1
|
Kraus L, Fredericks S, Scheeler K. The epigenetic regulation of crosstalk between cardiac fibroblasts and other cardiac cell types during stress. Front Cardiovasc Med 2025; 12:1539826. [PMID: 40264508 PMCID: PMC12011845 DOI: 10.3389/fcvm.2025.1539826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/14/2025] [Indexed: 04/24/2025] Open
Abstract
With the global impact of cardiovascular disease, there is a dire need to understand the mechanisms in the heart during injury and stress. It has been shown that the regulation of the extracellular matrix via cardiac fibroblasts plays a major role in the progression of heart failure and worsening function of the heart. Importantly, it has been suggested that crosstalk between other cardiac cells like cardiomyocytes, immune cells, and endothelial cells are influenced by the pathological function of the fibroblasts. This decline in function across all cardiac cells is seemingly irreversible. However, epigenetic mechanisms have been shown to regulate functionality across cardiac cells and improve outcomes during stress or injury. This epigenetic regulation has also been shown to control communication between different cell types and influence the role of multiple cardiac cell types during injury. The goal of this review is to summarize and discuss the current research of epigenetic regulation of cardiac fibroblasts and the subsequent crosstalk with other cardiac cell types in cardiovascular disease states.
Collapse
Affiliation(s)
- Lindsay Kraus
- Department of Biology, College of Science, Technology, Engineering, Arts, and Mathematics, Alvernia University, Reading, PA, United States
| | | | | |
Collapse
|
2
|
Celeski M, Segreti A, Crisci F, Cricco R, Piscione M, Di Gioia G, Nusca A, Fossati C, Pigozzi F, Ussia GP, Solaro RJ, Grigioni F. The Role of Cardiac Troponin and Other Emerging Biomarkers Among Athletes and Beyond: Underlying Mechanisms, Differential Diagnosis, and Guide for Interpretation. Biomolecules 2024; 14:1630. [PMID: 39766337 PMCID: PMC11727179 DOI: 10.3390/biom14121630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 01/15/2025] Open
Abstract
Cardiovascular (CV) disease remains the leading cause of morbidity and mortality worldwide, highlighting the necessity of understanding its underlying molecular and pathophysiological pathways. Conversely, physical activity (PA) and exercise are key strategies in reducing CV event risks. Detecting latent CV conditions in apparently healthy individuals, such as athletes, presents a unique challenge. The early identification and treatment of CV disorders are vital for long-term health and patient survival. Cardiac troponin is currently the most commonly used biomarker for assessing CV changes in both athletes and the general population. However, there remains considerable debate surrounding the mechanisms underlying exercise-induced troponin elevations and its release in non-ischemic contexts. Thus, there is a pressing need to identify and implement more sensitive and specific biomarkers for CV disorders in clinical practice. Indeed, research continues to explore reliable biomarkers for evaluating the health of athletes and the effectiveness of physical exercise. It is essential to analyze current evidence on troponin release in non-ischemic conditions, post-strenuous exercise, and the complex biological pathways that influence its detection. Furthermore, this study summarizes current research on cytokines and exosomes, including their physiological roles and their relevance in various CV conditions, especially in athletes. In addition, this paper gives special attention to underlying mechanisms, potential biomarkers, and future perspectives.
Collapse
Affiliation(s)
- Mihail Celeski
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy (R.C.)
- Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Andrea Segreti
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy (R.C.)
- Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro de Bosis 6, 00135 Roma, Italy
| | - Filippo Crisci
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy (R.C.)
- Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Riccardo Cricco
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy (R.C.)
- Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Mariagrazia Piscione
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy (R.C.)
- Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Giuseppe Di Gioia
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro de Bosis 6, 00135 Roma, Italy
- Institute of Sports Medicine and Science, Italian National Olympic Committee, Largo Piero Gabrielli 1, 00197 Roma, Italy
| | - Annunziata Nusca
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy (R.C.)
- Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Chiara Fossati
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro de Bosis 6, 00135 Roma, Italy
| | - Fabio Pigozzi
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro de Bosis 6, 00135 Roma, Italy
| | - Gian Paolo Ussia
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy (R.C.)
- Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Ross John Solaro
- Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Francesco Grigioni
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy (R.C.)
- Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| |
Collapse
|
3
|
Li H, Zhang J, Tan M, Yin Y, Song Y, Zhao Y, Yan L, Li N, Zhang X, Bai J, Jiang T, Li H. Exosomes based strategies for cardiovascular diseases: Opportunities and challenges. Biomaterials 2024; 308:122544. [PMID: 38579591 DOI: 10.1016/j.biomaterials.2024.122544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024]
Abstract
Exosomes, as nanoscale extracellular vesicles (EVs), are secreted by all types of cells to facilitate intercellular communication in living organisms. After being taken up by neighboring or distant cells, exosomes can alter the expression levels of target genes in recipient cells and thereby affect their pathophysiological outcomes depending on payloads encapsulated therein. The functions and mechanisms of exosomes in cardiovascular diseases have attracted much attention in recent years and are thought to have cardioprotective and regenerative potential. This review summarizes the biogenesis and molecular contents of exosomes and details the roles played by exosomes released from various cells in the progression and recovery of cardiovascular disease. The review also discusses the current status of traditional exosomes in cardiovascular tissue engineering and regenerative medicine, pointing out several limitations in their application. It emphasizes that some of the existing emerging industrial or bioengineering technologies are promising to compensate for these shortcomings, and the combined application of exosomes and biomaterials provides an opportunity for mutual enhancement of their performance. The integration of exosome-based cell-free diagnostic and therapeutic options will contribute to the further development of cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Hang Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Jun Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Mingyue Tan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China; Department of Geriatrics, Cardiovascular Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Yunfei Yin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Yiyi Song
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215000, PR China
| | - Yongjian Zhao
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Lin Yan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Ning Li
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, PR China
| | - Xianzuo Zhang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, PR China
| | - Jiaxiang Bai
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, PR China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, PR China.
| | - Tingbo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China.
| | - Hongxia Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China.
| |
Collapse
|
4
|
Caño-Carrillo S, Castillo-Casas JM, Franco D, Lozano-Velasco E. Unraveling the Signaling Dynamics of Small Extracellular Vesicles in Cardiac Diseases. Cells 2024; 13:265. [PMID: 38334657 PMCID: PMC10854837 DOI: 10.3390/cells13030265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Effective intercellular communication is essential for cellular and tissue balance maintenance and response to challenges. Cellular communication methods involve direct cell contact or the release of biological molecules to cover short and long distances. However, a recent discovery in this communication network is the involvement of extracellular vesicles that host biological contents such as proteins, nucleic acids, and lipids, influencing neighboring cells. These extracellular vesicles are found in body fluids; thus, they are considered as potential disease biomarkers. Cardiovascular diseases are significant contributors to global morbidity and mortality, encompassing conditions such as ischemic heart disease, cardiomyopathies, electrical heart diseases, and heart failure. Recent studies reveal the release of extracellular vesicles by cardiovascular cells, influencing normal cardiac function and structure. However, under pathological conditions, extracellular vesicles composition changes, contributing to the development of cardiovascular diseases. Investigating the loading of molecular cargo in these extracellular vesicles is essential for understanding their role in disease development. This review consolidates the latest insights into the role of extracellular vesicles in diagnosis and prognosis of cardiovascular diseases, exploring the potential applications of extracellular vesicles in personalized therapies, shedding light on the evolving landscape of cardiovascular medicine.
Collapse
Affiliation(s)
| | | | | | - Estefanía Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (S.C.-C.); (J.M.C.-C.); (D.F.)
| |
Collapse
|
5
|
Claridge B, Rai A, Lees JG, Fang H, Lim SY, Greening DW. Cardiomyocyte intercellular signalling increases oxidative stress and reprograms the global- and phospho-proteome of cardiac fibroblasts. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e125. [PMID: 38938901 PMCID: PMC11080892 DOI: 10.1002/jex2.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/20/2023] [Accepted: 11/14/2023] [Indexed: 06/29/2024]
Abstract
Pathological reprogramming of cardiomyocyte and fibroblast proteome landscapes drive the initiation and progression of cardiac fibrosis. Although the secretome of dysfunctional cardiomyocytes is emerging as an important driver of pathological fibroblast reprogramming, our understanding of the downstream molecular players remains limited. Here, we show that cardiac fibroblast activation (αSMA+) and oxidative stress mediated by the secretome of TGFβ-stimulated cardiomyocytes is associated with a profound reprogramming of their proteome and phosphoproteome landscape. Within the fibroblast global proteome there was a striking dysregulation of proteins implicated in extracellular matrix, protein localisation/metabolism, KEAP1-NFE2L2 pathway, lysosomes, carbohydrate metabolism, and transcriptional regulation. Kinase substrate enrichment analysis of phosphopeptides revealed potential role of kinases (CK2, CDK2, PKC, GSK3B) during this remodelling. We verified upregulated activity of casein kinase 2 (CK2) in secretome-treated fibroblasts, and pharmacological CK2 inhibitor TBB (4,5,6,7-Tetrabromobenzotriazole) significantly abrogated fibroblast activation and oxidative stress. Our data provides molecular insights into cardiomyocyte to cardiac fibroblast crosstalk, and the potential role of CK2 in regulating cardiac fibroblast activation and oxidative stress.
Collapse
Affiliation(s)
- Bethany Claridge
- Baker Heart and Diabetes InstituteMelbourneVictoriaAustralia
- Baker Department of Cardiovascular Research Translation and ImplementationLa Trobe UniversityMelbourneVictoriaAustralia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and EnvironmentLa Trobe UniversityMelbourneVictoriaAustralia
| | - Alin Rai
- Baker Heart and Diabetes InstituteMelbourneVictoriaAustralia
- Baker Department of Cardiovascular Research Translation and ImplementationLa Trobe UniversityMelbourneVictoriaAustralia
- Baker Department of Cardiometabolic HealthUniversity of MelbourneMelbourneVictoriaAustralia
- Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Jarmon G. Lees
- O'Brien Institute DepartmentSt Vincent's Institute of Medical ResearchFitzroyVictoriaAustralia
- Department of Surgery and MedicineUniversity of MelbourneMelbourneVictoriaAustralia
| | - Haoyun Fang
- Baker Heart and Diabetes InstituteMelbourneVictoriaAustralia
- Baker Department of Cardiometabolic HealthUniversity of MelbourneMelbourneVictoriaAustralia
| | - Shiang Y. Lim
- O'Brien Institute DepartmentSt Vincent's Institute of Medical ResearchFitzroyVictoriaAustralia
- Department of Surgery and MedicineUniversity of MelbourneMelbourneVictoriaAustralia
- National Heart Research Institute SingaporeNational Heart CentreSingaporeSingapore
- Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| | - David W. Greening
- Baker Heart and Diabetes InstituteMelbourneVictoriaAustralia
- Baker Department of Cardiovascular Research Translation and ImplementationLa Trobe UniversityMelbourneVictoriaAustralia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and EnvironmentLa Trobe UniversityMelbourneVictoriaAustralia
- Baker Department of Cardiometabolic HealthUniversity of MelbourneMelbourneVictoriaAustralia
- Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
6
|
Xu ST, Zhang YX, Liu SL, Liu F, Ye JT. Exosomes derived from cardiac fibroblasts with angiotensin II stimulation provoke hypertrophy and autophagy inhibition in cardiomyocytes. Biochem Biophys Res Commun 2023; 682:199-206. [PMID: 37826943 DOI: 10.1016/j.bbrc.2023.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 10/07/2023] [Indexed: 10/14/2023]
Abstract
Although accumulating evidence has revealed that autophagy inhibition contributes to the development of pathological cardiac hypertrophy, the mechanisms leading to declined autophagy activity in the hypertrophic heart remain to be elucidated. Exosomes are known to be important mediators of intercellular communication, and the involvement of exosomes in cardiovascular abnormities has attracted increasing attentions. Cardiac fibroblasts (CFs) are the most abundant cell type in the heart. Here, we investigated the potential role of CFs-derived exosomes in regulating cardiomyocyte hypertrophy and autophagy. Exosomes from rat CFs treated with angiotensin II (Ang II-CFs-exosomes) were collected and characterized. Our experiments showed that these exosomes could induce hypertrophic responses and impair autophagy activity in primary neonatal rat cardiomyocytes (NRCMs). Ang II-CFs-exosomes blocked the autophagic flux of NRCMs via inhibiting the formation of autolysosomes. Moreover, the pro-hypertrophic effects and autophagy inhibition induced by Ang II-CFs-exosomes was validated in mice receiving injection of the exosomes. These findings highlight a novel role of Ang II-CFs-exosomes in suppressing cardiomyocyte autophagy, which may help to better understand the pathogenesis of cardiac hypertrophy.
Collapse
Affiliation(s)
- Si-Ting Xu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, 510006, China
| | - Yue-Xin Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, 510006, China
| | - Si-Ling Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, 510006, China
| | - Fang Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, 510006, China
| | - Jian-Tao Ye
- School of Pharmaceutical Sciences, Sun Yat-Sen University, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Martins-Marques T, Girão H. The good, the bad and the ugly: the impact of extracellular vesicles on the cardiovascular system. J Physiol 2023; 601:4837-4852. [PMID: 35348208 DOI: 10.1113/jp282048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/21/2022] [Indexed: 11/16/2023] Open
Abstract
Cardiovascular diseases (CVDs), which encompass a myriad of pathological conditions that affect the heart and/or the blood vessels, remain the major cause of morbidity and mortality worldwide. By transferring a wide variety of bioactive molecules, including proteins and microRNAs (miRNAs), extracellular vesicles (EVs) are recognized as key players in long-range communication across the cardiovascular system. It has been demonstrated that these highly heterogeneous nanosized vesicles participate both in the maintenance of homeostasis of the heart and vessels, and contribute to the pathophysiology of CVDs, thus emerging as promising tools for diagnosis, prognosis and treatment of multiple CVDs. In this review, we highlight the beneficial roles of EV-mediated communication in regulating vascular homeostasis, and inter-organ crosstalk as a potential mechanism controlling systemic metabolic fitness. In addition, the impact of EV secretion in disease development is described, particularly focusing on cardiac remodelling following ischaemia, atherogenesis and atrial fibrillation progression. Finally, we discuss the potential of endogenous and bioengineered EVs as therapeutic tools for CVDs, as well as the suitability of assessing the molecular signature of circulating EVs as a non-invasive predictive marker of CVD onset and progression. This rapidly expanding field of research has established the role of EVs as key conveyors of both cardioprotective and detrimental signals, which might be of relevance in uncovering novel therapeutic targets and biomarkers of CVDs.
Collapse
Affiliation(s)
- Tânia Martins-Marques
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Henrique Girão
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| |
Collapse
|
8
|
Papini G, Furini G, Matteucci M, Biemmi V, Casieri V, Di Lascio N, Milano G, Chincoli LR, Faita F, Barile L, Lionetti V. Cardiomyocyte-targeting exosomes from sulforaphane-treated fibroblasts affords cardioprotection in infarcted rats. J Transl Med 2023; 21:313. [PMID: 37161563 PMCID: PMC10169450 DOI: 10.1186/s12967-023-04155-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/25/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Exosomes (EXOs), tiny extracellular vesicles that facilitate cell-cell communication, are being explored as a heart failure treatment, although the features of the cell source restrict their efficacy. Fibroblasts the most prevalent non-myocyte heart cells, release poor cardioprotective EXOs. A noninvasive method for manufacturing fibroblast-derived exosomes (F-EXOs) that target cardiomyocytes and slow cardiac remodeling is expected. As a cardioprotective isothiocyanate, sulforaphane (SFN)-induced F-EXOs (SFN-F-EXOs) should recapitulate its anti-remodeling properties. METHODS Exosomes from low-dose SFN (3 μM/7 days)-treated NIH/3T3 murine cells were examined for number, size, and protein composition. Fluorescence microscopy, RT-qPCR, and western blot assessed cell size, oxidative stress, AcH4 levels, hypertrophic gene expression, and caspase-3 activation in angiotensin II (AngII)-stressed HL-1 murine cardiomyocytes 12 h-treated with various EXOs. The uptake of fluorescently-labeled EXOs was also measured in cardiomyocytes. The cardiac function of infarcted male Wistar rats intramyocardially injected with different EXOs (1·1012) was examined by echocardiography. Left ventricular infarct size, hypertrophy, and capillary density were measured. RESULTS Sustained treatment of NIH/3T3 with non-toxic SFN concentration significantly enhances the release of CD81 + EXOs rich in TSG101 (Tumor susceptibility gene 101) and Hsp70 (Heat Shock Protein 70), and containing maspin, an endogenous histone deacetylase 1 inhibitor. SFN-F-EXOs counteract angiotensin II (AngII)-induced hypertrophy and apoptosis in murine HL-1 cardiomyocytes enhancing SERCA2a (sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a) levels more effectively than F-EXOs. In stressed cardiomyocytes, SFN-F-EXOs boost AcH4 levels by 30% (p < 0.05) and significantly reduce oxidative stress more than F-EXOs. Fluorescence microscopy showed that mouse cardiomyocytes take in SFN-F-EXOs ~ threefold more than F-EXOs. Compared to vehicle-injected infarcted hearts, SFN-F-EXOs reduce hypertrophy, scar size, and improve contractility. CONCLUSIONS Long-term low-dose SFN treatment of fibroblasts enhances the release of anti-remodeling cardiomyocyte-targeted F-EXOs, which effectively prevent the onset of HF. The proposed method opens a new avenue for large-scale production of cardioprotective exosomes for clinical application using allogeneic fibroblasts.
Collapse
Affiliation(s)
- Gaia Papini
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Giulia Furini
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
- Anesthesiology and Intensive Care Medicine, UOSVD, Fondazione Toscana G. Monasterio, Pisa, Italy
| | - Marco Matteucci
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Vanessa Biemmi
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università Svizzera Italiana, 6900, Lugano, Switzerland
| | - Valentina Casieri
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Nicole Di Lascio
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Giuseppina Milano
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Lucia Rosa Chincoli
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Lucio Barile
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università Svizzera Italiana, 6900, Lugano, Switzerland
| | - Vincenzo Lionetti
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy.
- Anesthesiology and Intensive Care Medicine, UOSVD, Fondazione Toscana G. Monasterio, Pisa, Italy.
| |
Collapse
|
9
|
Germena G, Zelarayán LC, Hinkel R. Cellular Chitchatting: Exploring the Role of Exosomes as Cardiovascular Risk Factors. Front Cell Dev Biol 2022; 10:860005. [PMID: 35433670 PMCID: PMC9008366 DOI: 10.3389/fcell.2022.860005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/16/2022] [Indexed: 11/24/2022] Open
Abstract
Exosomes are small bi-lipid membranous vesicles (30–150 nm) containing different biological material such as proteins, lipids and nucleic acid. These small vesicles, inducing a cell to cell signaling pathway, are able to mediate multidirectional crosstalk to maintain homeostasis or modulate disease processes. With their various contents, exosomes sort and transfer specific information from their origin to a recipient cell, from a tissue or organ in the close proximity or at distance, generating an intra-inter tissue or organ communication. In the last decade exosomes have been identified in multiple organs and fluids under different pathological conditions. In particular, while the content and the abundance of exosome is now a diagnostic marker for cardiovascular diseases, their role in context-specific physiological and pathophysiological conditions in the cardiovascular system remains largely unknown. We summarize here the current knowledge on the role of exosomes as mediators of cardiovascular diseases in several pathophysiological conditions such as atherosclerosis and diabetes. In addition, we describe evidence of intercellular connection among multiple cell type (cardiac, vasculature, immune cells) as well as the challenge of their in vivo analysis.
Collapse
Affiliation(s)
- Giulia Germena
- Laboratory Animal Science Unit, Leibniz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- *Correspondence: Giulia Germena, ; Rabea Hinkel,
| | - Laura Cecilia Zelarayán
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Rabea Hinkel
- Laboratory Animal Science Unit, Leibniz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour (ITTN), Stiftung Tierärztliche Hochschule Hannover, University of Veterinary Medicine, Hannover, Germany
- *Correspondence: Giulia Germena, ; Rabea Hinkel,
| |
Collapse
|
10
|
Jadli AS, Parasor A, Gomes KP, Shandilya R, Patel VB. Exosomes in Cardiovascular Diseases: Pathological Potential of Nano-Messenger. Front Cardiovasc Med 2021; 8:767488. [PMID: 34869682 PMCID: PMC8632805 DOI: 10.3389/fcvm.2021.767488] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular diseases (CVDs) represent a major global health problem, due to their continued high incidences and mortality. The last few decades have witnessed new advances in clinical research which led to increased survival and recovery in CVD patients. Nevertheless, elusive and multifactorial pathophysiological mechanisms of CVD development perplexed researchers in identifying efficacious therapeutic interventions. Search for novel and effective strategies for diagnosis, prevention, and intervention for CVD has shifted research focus on extracellular vesicles (EVs) in recent years. By transporting molecular cargo from donor to recipient cells, EVs modulate gene expression and influence the phenotype of recipient cells, thus EVs prove to be an imperative component of intercellular signaling. Elucidation of the role of EVs in intercellular communications under physiological conditions implied the enormous potential of EVs in monitoring and treatment of CVD. The EVs secreted from the myriad of cells in the cardiovascular system such as cardiomyocytes, cardiac fibroblasts, cardiac progenitor cells, endothelial cells, inflammatory cells may facilitate the communication in physiological and pathological conditions. Understanding EVs-mediated cellular communication may delineate the mechanism of origin and progression of cardiovascular diseases. The current review summarizes exosome-mediated paracrine signaling leading to cardiovascular disease. The mechanistic role of exosomes in cardiovascular disease will provide novel avenues in designing diagnosis and therapeutic interventions.
Collapse
Affiliation(s)
- Anshul S Jadli
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Ananya Parasor
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Karina P Gomes
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Ruchita Shandilya
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Vaibhav B Patel
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
11
|
Designer Exosomes: Smart Nano-Communication Tools for Translational Medicine. Bioengineering (Basel) 2021; 8:bioengineering8110158. [PMID: 34821724 PMCID: PMC8615258 DOI: 10.3390/bioengineering8110158] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/06/2023] Open
Abstract
Exosomes are the master transporters of genes, RNAs, microRNAs, proteins, and lipids. They have applications in major diseases, including cancer, cardiovascular diseases, neurological disorders, and diabetes mellitus. Delivery of the exosomes to recipient cells is governed by the functional heterogenicity of the tissues. Engineered exosomes are promising tools in tissue regeneration. In addition to their role as intracellular communication cargos, exosomes are increasingly primed as standard biomarkers in the progression of diseases, thereby solving the diagnostic dilemma. Futuristic empowerment of exosomes with OMICS strategy can undoubtedly be a bio-tool in translational medicine. This review discusses the advent transformation of exosomes in regenerative medicine and limitations that are caveats to broader applications in clinical use.
Collapse
|
12
|
Martins-Marques T. Connecting different heart diseases through intercellular communication. Biol Open 2021; 10:bio058777. [PMID: 34494646 PMCID: PMC8443862 DOI: 10.1242/bio.058777] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/12/2021] [Indexed: 12/22/2022] Open
Abstract
Well-orchestrated intercellular communication networks are pivotal to maintaining cardiac homeostasis and to ensuring adaptative responses and repair after injury. Intracardiac communication is sustained by cell-cell crosstalk, directly via gap junctions (GJ) and tunneling nanotubes (TNT), indirectly through the exchange of soluble factors and extracellular vesicles (EV), and by cell-extracellular matrix (ECM) interactions. GJ-mediated communication between cardiomyocytes and with other cardiac cell types enables electrical impulse propagation, required to sustain synchronized heart beating. In addition, TNT-mediated organelle transfer has been associated with cardioprotection, whilst communication via EV plays diverse pathophysiological roles, being implicated in angiogenesis, inflammation and fibrosis. Connecting various cell populations, the ECM plays important functions not only in maintaining the heart structure, but also acting as a signal transducer for intercellular crosstalk. Although with distinct etiologies and clinical manifestations, intercellular communication derailment has been implicated in several cardiac disorders, including myocardial infarction and hypertrophy, highlighting the importance of a comprehensive and integrated view of complex cell communication networks. In this review, I intend to provide a critical perspective about the main mechanisms contributing to regulate cellular crosstalk in the heart, which may be considered in the development of future therapeutic strategies, using cell-based therapies as a paradigmatic example. This Review has an associated Future Leader to Watch interview with the author.
Collapse
Affiliation(s)
- Tania Martins-Marques
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| |
Collapse
|
13
|
Perez-Hernandez J, Riffo-Campos AL, Ortega A, Martinez-Arroyo O, Perez-Gil D, Olivares D, Solaz E, Martinez F, Martínez-Hervás S, Chaves FJ, Redon J, Cortes R. Urinary- and Plasma-Derived Exosomes Reveal a Distinct MicroRNA Signature Associated With Albuminuria in Hypertension. Hypertension 2021; 77:960-971. [PMID: 33486986 DOI: 10.1161/hypertensionaha.120.16598] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Urinary albumin excretion (UAE) is a marker of cardiovascular risk and renal damage in hypertension. MicroRNAs (miRNAs) packaged into exosomes function as paracrine effectors in cell communication and the kidney is not exempt. This study aimed to state an exosomal miRNA profile/signature associated to hypertension with increased UAE and the impact of profibrotic TGF-β1 (transforming growth factor β1) on exosomes miRNA release. Therefore, exosomes samples from patients with hypertension with/without UAE were isolated and characterized. Three individual and unique small RNA libraries from each subject were prepared (total plasma, urinary, and plasma-derived exosomes) for next-generation sequencing profiling. Differentially expressed miRNAs were over-represented in Kyoto Encyclopedia of Genes and Genomes pathways, and selected miRNAs were validated by real-time quantitative polymerase chain reaction in a confirmation cohort. Thus, a signature of 29 dysregulated circulating miRNAs was identified in UAE hypertensive subjects, regulating 21 pathways. Moreover, changes in the levels of 4 exosomes-miRNAs were validated in a confirmation cohort and found associated with albuminuria. In particular miR-26a, major regulator of TGF-β signaling, was found downregulated in both type of exosomes when compared with healthy controls and to hypertension normoalbuminurics (P<0.01). Similarly, decreased miR-26a levels were found in podocyte-derived exosomes after TGF-β stress. Our results revealed an exosomes miRNA signature associated to albuminuria in hypertension. In particular, exosomes miR-26a seemed to play a key role in the regulation of TGF-β, a relevant effector in podocyte damage. These findings support the use of exosomes miRNAs as biomarkers of cardiovascular risk progression and therapeutic tools in early kidney damage.
Collapse
Affiliation(s)
- Javier Perez-Hernandez
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.)
| | - Angela L Riffo-Campos
- Departamento de Anatomía Patológica, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile (A.L.R.-C.)
| | - Ana Ortega
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.)
| | - Olga Martinez-Arroyo
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.)
| | - Daniel Perez-Gil
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.)
| | - Dolores Olivares
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.)
| | - Elena Solaz
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.).,Internal Medicine Unit, Hospital Clínico Universitario, Valencia, Spain (E.S., F.M., J.R.)
| | - Fernando Martinez
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.).,Internal Medicine Unit, Hospital Clínico Universitario, Valencia, Spain (E.S., F.M., J.R.)
| | - Sergio Martínez-Hervás
- Endocrinology and Nutrition Department Clinic Hospital, Spain (S.M.-H.).,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Institute of Health Carlos III, Minister of Health, Barcelona, Spain (S.M.-H., F.J.C.).,Department of Medicine, Faculty of Medicine and Odontology, University of Valencia, Spain (S.M.-H.)
| | - Felipe J Chaves
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Institute of Health Carlos III, Minister of Health, Barcelona, Spain (S.M.-H., F.J.C.).,Genomics and Diabetes Unit, INCLIVA Biomedical Research Institute, Valencia, Spain (F.J.C.)
| | - Josep Redon
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.).,Internal Medicine Unit, Hospital Clínico Universitario, Valencia, Spain (E.S., F.M., J.R.).,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Minister of Health, Madrid, Spain (J.R.)
| | - Raquel Cortes
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.)
| |
Collapse
|
14
|
Zarà M, Amadio P, Campodonico J, Sandrini L, Barbieri SS. Exosomes in Cardiovascular Diseases. Diagnostics (Basel) 2020; 10:E943. [PMID: 33198302 PMCID: PMC7696149 DOI: 10.3390/diagnostics10110943] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Exosomes are nano-sized biovesicles of endocytic origin physiologically released by nearly all cell types into surrounding body fluids. They carry cell-specific cargos of protein, lipids, and genetic materials and can be selectively taken up by neighboring or distant cells. Since the intrinsic properties of exosomes are strictly influenced by the state of the parental cell and by the cellular microenvironment, the analysis of exosome origin and content, and their cell-targeting specificity, make them attractive as possible diagnostic and prognostic biomarkers. While the possible role of exosomes as messengers and a regenerative tool in cardiovascular diseases (CVDs) is actively investigated, the evidence about their usefulness as biomarkers is still limited and incomplete. Further complications are due to the lack of consensus regarding the most appropriate approach for exosome isolation and characterization, both important issues for their effective clinical translation. As a consequence, in this review, we will discuss the few information currently accessible about the diagnostic/prognostic potential of exosomes in CVDs and on the methodologies available for exosome isolation, analysis, and characterization.
Collapse
Affiliation(s)
- Marta Zarà
- Unit of Brain-Heart axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, via Parea 4, 20138 Milan, Italy; (P.A.); (L.S.)
| | - Patrizia Amadio
- Unit of Brain-Heart axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, via Parea 4, 20138 Milan, Italy; (P.A.); (L.S.)
| | - Jeness Campodonico
- Intensive Cardiac Care Unit, Centro Cardiologico Monzino IRCCS, via Parea 4, 20138 Milan, Italy;
| | - Leonardo Sandrini
- Unit of Brain-Heart axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, via Parea 4, 20138 Milan, Italy; (P.A.); (L.S.)
| | - Silvia S. Barbieri
- Unit of Brain-Heart axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, via Parea 4, 20138 Milan, Italy; (P.A.); (L.S.)
| |
Collapse
|
15
|
Berezin AE, Berezin AA, Lichtenauer M. Emerging Role of Adipocyte Dysfunction in Inducing Heart Failure Among Obese Patients With Prediabetes and Known Diabetes Mellitus. Front Cardiovasc Med 2020; 7:583175. [PMID: 33240938 PMCID: PMC7667132 DOI: 10.3389/fcvm.2020.583175] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue dysfunction is a predictor for cardiovascular (CV) events and heart failure (HF) in patient population with obesity, metabolic syndrome, and known type 2 diabetes mellitus. Previous preclinical and clinical studies have yielded controversial findings regarding the role of accumulation of adipose tissue various types in CV risk and HF-related clinical outcomes in obese patients. There is evidence for direct impact of infiltration of epicardial adipocytes into the underlying myocardium to induce adverse cardiac remodeling and mediate HF development and atrial fibrillation. Additionally, perivascular adipocytes accumulation is responsible for release of proinflammatory adipocytokines (adiponectin, leptin, resistin), stimulation of oxidative stress, macrophage phenotype switching, and worsening vascular reparation, which all lead to microvascular inflammation, endothelial dysfunction, atherosclerosis acceleration, and finally to increase in CV mortality. However, systemic effects of white and brown adipose tissue can be different, and adipogenesis including browning of adipose tissue and deficiency of anti-inflammatory adipocytokines (visfatin, omentin, zinc-α2-glycoprotein, glypican-4) was frequently associated with adipose triglyceride lipase augmentation, altered glucose homeostasis, resistance to insulin of skeletal muscles, increased cardiomyocyte apoptosis, lowered survival, and weak function of progenitor endothelial cells, which could significantly influence on HF development, as well as end-organ fibrosis and multiple comorbidities. The exact underlying mechanisms for these effects are not fully understood, while they are essential to help develop improved treatment strategies. The aim of the review is to summarize the evidence showing that adipocyte dysfunction may induce the onset of HF and support advance of HF through different biological mechanisms involving inflammation, pericardial, and perivascular adipose tissue accumulation, adverse and electrical cardiac remodeling, and skeletal muscle dysfunction. The unbalancing effects of natriuretic peptides, neprilysin, and components of renin-angiotensin system, as exacerbating cause of altered adipocytokine signaling on myocardium and vasculature, in obesity patients at high risk of HF are disputed. The profile of proinflammatory and anti-inflammatory adipocytokines as promising biomarker for HF risk stratification is discussed in the review.
Collapse
Affiliation(s)
- Alexander E. Berezin
- Internal Medicine Department, State Medical University, Ministry of Health of Ukraine, Zaporozhye, Ukraine
| | - Alexander A. Berezin
- Internal Medicine Department, Medical Academy of Post-Graduate Education, Ministry of Health of Ukraine, Zaporozhye, Ukraine
| | - Michael Lichtenauer
- Division of Cardiology, Department of Internal Medicine II, Paracelsus Medical University Salzburg, Salzburg, Austria
| |
Collapse
|
16
|
Berg von Linde M, Johansson K, Kruse R, Helenius G, Samano N, Friberg Ö, Frøbert AM, Fröbert O. Expression of Paracrine Effectors in Human Adipose-Derived Mesenchymal Stem Cells Treated With Plasma From Brown Bears (Ursus arctos). Clin Transl Sci 2020; 14:317-325. [PMID: 32949228 PMCID: PMC7877842 DOI: 10.1111/cts.12872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/30/2020] [Indexed: 11/28/2022] Open
Abstract
Adipose‐derived mesenchymal stem cells (ADSCs) are promising candidates for novel cell therapeutic applications. Hibernating brown bears sustain tissue integrity and function via unknown mechanisms, which might be plasma borne. We hypothesized that plasma from hibernating bears may increase the expression of favorable factors from human ADSCs. In an experimental study, ADSCs from patients with ischemic heart disease were treated with interventional media containing plasma from hibernating and active bears, respectively, and with control medium. Extracted RNA from the ADSCs was sequenced using next generation sequencing. Statistical analyses of differentially expressed genes were performed using fold change analysis, pathway analysis, and gene ontology. As a result, we found that genes associated with inflammation, such as IGF1, PGF, IL11, and TGFA, were downregulated by > 10‐fold in ADSCs treated with winter plasma compared with control. Genes important for cardiovascular development, ADM, ANGPTL4, and APOL3, were upregulated in ADSCs when treated with winter plasma compared with summer plasma. ADSCs treated with bear plasma, regardless if it was from hibernating or active bears, showed downregulation of IGF1, PGF, IL11, INHBA, IER3, and HMOX1 compared with control, suggesting reduced cell growth and differentiation. This can be summarized in the conclusion that plasma from hibernating bears suppresses inflammatory genes and activates genes associated with cardiovascular development in human ADSCs. Identifying the involved regulator(s) holds therapeutic potential.
Collapse
Affiliation(s)
| | - Karin Johansson
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Robert Kruse
- Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,iRiSC - Inflammatory Response and Infection Susceptibility Centre, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Gisela Helenius
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Ninos Samano
- Department of Cardiothoracic and Vascular Surgery, Faculty of Medicine and Health, University Health Care Research Center, Örebro University, Örebro, Sweden
| | - Örjan Friberg
- Department of Cardiothoracic and Vascular Surgery, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Anne Mette Frøbert
- Department of Chemistry and Bioscience, Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark
| | - Ole Fröbert
- Department of Cardiology, Faculty of Health, Örebro University, Örebro, Sweden
| |
Collapse
|
17
|
Basma H, Tatineni S, Dhar K, Qiu F, Rennard S, Lowes BD. Electronic cigarette extract induced toxic effect in iPS-derived cardiomyocytes. BMC Cardiovasc Disord 2020; 20:357. [PMID: 32758132 PMCID: PMC7409492 DOI: 10.1186/s12872-020-01629-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
Background Cigarette smoking is an important risk factor for cardiac diseases. In the current study, we sought to assess the effect of electronic cigarette extract (ECE) and conventional cigarette smoke extract (CSE) on cardiomyocytes. Methods iPSCs-derived cardiomyocytes were used in the study to evaluate cellular toxicities. Cells were exposed to either ECE or CSE for two consecutive days as an acute exposure or every other day for 14 days. Concentration of nicotine in both ECE and CSE were measured by Mass-Spectrometry and Q-Exactive-HF was used to identify other ingredients in both extracts. Fluorescent microscopy was used to measure the oxidative stress after ECE and CSE exposure. Motility and beat frequency of cardiomyocytes were determined using the Sisson-Ammons Video Analysis system. Heart failure target panel genes of exposed cardiomyocytes were compared to control unexposed cells. Results Despite nicotine concentration in CSE being six-fold higher than ECE (50 μg in CSE and 8 μg in ECE), ECE had similar toxic effect on cardiomyocytes. Both CSE and ECE generate significant cellular reactive oxygen species. The Sisson-Ammons Video Analysis (SAVA) analysis showed significant changes in myocyte function with both CSE and ECE slowing beating and increasing cell death. Chronic exposure of both ECE and CSE significantly decreased cardiomyocytes viability long term at all doses. Target panel gene expression profiles of both ECE and CSE exposed cardiomyocytes were different from controls with distinct pattern of genes that involved cell proliferation, inflammation, and apoptosis. Conclusion ECE and CSE produce similar cardiomyocyte toxicities which include generating oxidative stress, negative chronotropic effects, adverse changes in myocardial gene expression and ultimately cell death.
Collapse
Affiliation(s)
- Hesham Basma
- University of Nebraska Medical Center, Omaha, NE, USA.
| | | | - Kajari Dhar
- University of Nebraska Medical Center, Omaha, NE, USA
| | - Fang Qiu
- University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Brian D Lowes
- University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|