six cycles of adsorption/desorption. Results showed consistent reusability with no significant reduction in removal efficacy. It maintained its initial chemical configuration before and after repurposing, exhibited consistent performance, and reliable XRD results.
Collapse
Affiliation(s)
- Wesam Abd El-Fattah
- Chemistry Department, College of Science, IMSIU (Imam Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia
| | - Ahlem Guesmi
- Chemistry Department, College of Science, IMSIU (Imam Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia
| | - Naoufel Ben Hamadi
- Chemistry Department, College of Science, IMSIU (Imam Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia
| | | | - Ashraf A El-Bindary
- Chemical Department, Faculty of Science, Damietta University, Damietta 34517, Egypt.
| |
Collapse
|
3
|
Alotaibi AM, Elsayed NH. Adsorption and eliminating of diquat herbicide using layer double hydroxide enclosed in double layer hydrogel beads of carboxymethyl cellulose and alginate: Synthesis, characterization, adsorption isotherm, kinetics, thermodynamics and optimization via box-behnken design. Int J Biol Macromol 2025; 303:140564. [PMID: 39904426 DOI: 10.1016/j.ijbiomac.2025.140564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/19/2025] [Accepted: 01/31/2025] [Indexed: 02/06/2025]
Abstract
This study involved the creation of AlCu-layered double hydroxide (LDH) encapsulated in carboxymethyl cellulose (CMC) and alginate (Alg), which was then crosslinked with epichlorohydrin to form hydrogel beads (AlCu-LDH/CMC-Alg hydrogel beads) used for the removal of diquat (DQ) herbicide. The resulting material, AlCu-LDH/CMC-Alg hydrogel beads, underwent a comprehensive analysis of its properties using XRD, FT-IR, XPS, EDX, N2 adsorption/desorption isotherm, and FESEM to determine its textural characteristics. The AlCu-LDH/CMC-Alg hydrogel beads was analyzed using nitrogen adsorption/desorption isotherms to assess its textural properties. The hydrogel beads of AlCu-LDH/CMC-Alg showed a surface area of 114.22 m2/g, a pore volume of 0.35 cc/g, and a pore radius of 3.62 nm, indicating a mesoporous structure with a notable adsorption capacity. Following the adsorption of DQ, these measurements decreased to 65.145 m2/g, 0.2 cc/g, and 2.4 nm, respectively, suggesting that the DQ had filled or blocked the pores. This study also analyzed the impact of dose, pH, temperature, and initial concentration on the adsorption process. Equilibrium and adsorption kinetics were used to examine the adsorption characteristics. The process followed the pseudo-second-order and Langmuir isotherm models. The primary adsorption mechanism identified was chemisorption, with an adsorption energy of 29.6 kJ.mol-1. The rise in DQ absorption at higher temperatures suggests an endothermic and spontaneous adsorption process. The optimal adsorption parameters, as determined by the Box-Behnken design software, are a pH of 8, a dosage of 0.02 g of AlCu-LDH/CMC-Alg hydrogel beads per 25 mL, and an adsorption capacity of 302.6 mg/g for the DQ solution. Through careful testing and utilization of the Box-Behnken design and response surface technique in the Design-Expert software, significant enhancements were made to the adsorption process. The stability of the adsorbent was assessed by conducting six successive cycles of adsorption and desorption, revealing that its reusability remained steady with no noticeable decline in removal efficiency. Furthermore, it preserved its original chemical makeup both before and after being reused, demonstrated steady effectiveness, and kept consistent X-ray diffraction (XRD) results.
Collapse
Affiliation(s)
- Alya M Alotaibi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Nadia H Elsayed
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia.
| |
Collapse
|
4
|
Zhang Z, Tang L, Luo J, Tan J, Jiang X. Comparative study of Mg/Al-LDH and Mg/Fe-LDH on adsorption and loss control of 2,4-dichlorophenoxyacetic acid. ADVANCED BIOTECHNOLOGY 2025; 3:4. [PMID: 39883343 DOI: 10.1007/s44307-024-00055-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/25/2024] [Accepted: 12/15/2024] [Indexed: 01/31/2025]
Abstract
Low efficiency and high surface runoff of 2,4-dichlorophenoxyacetic acid (2,4-D) from agricultural field threaten crop yield severely. Layered double hydroxides (LDH) have shown promising adsorption properties for 2,4-D. However, the comparison of two environmentally friendly LDHs (i.e. Mg/Al-LDH vs Mg/Fe-LDH) on adsorption of 2,4-D and corresponding intrinsic mechanisms are still unclear, and the studies on the leaching control of 2,4-D by LDHs in soil environment are particularly limited. In this study, Mg/Al-LDH and Mg/Fe-LDH were selected to conduct their adsorption kinetics experiment for 2,4-D combined with the characterization technology. The results showed that the adsorption capacity of Mg/Al-LDH and Mg/Fe-LDH for 2,4-D was up to 242 mg kg-1 and 64 mg kg-1, respectively, which were negatively correlated with pH. Adsorption mechanisms of both Mg/Al-LDH and Mg/Fe-LDH for 2,4-D are dominated by chemical adsorption, including electrostatic attraction and inner sphere complexation, but no interlayer adsorption mechanism. Mg/Al-LDH contains smaller metal ion radius, which provides greater surface charge density, resulting in greater electrostatic attraction and inner sphere complexation to 2,4-D compared to Mg/Fe-LDH. The greater adsorption capacity of Mg/Al-LDH for 2,4-D was driven by the higher adsorption energy (Eads) and lower electron density, as corroborated by density functional theory (DFT) calculation. The soil column experiment further verified that Mg/Al-LDH could control the loss of 2,4-D more effectively, and the leaching amount could be significantly reduced by 61.7%, while the effect of Mg/Fe-LDH was only 24.2%. This study provides theoretical guidance for screening more potential LDH types to solve the leaching loss of 2,4-D from soil and improve its effectiveness in agricultural production.
Collapse
Affiliation(s)
- Zeyuan Zhang
- School of Agriculture and Biotechnology, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People's Republic of China
| | - Liangjie Tang
- School of Agriculture and Biotechnology, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People's Republic of China
| | - Jing Luo
- School of Agriculture and Biotechnology, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People's Republic of China
| | - Jinfang Tan
- School of Agriculture and Biotechnology, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People's Republic of China
| | - Xiaoqian Jiang
- School of Agriculture and Biotechnology, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People's Republic of China.
| |
Collapse
|
5
|
Samanth A, Selvaraj R, Murugesan G, Varadavenkatesan T, Vinayagam R. Efficient adsorptive removal of 2,4-dichlorophenoxyacetic acid (2,4-D) using biomass derived magnetic activated carbon nanocomposite in synthetic and simulated agricultural runoff water. CHEMOSPHERE 2024; 361:142513. [PMID: 38830462 DOI: 10.1016/j.chemosphere.2024.142513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/14/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
This study focused on evaluating the efficacy of a magnetic activated carbon material (CPAC@Fe3O4) derived from pods of copper pod tree in adsorbing the toxic herbicide, 2,4- (2,4-D) from aqueous solutions. The synthesized CPAC@Fe3O4 adsorbent, underwent various characterization techniques. FESEM images indicated a rough surface, incorporating iron oxide nanoparticles, while EDS analysis confirmed the presence of elements like Fe, O, and C. Notably, the CPAC@Fe3O4 exhibited high surface area (749.10 m2/g) and pore volume (0.5351 cm³/g), confirming its mesoporous nature. XRD investigations identified distinct signals associated with graphitic carbon and magnetite nanoparticles, while VSM analysis verified its magnetic properties with a high magnetic saturation value (2.72 emu/g). The adsorption process was exothermic, with a decrease in adsorption capacity at higher temperatures. Freundlich isotherm provided the best fit for the adsorption, and the pseudo-second-order equation effectively described the kinetics. Remarkably, the maximum adsorption capacity ranged from 246.43 to 261.03 mg/g, surpassing previously reported values. The ΔH° value (-8.67 kJ/mol) suggested a physisorption mechanism, and the negative ΔG° values established the spontaneous nature. Furthermore, the synthesized adsorbent demonstrated exceptional reusability, allowing for up to five cycles of adsorption-desorption operations. When applied to simulated agricultural runoff, CPAC@Fe3O4 showcased a significant adsorption capacity of 160.71 mg/g for 50 mg/L 2,4-D, using a 0.2 g/L dosage at pH 2. This study showcased the transformation of copper pod biomass into a valuable magnetic nanoadsorbent capable of efficiently eliminating the noxious 2,4-D pollutant from aqueous environments.
Collapse
Affiliation(s)
- Adithya Samanth
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Gokulakrishnan Murugesan
- Department of Biotechnology, M.S.Ramaiah Institute of Technology, Bengaluru, 560054, Karnataka, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
6
|
Harabi S, Guiza S, Álvarez-Montero A, Gómez-Avilés A, Belver C, Rodríguez JJ, Bedia J. Adsorption of 2,4-dichlorophenoxyacetic acid on activated carbons from macadamia nut shells. ENVIRONMENTAL RESEARCH 2024; 247:118281. [PMID: 38266891 DOI: 10.1016/j.envres.2024.118281] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
This study reports on the application of activated carbons from macadamia nut shells as adsorbents for the removal of 2,4-dichlorophenoxyacetic acid, a commonly used pesticide, from water. Different activating agents (FeCl3, ZnCl2, KOH and H3PO4) were used to obtain adsorbents within a wide range of porous texture and surface properties. The characterization of the resulting activated carbons was performed by N2 adsorption-desorption, elemental analysis, TG and pHPZC. The adsorption experiments were conducted in batch at 25, 45 and 65 °C. The adsorption kinetics on activated carbons obtained with FeCl3 H3PO4 or KOH was well described by the pseudo-second order model, whereas for the resulting from ZnCl2 activation the experimental data fit better the pseudo-first order model. The equilibrium studies were performed with the KOH- and ZnCl2-activated carbons, the two showing higher surface area values. In both cases, high adsorption capacities were obtained (c.a. 600 mg g-1) and the experimental data were better described by the Langmuir and Toth models. The thermodynamic study allows concluding the spontaneous and endothermic character of the adsorption process, as well as an increase of randomness at the solid/liquid interface. Breakthrough curves were also obtained and fitted to the logistic model.
Collapse
Affiliation(s)
- S Harabi
- University of Gabes, National Engineering School of Gabes, Laboratory of Applied Thermodynamic, LR18ES33, 6029, Gabes, Tunisia
| | - S Guiza
- University of Gabes, National Engineering School of Gabes, Laboratory of Applied Thermodynamic, LR18ES33, 6029, Gabes, Tunisia
| | - A Álvarez-Montero
- Chemical Engineering Department, Universidad Autónoma de Madrid, Campus Cantoblanco, E-28049, Madrid, Spain
| | - A Gómez-Avilés
- Chemical Engineering Department, Universidad Autónoma de Madrid, Campus Cantoblanco, E-28049, Madrid, Spain
| | - C Belver
- Chemical Engineering Department, Universidad Autónoma de Madrid, Campus Cantoblanco, E-28049, Madrid, Spain
| | - J J Rodríguez
- Chemical Engineering Department, Universidad Autónoma de Madrid, Campus Cantoblanco, E-28049, Madrid, Spain.
| | - J Bedia
- Chemical Engineering Department, Universidad Autónoma de Madrid, Campus Cantoblanco, E-28049, Madrid, Spain.
| |
Collapse
|
7
|
Mohd Ghazi R, Nik Yusoff NR, Abdul Halim NS, Wahab IRA, Ab Latif N, Hasmoni SH, Ahmad Zaini MA, Zakaria ZA. Health effects of herbicides and its current removal strategies. Bioengineered 2023; 14:2259526. [PMID: 37747278 PMCID: PMC10761135 DOI: 10.1080/21655979.2023.2259526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023] Open
Abstract
The continually expanding global population has necessitated increased food supply production. Thus, agricultural intensification has been required to keep up with food supply demand, resulting in a sharp rise in pesticide use. The pesticide aids in the prevention of potential losses caused by pests, plant pathogens, and weeds, but excessive use over time has accumulated its occurrence in the environment and subsequently rendered it one of the emerging contaminants of concern. This review highlights the sources and classification of herbicides and their fate in the environment, with a special focus on the effects on human health and methods to remove herbicides. The human health impacts discussion was in relation to toxic effects, cell disruption, carcinogenic impacts, negative fertility effects, and neurological impacts. The removal treatments described herein include physicochemical, biological, and chemical treatment approaches, and advanced oxidation processes (AOPs). Also, alternative, green, and sustainable treatment options were discussed to shed insight into effective treatment technologies for herbicides. To conclude, this review serves as a stepping stone to a better environment with herbicides.
Collapse
Affiliation(s)
- Rozidaini Mohd Ghazi
- Faculty of Earth Science, Universiti Malaysia Kelantan - Jeli Campus, Jeli, Kelantan, Malaysia
| | - Nik Raihan Nik Yusoff
- Faculty of Earth Science, Universiti Malaysia Kelantan - Jeli Campus, Jeli, Kelantan, Malaysia
| | | | | | - Nurzila Ab Latif
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Siti Halimah Hasmoni
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | | | - Zainul Akmar Zakaria
- Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| |
Collapse
|
8
|
Straioto H, Viotti PV, Moura AAD, Diório A, Scaliante MHNO, Moreira WM, Vieira MF, Bergamasco R. Modification of natural zeolite clinoptilolite and ITS application in the adsorption of herbicides. ENVIRONMENTAL TECHNOLOGY 2023; 44:3949-3964. [PMID: 35546108 DOI: 10.1080/09593330.2022.2077134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
The clinoptilolite natural zeolites (NZs) posses low herbicide adsorption capacity demanding acid-, alkali-, or salt chemical modifications that enhance its adsorption. However, this may affect the material structure and charge distribution. Alternatively, zeolites may be synthesized at a high cost and time-consuming process. Consequently, new methods, such as the hydrothermal method, for NZ modification needs to be studied. In this sense, a novel surface-modified zeolite (SMZ), using hexadecyltrimethylammonium bromide (CTAB), in acid media was produced by the hydrothermal method and applied for the adsorption of Atrazine (ATZ), Diuron (DIU) and 2,4-D. Commercial NZ and SMZ were characterized by SEM, XRD, TGA, FT-IR, AA spectroscopy, pHPZC, Zeta potential and N2-physisorption. The SMZ chosen for the adsorption experiments was the one with the highest modification yield and adsorption capacity obtained from a complete design of experiments (CTAB=0.74 ; D=12 Mesh; HCl=0.1 M; t=6 h and T=205 ºC). The adsorption experiments revealed that the SMZ adsorption capacity for the herbicide 2,4-D (qmax=9.02 mg/g) was greater than that obtained for ATZ (qmax=2.11 mg/g) and DIU (qmax=1.85 mg/g), which was explained by the presence of the hydroxyl group and by geometric characteristics of the 2,4-D. Adsorption models' fitting showed that the adsorption of 2,4-D onto SMZ were best described by pseudo-second order kinetic (k2=0.005-0.006 g/mg.min; qe,exp=7.122-8.614 mg/g) and Langmuir isothermal model (KL=0.283-0.499 L/mg; qm=7.167-7.995 mg/g). These results indicate that the hydrothermal method is a viable alternative to enable the use of NZs for the adsorption of emerging contaminants from wastewater.
Collapse
Affiliation(s)
- Henrique Straioto
- Department of Chemical Engineering, State University of Maringá, Maringá, Brazil
| | - Paula Valéria Viotti
- Department of Chemical Engineering, State University of Maringá, Maringá, Brazil
| | | | - Alexandre Diório
- Department of Chemical Engineering, State University of Maringá, Maringá, Brazil
| | | | | | | | - Rosângela Bergamasco
- Department of Chemical Engineering, State University of Maringá, Maringá, Brazil
| |
Collapse
|
9
|
Pattappan D, Kapoor S, Islam SS, Lai YT. Layered Double Hydroxides for Regulating Phosphate in Water to Achieve Long-Term Nutritional Management. ACS OMEGA 2023; 8:24727-24749. [PMID: 37483187 PMCID: PMC10357453 DOI: 10.1021/acsomega.3c02576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023]
Abstract
Hunger and undernourishment are increasing global challenges as the world's population continuously grows. Consequently, boosting productivity must be implemented to reach the global population's food demand and avoid deforestation. The current promising agricultural practice without herbicides and pesticides is fertilizer management, particularly that of phosphorus fertilizers. Layered double hydroxides (LDHs) have recently emerged as favorable materials in phosphate removal, with practical application possibilities in nanofertilizers. This review discusses the fundamental aspects of phosphate removal/recycling mechanisms and highlights the current endeavors on the development of phosphate-selective sorbents using LDH-based materials. Specific emphasis is provided on the progress in designing LDHs as the slow release of phosphate fertilizers reveals their relevance in making agro-practices more ecologically sound. Relevant pioneering efforts have been briefly reviewed, along with a discussion of perspectives on the potential of LDHs as green nanomaterials to improve food productivity with low eco-impacts.
Collapse
Affiliation(s)
- Dhanaprabhu Pattappan
- Department
of Materials Engineering, Ming Chi University
of Technology, New Taipei
City 24301, Taiwan, ROC
| | - Sakshi Kapoor
- Centre
for Nanoscience and Nanotechnology, Jamia
Millia Islamia (A Central University), New Delhi 110025, India
| | - Saikh Safiul Islam
- Centre
for Nanoscience and Nanotechnology, Jamia
Millia Islamia (A Central University), New Delhi 110025, India
| | - Yi-Ting Lai
- Department
of Materials Engineering, Ming Chi University
of Technology, New Taipei
City 24301, Taiwan, ROC
- Center
for Plasma and Thin Film Technologies, Ming
Chi University of Technology, New Taipei City 24301, Taiwan, ROC
- Biochemical
Technology R&D Center, Ming Chi University
of Technology, New Taipei
City 24301, Taiwan, ROC
| |
Collapse
|
10
|
Blachnio M, Kusmierek K, Swiatkowski A, Derylo-Marczewska A. Adsorption of Phenoxyacetic Herbicides from Water on Carbonaceous and Non-Carbonaceous Adsorbents. Molecules 2023; 28:5404. [PMID: 37513275 PMCID: PMC10385827 DOI: 10.3390/molecules28145404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The increasing consumption of phenoxyacetic acid-derived herbicides is becoming a major public health and environmental concern, posing a serious challenge to existing conventional water treatment systems. Among the various physicochemical and biological purification processes, adsorption is considered one of the most efficient and popular techniques due to its high removal efficiency, ease of operation, and cost effectiveness. This review article provides extensive literature information on the adsorption of phenoxyacetic herbicides by various adsorbents. The purpose of this article is to organize the scattered information on the currently used adsorbents for herbicide removal from the water, such as activated carbons, carbon and silica adsorbents, metal oxides, and numerous natural and industrial waste materials known as low-cost adsorbents. The adsorption capacity of these adsorbents was compared for the two most popular phenoxyacetic herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid (MCPA). The application of various kinetic models and adsorption isotherms in describing the removal of these herbicides by the adsorbents was also presented and discussed. At the beginning of this review paper, the most important information on phenoxyacetic herbicides has been collected, including their classification, physicochemical properties, and occurrence in the environment.
Collapse
Affiliation(s)
- Magdalena Blachnio
- Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Krzysztof Kusmierek
- Institute of Chemistry, Military University of Technology, Gen. S. Kaliskiego St. 2, 00-908 Warszawa, Poland
| | - Andrzej Swiatkowski
- Institute of Chemistry, Military University of Technology, Gen. S. Kaliskiego St. 2, 00-908 Warszawa, Poland
| | - Anna Derylo-Marczewska
- Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| |
Collapse
|
11
|
Layered Double Hydroxide Materials: A Review on Their Preparation, Characterization, and Applications. INORGANICS 2023. [DOI: 10.3390/inorganics11030121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Layered double hydroxides (LDHs), a type of synthetic clay with assorted potential applications, are deliberated upon in view of their specific properties, such as adsorbent-specific behavior, biocompatibility, fire-retardant capacity, and catalytic and anion exchange properties, among others. LDHs are materials with two-dimensional morphology, high porosity, and exceptionally tunable and exchangeable anionic particles with sensible interlayer spaces. The remarkable feature of LDHs is their flexibility in maintaining the interlayer spaces endowing them with the capacity to accommodate a variety of ionic species, suitable for many applications. Herein, some synthetic methodologies, general characterizations, and applications of LDHs are summarized, encompassing their broader appliances as a remarkable material to serve society and address several problems viz. removal of pollutants and fabrication of sensors and materials with multifaceted useful applications in the medical, electrochemical, catalytic, and agricultural fields, among others.
Collapse
|
12
|
Rambabu K, Bharath G, Avornyo A, Thanigaivelan A, Hai A, Banat F. Valorization of date palm leaves for adsorptive remediation of 2,4-dichlorophenoxyacetic acid herbicide polluted agricultural runoff. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120612. [PMID: 36368550 DOI: 10.1016/j.envpol.2022.120612] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/30/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Alarming rates of water contamination by toxic herbicides have prompted the need and attention for easy, efficient, and affordable treatment options with a touch of circular economy aspects. This study valorized date palm leaf (DPL) wastes into a valuable adsorbent for remediating agricultural wastewater polluted with 2,4-Dichlorophenoxyacetic acid (2,4-DPA) herbicide. The DPL precursor was modified with H2SO4 treatment and both biomass samples were characterized by various analytical techniques. Acid treatment modified the morphology, thermal, and textural properties of the final product (TDPL) while maintaining the structure and surface chemistry intact. Simulated wastewaters containing 2,4-DPA were subsequently treated using TDPL as an adsorbent. Optimum adsorption conditions of pH 2, dosage 0.95 g/L, shaking speed 200 rpm, time 120 min, and temperature 30 °C showed a good herbicide removal efficiency in the range of 55.1-72.6% for different initial feed concentrations (50-250 mg/L). Experimental kinetic data were better represented by the pseudo-second-order model, while the Freundlich isotherm was reliable in describing the equilibrium behavior of the adsorption system. Further, the thermodynamic analysis revealed that the adsorption occurred spontaneously, favorably, and exothermically. Plausible sorption mechanism involved electrostatic interactions, weak van der Waals forces, hydrogen bonds, and π-π interactions between the participating phases. Conspicuously, TDPL application to real-world situations of treating actual herbicide-polluted agricultural runoff resulted in a 69.4% remediation efficiency. Thus, the study demonstrated the valorization of date palm leaves into a valuable and industry-ready adsorbent that can sequester toxic 2,4-DPA herbicide contaminant from aqueous streams.
Collapse
Affiliation(s)
- K Rambabu
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - G Bharath
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Amos Avornyo
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - A Thanigaivelan
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Abdul Hai
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
13
|
Mohammed AA, Ali DK. Bentonite-layered double hydroxide composite as potential adsorbent for removal of Abamectin pesticide from wastewater. RESULTS IN SURFACES AND INTERFACES 2023. [DOI: 10.1016/j.rsurfi.2023.100099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Naboulsi A, El Mersly L, Yazid H, El Himri M, Rafqah S, El Haddad M. Adsorption behaviors and mechanisms by theoretical study of herbicide 2,4,5-Trichlorophenoxyacetic on activated carbon as a new biosorbent material. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2022.104640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Valente AJM, Pirozzi D, Cinquegrana A, Utzeri G, Murtinho D, Sannino F. Synthesis of β-cyclodextrin-based nanosponges for remediation of 2,4-D polluted waters. ENVIRONMENTAL RESEARCH 2022; 215:114214. [PMID: 36058273 DOI: 10.1016/j.envres.2022.114214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/05/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Two cyclodextrin-based nanosponges (CD-NSs) were synthesized using diamines with 6 and 12 methylene groups, CDHD6 and CDHD12, respectively, and used as adsorbents to remove 2,4-D from aqueous solutions. The physico-chemical characterization of the CD‒NSs demonstrated that, when using the linker with the longest chain length, the nanosponges show a more compact structure and higher thermal stability, probably due to hydrophobic interactions. SEM micrographs showed significant differences between the two nanosponges used. The adsorption of 2,4-D was assessed in terms of different parameters, including solid/liquid ratio, pH, kinetics and isotherms. Adsorption occurred preferentially at lower pH values and for short-chain crosslinked nanosponges; while the former is explained by the balance of acid-base characteristics of the adsorbent and adsorbate, the latter can be justified by the increase in the crosslinker-crosslinker interactions, predominantly hydrophobic, rather than adsorbent-adsorbate interactions. The maximum adsorption capacity at the equilibrium (qe) was 20,903 mmol/kg, obtained using CDHD12 with an initial 2,4-D concentration of 2 mmol/L. An environmentally friendly strategy, based on alkali desorption, was developed to recycle and reuse the adsorbents. On the basis of the results obtained, cyclodextrin-based nanosponges appear promising materials for an economically feasible removal of phenoxy herbicides, to be used as potential adsorbents for the sustainable management of agricultural wastewaters.
Collapse
Affiliation(s)
- Artur J M Valente
- University of Coimbra, Department of Chemistry, CQC, 3004-535 Coimbra, Portugal
| | - Domenico Pirozzi
- University of Naples "Federico II", Department of Chemical Engineering, Materials and Industrial Production (DICMaPI), Laboratory of Biochemical Engineering, Piazzale Tecchio, 80, 80125, Naples, Italy
| | - Alessia Cinquegrana
- University of Naples "Federico II", Department of Agricultural Sciences, Via Università 100, 80055 Portici, Naples, Italy
| | - Gianluca Utzeri
- University of Coimbra, Department of Chemistry, CQC, 3004-535 Coimbra, Portugal
| | - Dina Murtinho
- University of Coimbra, Department of Chemistry, CQC, 3004-535 Coimbra, Portugal
| | - Filomena Sannino
- University of Naples "Federico II", Department of Agricultural Sciences, Via Università 100, 80055 Portici, Naples, Italy.
| |
Collapse
|
16
|
Cheng H, He H, Zhang Z, Xiao K, Liu Y, Kang X, Li X. Adsorption sites and electron transfer characteristics of methyl orange on three-dimensional hierarchical flower-like nanostructures of Co-Al-layered double hydroxides: Experimental and DFT investigation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Ramirez R, Schnorr CE, Georgin J, Netto MS, Franco DSP, Carissimi E, Wolff D, Silva LFO, Dotto GL. Transformation of Residual Açai Fruit ( Euterpe oleracea) Seeds into Porous Adsorbent for Efficient Removal of 2,4-Dichlorophenoxyacetic Acid Herbicide from Waters. Molecules 2022; 27:7781. [PMID: 36431881 PMCID: PMC9695194 DOI: 10.3390/molecules27227781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Brazil's production and consumption of açai pulp (Euterpe oleracea) occur on a large scale. Most of the fruit is formed by the pit, which generates countless tons of residual biomass. A new purpose for this biomass, making its consumption highly sustainable, was presented in this study, where activated carbon (AC) was produced with zinc chloride for later use as an adsorbent. AC carbon formed by carbon and with a yield of 28 % was satisfactorily used as an adsorbent in removing the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Removal efficiency was due to the highly porous surface (Vp = 0.467 cm3 g-1; Dp = 1.126 nm) and good surface área (SBET = 920.56 m2 g-1). The equilibrium data fit the Sips heterogeneous and homogeneous surface model better. It was observed that the increase in temperature favored adsorption, reaching a maximum experimental capacity of 218 mg g-1 at 328 K. The thermodynamic behavior indicated a spontaneous, favorable, and endothermic behavior. The magnitude of the enthalpy of adsorption was in agreement with the physical adsorption. Regardless of the herbicide concentration, the adsorbent displayed fast kinetics, reaching equilibrium within 120 min. The linear driving force (LDF) model provided a strong statistical match to the kinetic curves. AC with zinc chloride (ZnCl2), created from leftover açai biomass, is a potential alternative as an adsorbent for treating effluents containing 2,4-D.
Collapse
Affiliation(s)
- Rolando Ramirez
- Department of Environmental and Sanitary Engineering, Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria 97105-900, RS, Brazil
| | - Carlos Eduardo Schnorr
- Department of Natural and Exact Sciences, Universidad de la Costa, CUC, Calle 58 # 55–66, Barranquilla 080002, Atlántico, Colombia
| | - Jordana Georgin
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria 97105-900, RS, Brazil
| | - Matias Schadeck Netto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria 97105-900, RS, Brazil
| | - Dison S. P. Franco
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria 97105-900, RS, Brazil
| | - Elvis Carissimi
- Department of Environmental and Sanitary Engineering, Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria 97105-900, RS, Brazil
| | - Delmira Wolff
- Department of Environmental and Sanitary Engineering, Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria 97105-900, RS, Brazil
| | - Luis F. O. Silva
- Department of Natural and Exact Sciences, Universidad de la Costa, CUC, Calle 58 # 55–66, Barranquilla 080002, Atlántico, Colombia
| | - Guilherme Luiz Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria 97105-900, RS, Brazil
| |
Collapse
|
18
|
Coslop TF, Nippes RP, Bergamasco R, Scaliante MHNO. Evaluation of diazepam adsorption in aqueous media using low-cost and natural zeolite: equilibrium and kinetics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:79808-79815. [PMID: 34783951 PMCID: PMC8593643 DOI: 10.1007/s11356-021-17452-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/05/2021] [Indexed: 05/07/2023]
Abstract
Diazepam has been detected in water sources around the world affecting the quality of drinking water. Even in small quantities, recent studies have proven the negative effects of the drug on human body. Since traditional water and sewage treatment do not remove this type of contaminant, it became interesting to evaluate forms to remove them from water sources. A cheap and eco-friendly alternative to remove this drug from the water is through adsorption using the natural clinoptilolite zeolite as an adsorbent. This work goal was to study the characterizations of clinoptilolite, such as scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffractometer (XRD), and Fourier transform infrared spectroscopy (FTIR) and analyze the potential of this material as an adsorbent. Kinetic studies and isotherm analysis were performed in batch. The results showed the potential of the natural zeolite to remove the pollutant in an aqueous medium reaching a maximum adsorption capacity of 8.25 mg g-1. The adsorption process followed a pseudo-second-order kinetics indicating that the adsorption was based on a chemisorption process. The isotherms curves shown favorable adsorption and the Langmuir isotherm model fit the experimental data better.
Collapse
Affiliation(s)
- Thaísa Frossard Coslop
- Chemical Engineering Department, State University of Maringa, Av. Colombo, 5790, Zona 7, Maringá, PR, Brazil.
| | - Ramiro Picoli Nippes
- Chemical Engineering Department, State University of Maringa, Av. Colombo, 5790, Zona 7, Maringá, PR, Brazil
| | - Rosangela Bergamasco
- Chemical Engineering Department, State University of Maringa, Av. Colombo, 5790, Zona 7, Maringá, PR, Brazil
| | | |
Collapse
|
19
|
Bruckmann FS, Schnorr C, Oviedo LR, Knani S, Silva LFO, Silva WL, Dotto GL, Bohn Rhoden CR. Adsorption and Photocatalytic Degradation of Pesticides into Nanocomposites: A Review. Molecules 2022; 27:6261. [PMID: 36234798 PMCID: PMC9572628 DOI: 10.3390/molecules27196261] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
The extensive use of pesticides in agriculture has significantly impacted the environment and human health, as these pollutants are inadequately disposed of into water bodies. In addition, pesticides can cause adverse effects on humans and aquatic animals due to their incomplete removal from the aqueous medium by conventional wastewater treatments. Therefore, processes such as heterogeneous photocatalysis and adsorption by nanocomposites have received special attention in the scientific community due to their unique properties and ability to degrade and remove several organic pollutants, including pesticides. This report reviews the use of nanocomposites in pesticide adsorption and photocatalytic degradation from aqueous solutions. A bibliographic search was performed using the ScienceDirect, American Chemical Society (ACS), and Royal Society of Chemistry (RSC) indexes, using Boolean logic and the following descriptors: "pesticide degradation" AND "photocatalysis" AND "nanocomposites"; "nanocomposites" AND "pesticides" AND "adsorption". The search was limited to research article documents in the last ten years (from January 2012 to June 2022). The results made it possible to verify that the most dangerous pesticides are not the most commonly degraded/removed from wastewater. At the same time, the potential of the supported nanocatalysts and nanoadsorbents in the decontamination of wastewater-containing pesticides is confirmed once they present reduced bandgap energy, which occurs over a wide range of wavelengths. Moreover, due to the great affinity of the supported nanocatalysts with pesticides, better charge separation, high removal, and degradation values are reported for these organic compounds. Thus, the class of the nanocomposites investigated in this work, magnetic or not, can be characterized as suitable nanomaterials with potential and unique properties useful in heterogeneous photocatalysts and the adsorption of pesticides.
Collapse
Affiliation(s)
- Franciele S. Bruckmann
- Laboratório de Materiais Magnéticos Nanoestruturados, LaMMaN, Universidade Franciscana-UFN, Santa Maria 97010-032, RS, Brazil
- Programa de Pós-Graduação em Nanociências, Universidade Franciscana-UFN, Santa Maria 97010-032, RS, Brazil
| | - Carlos Schnorr
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55–66, Barranquilla 080002, Atlántico, Colombia
| | - Leandro R. Oviedo
- Programa de Pós-Graduação em Nanociências, Universidade Franciscana-UFN, Santa Maria 97010-032, RS, Brazil
| | - Salah Knani
- College of Science, Northern Border University, Arar 91431, Saudi Arabia
- Laboratory of Quantum and Statistical Physics, Faculty of Sciences of Monastir, University of Monastir, Monastir 5079, Tunisia
| | - Luis F. O. Silva
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55–66, Barranquilla 080002, Atlántico, Colombia
| | - William L. Silva
- Programa de Pós-Graduação em Nanociências, Universidade Franciscana-UFN, Santa Maria 97010-032, RS, Brazil
| | - Guilherme L. Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Department of Chemical Enginnering, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Cristiano R. Bohn Rhoden
- Laboratório de Materiais Magnéticos Nanoestruturados, LaMMaN, Universidade Franciscana-UFN, Santa Maria 97010-032, RS, Brazil
- Programa de Pós-Graduação em Nanociências, Universidade Franciscana-UFN, Santa Maria 97010-032, RS, Brazil
| |
Collapse
|
20
|
Kani AN, Dovi E, Aryee AA, Han R, Qu L. Efficient removal of 2,4-D from solution using a novel antibacterial adsorbent based on tiger nut residues: adsorption and antibacterial study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:64177-64191. [PMID: 35471759 DOI: 10.1007/s11356-022-20257-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
We engineered a tiger nut residue (TNR, a low-cost agricultural waste material) through a facile and simple process to take advantage of the introduced functional groups (cetylpyridinium chloride, CPC) in the removal of 2,4-dichlorophenoxyacetic acid (2,4-D) in batch mode and further investigated its impingement on bacterial growth in a yeast-dextrose broth. The surface characterizations of the adsorbent were achieved through Fourier-transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller method (BET), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS). The batch adsorption studies revealed that solution pH, adsorbent dose, temperature, and salt affected the adsorptive capacity of TNR-CPC. The equilibrium data were best fitted by Langmuir isotherm model with a maximum monolayer adsorption capacity of 90.2 mg g-1 at 318 K and pH 3. Pseudo-second-order model best fitted the kinetics data for the adsorption process. Physisorption largely mediated the adsorption system with spontaneity and a shift in entropy of the aqueous solid-solute interface reflecting decreased randomness with an exothermic character. TNR-CPC demonstrated a good reusability potential making it highly economical and compares well with other adsorbents for decontamination of 2,4-D. The adsorption of 2,4-D proceeded through a probable trio-mechanism; electrostatic attraction between the carboxylate anion of 2,4-D and the pyridinium cation of TNR-CPC, hydrogen bonding between the hydroxyl (-OH) group inherent in the TNR and the carboxyl groups in 2,4-D and a triggered π-π stacking between the benzene structures in the adsorbate and the adsorbent. TNR-CPC reported about 99% inhibition rate against both gram-positive S. aureus and gram-negative E. coli. It would be appropriate to investigate the potential of TNR-CPC as a potential replacement to the metal oxides used in wastewater treatment for antibacterial capabilities, and its effects against airborne bacteria could also be of interest.
Collapse
Affiliation(s)
- Alexander Nti Kani
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Evans Dovi
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Aaron Albert Aryee
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Runping Han
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| | - Lingbo Qu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| |
Collapse
|
21
|
Lartey-Young G, Ma L. Optimization, equilibrium, adsorption behaviour of Cu/Zn/Fe LDH and LDHBC composites towards atrazine reclamation in an aqueous environment. CHEMOSPHERE 2022; 293:133526. [PMID: 34998847 DOI: 10.1016/j.chemosphere.2022.133526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/27/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Cu-Zn-Fe Layered double hydroxides (LDH) and LDH dispersed on bamboo biochar (LDHBC) was used to study the adsorption of Atrazine by characterizing the adsorption kinetics, isotherms and response surface methodology (RSM) to reveal interactive effects of pH, adsorbent dosage and adsorbate initial concentration towards LDH optimum performance. The estimate of parameters determined for Langmuir isotherm quantities were in the range (21.84-37.91 mg/g) for LDH and (63.64-87.04 mg/g) for LDHBC. Regeneration and reusability after five cycles detected that the adsorption efficiencies of the adsorbents were reduced to 36% for LDH and 66% for LDHBC. Box Behnken design analysis could further reveal optimized conditions for higher Atrazine removal by LDH up to 74.8%. The adsorption mechanisms could be determined by π-π interactions occurring at the interfaces by hydrogen bonding and pore filling effects.
Collapse
Affiliation(s)
- George Lartey-Young
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Limin Ma
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
22
|
Park JY, Yoo SB, Cho HB, Lee HS, Choa YH. CaFe-Based Layered Double Oxides With Superior Iron Alloy Corrosion Inhibition Behaviors in Aggressive Seawater Environment. Front Chem 2022; 10:813008. [PMID: 35198538 PMCID: PMC8858811 DOI: 10.3389/fchem.2022.813008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/12/2022] [Indexed: 11/30/2022] Open
Abstract
Reinforced concrete is among the most multifaceted materials used in the construction field. Maintaining the resistance of reinforced concrete to weathering, abrasion, and chemical attack, particularly in aggressive natural conditions such as seawater environments, is challenging. The main factor in the degradation of reinforced-concrete durability is chloride penetration, which accelerates iron alloy corrosion and facilitates structural degradation. In this study, calcium-iron-based layered double hydroxides (CaFe-LDHs) were fabricated at room temperature, followed by structural modulation, and their effectiveness in mitigating iron alloy corrosion due to chloride ions (in 3.5 wt% of NaCl) was investigated. The synthesized CaFe-LDHs with phase transfer notably improved the Cl− removal capacity (Qmax) to 881.83 mg/g, which is more than three times that reported based on previous studies. The novelty of this research lies in the sophisticated structural and phase transformations of the as-synthesized CaFe-LDHs, determination of crucial factors for chloride ion removal, and suggestion of calcium-iron-based layered double oxide (CaFe-LDO)-based chloride ion removal mechanisms considering chemical and ion-exchange reactions. Moreover, when the phase-transformed LDHs, C-700 LDOs, were applied to inhibit iron alloy corrosion, a noticeable inhibition efficiency of 98.87% was obtained, which was an 11-fold improvement compared to the case of iron alloys without LDOs. We believe this work can provide new insights into the design of CaFe-LDOs for the enhancement of the lifespan of reinforced concrete structures.
Collapse
Affiliation(s)
- Ji Young Park
- Department of Material Science and Chemical Engineering, Hanyang University, Ansan, South Korea
| | - Su Been Yoo
- Department of Industrial R&D Center, Park Systems Corporation, Suwon-si, South Korea
| | - Hong-Baek Cho
- Department of Material Science and Chemical Engineering, Hanyang University, Ansan, South Korea
| | - Han-Seung Lee
- Department of Architectural Engineering, Hanyang University, Ansan, South Korea
| | - Yong-Ho Choa
- Department of Material Science and Chemical Engineering, Hanyang University, Ansan, South Korea
- *Correspondence: Yong-Ho Choa,
| |
Collapse
|
23
|
Bevilacqua RC, Preigschadt IA, Netto MS, Georgin J, Franco DSP, Mallmann ES, Silva LFO, Pinto D, Foletto EL, Dotto GL. One step acid modification of the residual bark from Campomanesia guazumifolia using H 2SO 4 and application in the removal of 2,4-dichlorophenoxyacetic from aqueous solution. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:995-1006. [PMID: 34727841 DOI: 10.1080/03601234.2021.1997283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The residual bark of the tree species Campomanesia guazumifolia was successfully modified with H2SO4 and applied to remove the toxic herbicide 2.4-dichlorophenoxyacetic (2.4-D) from aqueous solutions. The characterization techniques made it possible to observe that the material maintained its amorphous structure; however, a new FTIR band emerged, indicating the interaction of the lignocellulosic matrix with sulfuric acid. Micrographs showed that the material maintained its irregular shape; however, new spaces and cavities appeared after the acidic modification. Regardless of the herbicide concentration, the system tended to equilibrium after 120 min. Using the best statistical coefficients, the Elovich model was the one that best fitted the kinetic data. The temperature increase in the system negatively influenced the adsorption of 2.4-D, reaching a maximum capacity of 312.81 mg g-1 at 298 K. The equilibrium curves showed a better fit to the Tóth model. Thermodynamic parameters confirmed the exothermic nature of the system (ΔH0 = -59.86 kJ mol-1). As a residue obtained from urban pruning, the bark of Campomanesia guazumifolia treated with sulfuric acid is a promising and highly efficient alternative for removing the widely used and toxic 2.4-D herbicide from aqueous solutions.
Collapse
Affiliation(s)
- Raíssa C Bevilacqua
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, Brazil
| | - Isadora A Preigschadt
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, Brazil
| | - Matias S Netto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, Brazil
| | - Jordana Georgin
- Graduate Program in Civil Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | - Dison S P Franco
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, Brazil
| | - Evandro S Mallmann
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, Brazil
| | - Luis F O Silva
- Department of Civil and Environmental Engineering, Universidad de La Costa, Barranquilla, Colombia
- Universidad de Lima, Lima, Peru
| | - Diana Pinto
- Department of Civil and Environmental Engineering, Universidad de La Costa, Barranquilla, Colombia
| | - Edson L Foletto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, Brazil
| | - Guilherme L Dotto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
24
|
Elfiky M, Salahuddin N. Advanced sensing platform for nanomolar detection of food preservative nitrite in sugar byproducts based on 3D mesoporous nanorods of montmorillonite/TiO2–ZnO hybrids. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
25
|
Elfiky M, Matsuda A, Salahuddin N. An Electrospun Nanofibrous Sensor Based on a Porous (Cr/Zn) Slats Oxide for Voltammetric Detection of Ezetimibe Drug in Real Samples. ELECTROANAL 2021. [DOI: 10.1002/elan.202100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mona Elfiky
- Department of Chemistry Faculty of Science Tanta University Egypt
| | - Atsunori Matsuda
- Department of Electrical and Electronic Information Engineering Toyohashi University of Technology Japan
| | - Nehal Salahuddin
- Department of Chemistry Faculty of Science Tanta University Egypt
| |
Collapse
|
26
|
Elfiky M, Beltagi AM, Abuzalat O. Selective modified stripping voltammetric sensor based on Ce-1,4-benzenedicarboxylic metal–organic frameworks porous nanoparticles for picomolar detection of curcumin. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Georgin J, Franco DSP, Netto MS, Piccilli DGA, Foletto EL, Dotto GL. Adsorption investigation of 2,4-D herbicide on acid-treated peanut (Arachis hypogaea) skins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36453-36463. [PMID: 33694109 DOI: 10.1007/s11356-021-12813-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
In this work, peanut (Arachis hypogaea) skin, a by-product generated by the agricultural production of its seeds, was employed as a precursor in the preparation of an adsorbent for the 2,4-D removal in water. The skins were treated with sulfuric acid and characterized by different techniques. The adsorption was favored at acid pH = 2 with pHpzc = 6. The dosage of 0.9 g L-1 was considered ideal, obtaining satisfactory indications of removal and capacity. The kinetic curves were well represented by the general order model, with the equilibrium reached quickly in the first 30 min for all concentrations. Adsorption isotherm studies showed that the increase in temperature negatively affected the herbicide adsorption, obtaining a maximum capacity of 246.72 mg g-1, by the Langmuir isotherm at 298 K. The remarkable adsorption efficiency presented by the adsorbent can be associated with the presence of new functional groups on the adsorbent surface generated after the acid treatment. Thermodynamic parameters confirmed the exothermic nature of the adsorptive system. In the treatment of synthetic wastewater consisting of a mixture of herbicides and salts, a high removal efficiency (72%) of herbicides was obtained. Therefore, the development of an adsorbent derived from peanut (Arachis hypogaea) skin treated with sulfuric acid is an excellent alternative, generating remarkable removal results towards 2,4-D herbicide.
Collapse
Affiliation(s)
- Jordana Georgin
- Graduate Program in Civil Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Dison S P Franco
- Graduate Program in Chemical Engineering, Federal University of Santa Maria, Avenue Roraima, 1000, Santa Maria, 97105-900, Brazil
| | - Matias S Netto
- Graduate Program in Chemical Engineering, Federal University of Santa Maria, Avenue Roraima, 1000, Santa Maria, 97105-900, Brazil
| | - Daniel G A Piccilli
- Graduate Program in Civil Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Edson Luiz Foletto
- Graduate Program in Chemical Engineering, Federal University of Santa Maria, Avenue Roraima, 1000, Santa Maria, 97105-900, Brazil
| | - Guilherme L Dotto
- Graduate Program in Chemical Engineering, Federal University of Santa Maria, Avenue Roraima, 1000, Santa Maria, 97105-900, Brazil.
| |
Collapse
|
28
|
Aswani MT, Kumar MVP. Acid‐Thermally Modified
Merremia vitifolia
for the Removal of 2,4‐Dichlorophenoxyacetic Acid. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202000524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Removal and Release of the 2,4,5-Trichlorophenoxyacetic Acid Herbicide from Wastewater by Layered Double Hydroxides. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-020-01845-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Sun Y, Li L, Shi K. Analog and Digital Bipolar Resistive Switching in Co-Al-Layered Double Hydroxide Memristor. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2095. [PMID: 33105722 PMCID: PMC7690433 DOI: 10.3390/nano10112095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 01/29/2023]
Abstract
We demonstrate a nonvolatile memristor based on Co-Al-layered double hydroxide (Co-Al LDH). We also introduce a memristor that has a hexazinone-adsorbing Co-Al LDH composite active layer. Memristor characteristics could be modulated by adsorbing hexazinone with Co-Al LDHs in the active layer. While different, Co-Al LDH-based memory devices show gradual current changes, and the memory device with small molecules of adsorbed hexazinone undergo abrupt changes. Both devices demonstrate programmable memory peculiarities. In particular, both memristors show rewritable resistive switching with electrical bistability (>105 s). This research manifests the promising potential of 2D nanocomposite materials for adsorbing electroactive small molecules and rectifying resistive switching properties for memristors, paving a way for design of promising 2D nanocomposite memristors for advanced device applications.
Collapse
Affiliation(s)
- Yanmei Sun
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China;
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
- School of Electronic Engineering, Heilongjiang University, Harbin 150080, China
| | - Li Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China;
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Keying Shi
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China;
| |
Collapse
|
31
|
Angın D, Güneş S. The usage of orange pulp activated carbon in the adsorption of 2,4-dichlorophenoxy acetic acid from aqueous solutions. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:436-444. [PMID: 33012178 DOI: 10.1080/15226514.2020.1825325] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Among the numerous agrochemicals in use today, the herbicide 2,4-dichlorophenoxy acetic acid (2,4-D), has been widely applied to control broad-leaved weeds in gardens and farming. 2,4-D is commonly preferred because of its low cost and good selectivity. On the other hand, 2,4-D is a poorly biodegradable pollutant. Therefore, this study has focused on the adsorption of 2,4-D from aqueous solutions by using activated carbon. The activated carbon was produced from the orange (Citrus sinensis L.) pulp by chemical activation with zinc chloride. The morphological and chemical characteristics of the activated carbon were investigated by infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and N2-adsorption techniques. Then, the effect of adsorption parameters was researched for 2,4-D adsorption on activated carbon. The experimental data indicated that the adsorption isotherms were well described by the Langmuir equilibrium isotherm equation and the calculated adsorption capacity was 71.94 mg g-1 at 298 K. The adsorption kinetic of 2,4-D obeys the pseudo-second-order kinetic model. The thermodynamic parameters indicated a feasible, spontaneous and exothermic adsorption. These results show that the prepared activated carbon has good potential for the removal of 2,4-D from aqueous solutions.
Collapse
Affiliation(s)
- Dilek Angın
- Department of Food Engineering, Sakarya University, Sakarya, Turkey
| | - Sinem Güneş
- Department of Food Technology, Harran University, Sanlıurfa, Turkey
| |
Collapse
|
32
|
Oprea M, Panaitescu DM, Nicolae CA, Gabor AR, Frone AN, Raditoiu V, Trusca R, Casarica A. Nanocomposites from functionalized bacterial cellulose and poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Aswani MT, Yadav M, Vinod Kumar A, Tiwari S, Kumar T, Pavan Kumar MV. Ultrasound-acid modified Merremia vitifolia biomass for the biosorption of herbicide 2,4-D from aqueous solution. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:468-480. [PMID: 32960792 DOI: 10.2166/wst.2020.346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, a biosorbent was prepared by the ultrasound-acid treatment of Merremia vitifolia plant and tested for the removal of 2,4-dichlorophenoxyacetic acid (2,4-D), a phenoxy herbicide. Optimal values of five batch biosorption parameters namely stirring speed, contact time, biosorbent dosage, initial pH and initial adsorbate concentration were experimentally obtained in sequential manner for an enhanced biosorption capacity. The kinetics of the biosorption of 2,4-D were best described by the pseudo first order kinetic model (R2 = 0.99) and the biosorption equilibrium data were successfully fitted to the Langmuir adsorption isotherm (R2 = 0.99) with a maximum biosorption capacity of 66.93 mg g-1. The mechanism of biosorption was investigated using two intraparticle diffusion models (Weber and Boyd), Dubinin-Radushkevich isotherm model and electrostatic interactions. The presence of intraparticle and film diffusion limitations for the biosorption was confirmed along with the physical and chemical nature of the biosorption. The thermodynamic parameters of the biosorption were calculated using the equilibrium data obtained at four different temperatures. The entropy change for biosorption was found to be negative indicating the decreased randomness at the interface. Desorption studies were carried out using different solvents and the percentages of desorption were compared.
Collapse
Affiliation(s)
| | - Manoj Yadav
- Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India E-mail:
| | - Amgoth Vinod Kumar
- Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India E-mail:
| | - Shashank Tiwari
- Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India E-mail:
| | - Tarun Kumar
- Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India E-mail:
| | - Malladi Venkata Pavan Kumar
- Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India E-mail:
| |
Collapse
|
34
|
Toprakçı İ, Pekel AG, Kurtulbaş E, Şahin S. Special designed menthol-based deep eutectic liquid for the removal of herbicide 2,4-dichlorophenoxyacetic acid through reactive liquid–liquid extraction. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01218-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|