1
|
Cañon-Tafur LA, Mateus-Maldonado JF, Lozano-Puentes HS, Herrera-Acosta CD, Sánchez-Matiz JJ, Díaz-Ariza LA, Costa GM, Jiménez-Borrego LC, Carrascal-Camacho AK, Pedroza-Rodríguez AM. Guadua angustifolia biochar/TiO 2 composite and biochar as bio-based materials with environmental and agricultural application. Sci Rep 2025; 15:246. [PMID: 39747351 PMCID: PMC11697128 DOI: 10.1038/s41598-024-81761-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/28/2024] [Indexed: 01/04/2025] Open
Abstract
Globally, the companies that make commercial use of bamboo culms produce different kinds of solid waste rich in lignocellulosic biomass, which in some cases is not used and is discarded in landfills or incinerated in the open air; losing the possibility of recovering them and using them in other productive sectors. The research objective were to produce a biochar from Guadua agustifolia Kunth sawdust, evaluate its potential environmental and agricultural use, obtain a biochar/TiO2 composite to inactivate Escherichia coli and use the biochar as a soil conditioner in medicinal plants producing phenolic compounds and flavonoids. Biochar composite (produced at 300 °C for 1 h) involved TiO2 at 450 °C for 1 h for inactivation of E. coli (initial concentration: 6.5 ± 0.3 Log10 CFU mL- 1). For agriculture, 2% biochar was used to evaluate B. pilosa L. and G. angustifolia plant growth for 90 days. The biochar/TiO2 composite had a high photocatalytic activity on E. coli, generating a final count of 1.97 ± 0.2 Log10 CFU mL- 1 after 60 min. Biochar (2%) increased the total phenol and flavonoid content in the medicinal plant B. pilosa L. and total phenols in G. angustifolia, tested at the nursery stage. This study provides new information on the conversion and use of G. angustifolia sawdust as an alternative for new bio-based materials with environmental and agricultural applications. In addition, obtaining biochar and composite could positively impact the bamboo production chain in Colombia because of renewable and globally accepted alternatives that help capture gaseous emissions causing the greenhouse effect.
Collapse
Affiliation(s)
- Luis A Cañon-Tafur
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia
- Laboratorio de Películas Delgadas y Nanofotónica, Departamento de Física, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia
| | - Juan F Mateus-Maldonado
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia
- Laboratorio Asociaciones Suelo, Planta Microorganismo (LAMIC), Grupo de Investigación en Agricultura Biológica, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia
| | - Hair Santiago Lozano-Puentes
- Laboratorio Asociaciones Suelo, Planta Microorganismo (LAMIC), Grupo de Investigación en Agricultura Biológica, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia
- Laboratorio de Fitoquímica, Grupo de Investigación Fitoquímica (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia
| | - Carlos D Herrera-Acosta
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia
| | - Juan J Sánchez-Matiz
- Laboratorio Asociaciones Suelo, Planta Microorganismo (LAMIC), Grupo de Investigación en Agricultura Biológica, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia
| | - Lucía A Díaz-Ariza
- Laboratorio Asociaciones Suelo, Planta Microorganismo (LAMIC), Grupo de Investigación en Agricultura Biológica, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia
| | - Geison Modesti Costa
- Laboratorio de Fitoquímica, Grupo de Investigación Fitoquímica (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia
| | - Luis C Jiménez-Borrego
- Laboratorio de Películas Delgadas y Nanofotónica, Departamento de Física, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia
| | - Ana K Carrascal-Camacho
- Laboratorio de Microbiología de Alimentos. Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia
| | - Aura M Pedroza-Rodríguez
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia.
| |
Collapse
|
2
|
Tiryaki E, Özarslan AC, Yücel S, Correa-Duarte MA. Plasmon-Sensitized Silica-Titanium Aerogels as Potential Photocatalysts for Organic Pollutants and Bacterial Strains. ACS OMEGA 2023; 8:33857-33869. [PMID: 37744791 PMCID: PMC10515350 DOI: 10.1021/acsomega.3c04556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023]
Abstract
Photocatalysis reactions are of great interest as an effective tool against the profusely increasing population of antibiotic-resistant bacteria species. In particular, the promising evidence on plasmon-sensitized titanium dioxide (TiO2) photocatalysis inspired us to investigate their antibacterial activity stemming from the photogenerated reactive oxygen species (ROS). Herein, TiO2 nanostructures were grown in situ within a silica (SiO2) aerogel matrix with high surface area and porosity, and their ROS-related phototoxic effects against Escherichia coli bacteria were investigated under solar- and visible-light irradiations. Photodegradation profiles obtained from Rhodamine B (RhB) organic dye used as a chemical probe proved that the types of ROS produced by SiO2/TiO2 aerogels varied depending on the electromagnetic spectrum portion that was used during material irradiation. Further, the SiO2/TiO2 aerogel matrix was decorated with silver-gold nanostars (Ag@Au NSs) to enhance its photocatalytic efficiency under visible light irradiations. Our design showed that plasmon-enriched composite aerogels efficiently boosted ROS production under visible light exposures and that the structures containing Ag@Au NSs showed a much more effective antibacterial effect compared to their counterparts.
Collapse
Affiliation(s)
- Ecem Tiryaki
- Nanomaterials
for Biomedical Applications, Italian Institute
of Technology (IIT), 16163, Genova, Italy
- Department
of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220, Esenler, Istanbul, Turkey
| | - Ali Can Özarslan
- Department
of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220, Esenler, Istanbul, Turkey
| | - Sevil Yücel
- Department
of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220, Esenler, Istanbul, Turkey
| | - Miguel A. Correa-Duarte
- CINBIO,
Universidade Vigo, 36310 Vigo, Spain
- Southern
Galicia Institute of Health Research (IISGS) and CIBERSAM, 36310, Vigo, Spain
| |
Collapse
|
3
|
Ulfa M, Anggreani CN, Sholeha NA. Fine-tuning mesoporous silica properties by a dual-template ratio as TiO 2 support for dye photodegradation booster. Heliyon 2023; 9:e16275. [PMID: 37251449 PMCID: PMC10220382 DOI: 10.1016/j.heliyon.2023.e16275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/31/2023] Open
Abstract
Titanium dioxide (TiO2) has been integrated into the surface of mesoporous silica (SMG) synthesized via the hydrothermal approach and a dual template CTAB-Gelatin. XRD, nitrogen adsorption, FTIR, SEM-EDX, and UV-Vis DR spectroscopy were performed to evaluate a 1 wt% TiO2/SMG material. After titania incorporation, the addition of gelatin during the synthesis of SMG increases the pore volume to 0.76 cc/g. The expansion of the silica pores is caused by the development of TiO2 crystal grains on the mesoporous silica-gelatin. An increase in the gelatin-CTAB to mesoporous silica weight ratio modifies the surface area, pore size, and particle size without compromising the meso-structure. In this research, the TiO2/SMG composite demonstrated much greater photodegradability for methylene blue (MB) than the TiO2/mesoporous silica sample without gelatin. The experimental results indicate that the photocatalytic activity of methylene blue from SMG titania/silica samples is reliant on the adsorption ability of the composite and the photocatalytic activity of titania, with optimal activity from samples with the highest surface area and pore volume, which directly increase the Ti: Si ratio and decrease the photodegradability of the composite when the ratio is too high or too low.
Collapse
Affiliation(s)
- Maria Ulfa
- Chemistry Education Study Program, Faculty of Teacher Training and Education, Sebelas Maret University, Jl. Ir. Sutami 36A, Surakarta 57126, Indonesia
| | - Cindy Nur Anggreani
- Chemistry Education Study Program, Faculty of Teacher Training and Education, Sebelas Maret University, Jl. Ir. Sutami 36A, Surakarta 57126, Indonesia
| | - Novia Amalia Sholeha
- College of Vocational Studies, Bogor Agricultural University (IPB University), Jalan Kumbang No. 14, Bogor 16151, Indonesia
| |
Collapse
|
4
|
Effect of Silica Source on Photocatalytic Properties of Bi2O3/Bi2SiO5 Heterostructure. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2023. [DOI: 10.1016/j.jobab.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
5
|
Koysuren HN, Koysuren O. Photocatalytic Activity of Boron Doped CuO and Its Composite with Polyaniline. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2113894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Ozcan Koysuren
- Department of Energy Engineering, Ankara University, Ankara, Turkey
| |
Collapse
|
6
|
Green route synthesis and characterization of β-Bi2O3/SiO2 and β-Bi2O3/Bi2O2.75/SiO2 using Juglans regia L. shell aqueous extract and photocatalytic properties for the degradation of RB-5. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00355-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
Background
Photocatalyst oxides added with silicon improve their photocatalytic properties. In this research, nanostructured β-Bi2O3/SiO2 and β-Bi2O3/Bi2O2.75/SiO2 were obtained by means of a green method mediated by the using the aqueous extract of J. regia shell as the source of reducing biomolecules and as a natural source of plant silicon.
Method
The β-Bi2O3/SiO2 and β-Bi2O3/Bi2O2.75/SiO2 nanostructures were characterized by Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray diffraction, high-resolution transmission electron microscopy (HR-TEM), field emission scanning electron microscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet–visible diffuse reflectance spectroscopy (UV–Vis DRS), and photoluminescence spectroscopy. The photocatalytic activity was measured by the degradation of Reactive Black 5 dye (RB-5).
Results
FT-IR and XPS demonstrated the presence of plant silicon in the bismuth oxide photocatalysts. HR-TEM showed that the crystal size of the as-synthesized materials is ~ 25 nm and revealed that the β-Bi2O3 synthesized with ground shell extract and heat-treated at 300 °C contains the Bi2O2.75 phase. Good photocatalytic activity was found in all the studied materials; particularly, the heat-treated nanostructures showed excellent properties resulting in 92% degradation of RB-5 under UV–Vis light after 15 min of exposure, and 98% after 180 min.
Conclusions
The findings of this research suggest that the metabolites coating the Bi2O3, which generate a large amount of hydroxyl radicals, the plant silicon content, and the crystalline defects conferred by the synthesis medium, all contribute to the improved degradation of the azo dye, providing the nanostructures with better photocatalytic activity.
Collapse
|
7
|
Development of visible light-responsive N-doped TiO2/SiO2 core–shell nanoparticles for photocatalytic degradation of methylene blue dye. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04925-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Antony J, Gonzalez SV, Bandyopadhyay S, Yang J, Rønning M. Silica-modified Bismutite Nanoparticles for Enhanced Adsorption and Faster Solar Photocatalytic Degradation of Methylene Blue. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Synthesis and Use of Silica Xerogels Doped with Iron as a Photocatalyst to Pharmaceuticals Degradation in Water. Catalysts 2022. [DOI: 10.3390/catal12111341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The main objective of this study was to assess the photoactive properties of iron-doped silica xerogels under solar radiation. For this purpose, silica xerogels (XGS) synthesized by the sol-gel method were doped with Fe (III) by two routes: impregnation and polymerization. XGS samples were texturally and chemically characterized by N2 adsorption, XRD, FTIR, Raman, SEM-EDX, DRS, and PL, evidencing the suitability of using XGS substrates to host iron clusters on their surface with total compatibility. Chlorphenamine (CPM), ciprofloxacin (CIP), and ranitidine (RNT) were used as model compounds. The degradation of the molecules was made under simulated solar radiation testing the synthesis pad, load, material size, and reuse. It was found that XGS doped with Fe by the impregnation route (XGS-Fe-Im) were able to completely degrade CPM and RNT in 30 min and 10 min, respectively, whilst for CIP it achieved the removal of 60% after 1 h of solar radiation exposure, outperforming parent materials and solar radiation by itself. The study of the degradation mechanism elucidated a major influence from the action of HO• radicals. The present investigation offers a potential route of application of XGS Fe-doped materials for the removal of emerging concern contaminants under near real-world conditions.
Collapse
|
10
|
Easwaran G, Packialakshmi JS, Syed A, Elgorban AM, Vijayan M, Sivakumar K, Bhuvaneswari K, Palanisamy G, Lee J. Silica nanoparticles derived from Arundo donax L. ash composite with Titanium dioxide nanoparticles as an efficient nanocomposite for photocatalytic degradation dye. CHEMOSPHERE 2022; 307:135951. [PMID: 35964724 DOI: 10.1016/j.chemosphere.2022.135951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/24/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Water pollution is a serious problem that threatens both developed and developing countries. Several methods have been used to purify contaminated water, among which the photocatalytic decomposition approach is widely used to purify contaminated water from organic pollutants. In this work, biomass derived SiO2 nanoparticles composite with TiO2 semiconductors used as an efficient photocatalyst for degradation of RhB dye molecules under UV-visible light irradiation is proclaimed. The different weight percentages of Arundo donax L. ash-derived SiO2 nanoparticles combined with TiO2 nanoparticles were prepared through the wet impregnation method. The photocatalytic degradation ability of the as-prepared samples has been scrutinized against the degradation of Rh B dye in which the pronounced photocatalytic degradation efficiency 93.7% is successfully achieved on 50 wt % SiO2-50 wt % TiO2 nanocomposite photocatalyst. The catalytic performance of the nanocomposite decreases with an increase of 50%-75% in SiO2 nanoparticles. There could have been a decrease in degradation efficiency due to an excess amount of SiO2 covering TiO2 nanoparticles, which prevented photons from reaching the nanoparticles. The efficiency of cyclic decomposition of the 50 wt% SiO2-50 wt% TiO2 composite showed only a slight change in photocatalytic capacity compared to the first cycle, which ensures the durability of the sample. However, the hydroxyl radical species play the main role in the degradation process, which has been confirmed by the scavenger test. The probable reaction mechanism is also deliberated in detail. The high photocatalytic performance of novel eco-friendly SiO2-TiO2 photocatalyst make it ideal for water purification applications.
Collapse
Affiliation(s)
- G Easwaran
- Department of Chemistry, Government Polytechnic College, Dharmapuri, 635 205, Tamilnadu, India
| | - J Saranya Packialakshmi
- Department of Food and Nutrition, Kyung Hee University (KHU), 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, South Korea.
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - M Vijayan
- Department of Chemistry, Government Polytechnic College, Jolarpet, 635 651, Tamilnadu, India
| | - K Sivakumar
- Department of Chemistry, Adhiyamaan College of Engineering, Hosur, 635 109, Tamilnadu, India.
| | - K Bhuvaneswari
- Department of Electronics and Communication Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India
| | - G Palanisamy
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| |
Collapse
|
11
|
Paul R, Warkad IR, Arulkumar S, Parthiban S, Darji HR, Naushad M, Kadam RG, Gawande MB. Facile synthesis of nanostructured TiO2-SiO2 powder for selective photocatalytic oxidation of alcohols to carbonyl compounds. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Ulfa M, Al Afif H, Saraswati TE, Bahruji H. Fast Removal of Methylene Blue via Adsorption-Photodegradation on TiO 2/SBA-15 Synthesized by Slow Calcination. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15165471. [PMID: 36013608 PMCID: PMC9409962 DOI: 10.3390/ma15165471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/19/2022] [Accepted: 07/29/2022] [Indexed: 06/01/2023]
Abstract
TiO2/SBA-15 photocatalysts were successfully prepared by impregnating low loading titania to SBA-15 via slow calcination. The photocatalyst is efficient for fast methylene blue removal via adsorption and photodegradation methods. The impregnation of low TiO2 loading via slow calcination enhanced TiO2 dispersion that preserved the SBA-15 porosity and uniform morphology. High interfacial interaction of TiO2/SBA-15 improves TiO2 photoresponse by narrowing the bandgap, resulting in a stronger redox ability. The methylene blue removal on 10%TiO2/SBA-15 followed the pseudo-second-order kinetic model that reached 67% removal efficiency in 90 min. The synergy between adsorption and photodegradation is responsible for the fast methylene blue removal. These results indicate the importance of maintaining the adsorption capacity in SBA-15 after impregnation with TiO2 for efficient adsorption-photodegradation processes, which can be achieved by controlling the deposition of TiO2 on SBA-15. A low titania loading further reduced the cost of photocatalysts, thus becoming a potential material for environmental pollution treatment.
Collapse
Affiliation(s)
- Maria Ulfa
- Study Program of Chemistry Education, Faculty of Teacher Training and Education, Sebelas Maret University, Jl. Ir. Sutami 36A, Surakarta 57126, Indonesia
| | - Hafid Al Afif
- Study Program of Chemistry Education, Faculty of Teacher Training and Education, Sebelas Maret University, Jl. Ir. Sutami 36A, Surakarta 57126, Indonesia
| | - Teguh Endah Saraswati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Jl. Ir. Sutami 36A, Surakarta 57126, Indonesia
| | - Hasliza Bahruji
- Centre of Advanced Material and Energy Sciences, University Brunei Darussalam, Jalan Tungku Link, Darussalam BE1410, Brunei
| |
Collapse
|
13
|
Pyanko AV, Alisienok OA, Kubrak PB, Chernik AA. Formation and Physicochemical Properties of Composite Electrochemical Coatings of Tin–Nickel Alloy with Silicon Dioxide Incapsulated by Nanosized Titanium Dioxide. RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s1023193522040115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Acelas M, Castellanos NJ, Sierra CA. Stability and Performance Enhancement of an Oligo (phenylene vinylene) Photocatalyst via Surface Grafting onto TiO
2
for Visible‐Light Indigo Carmine Degradation. ChemistrySelect 2022. [DOI: 10.1002/slct.202103460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mauricio Acelas
- Grupo de Investigación en Macromoléculas Departamento de Química Universidad Nacional de Colombia Bogotá 111321 Colombia
| | - Nelson J. Castellanos
- Estado Sólido y Catálisis Ambiental (ESCA) Departamento de Química Universidad Nacional de Colombia Bogotá 111321 Colombia
| | - César A. Sierra
- Grupo de Investigación en Macromoléculas Departamento de Química Universidad Nacional de Colombia Bogotá 111321 Colombia
| |
Collapse
|
15
|
John KI, Adeleye AT, Adeyanju CA, Ogunniyi S, Ighalo JO, Adeniyi AG. Effect of light on concomitant sequestration of Cu(II) and photodegradation of tetracycline by H-MOR/H-β/H-ZSM5 zeolites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11756-11764. [PMID: 34545522 DOI: 10.1007/s11356-021-16556-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
It is important that a pollution remediation system be able to cater for a variety of pollutant species present in the water to be treated. The aim of this study was to utilise a series of commercial zeolites (H-MOR, H-β, and H-ZSM5) for the concomitant adsorption and photodegradation of Cu2+ and tetracycline (TC) molecules. The adsorbent cum photocatalyst was characterised by SEM and FTIR. FTIR confirmed the key functional groups (Si-O-Si and Al-O-Si) in the series of zeolites, and H-β zeolite was demonstrated to be the most effective adsorbent cum photocatalyst for both adsorption and photodegradation of Cu2+ and TC molecules. These results were further corroborated from the pseudo-first-order rate constant values. Among the investigated zeolites, H-ZSM5 displayed the least adsorption and photodegradation performance for Cu2+ and TC molecules. The photolysis reaction confirms the significant role of zeolites in the photodegradation test, as low performance was recorded in the absence of the zeolites.
Collapse
Affiliation(s)
- Kingsley Igenepo John
- Department of Pure and Applied Chemistry, College of Natural and Applied Sciences, Veritas University, P.M.B. 5171, Abuja, Nigeria
- State Key Laboratory of Catalysis & Division of Solar Energy, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning Province, China
| | - Aderemi Timothy Adeleye
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning Province, China
- Organization of African Academic Doctor (OAAD), Off Kamiti Road, P. O. Box 25305000100, Nairobi, Kenya
| | | | - Samuel Ogunniyi
- Department of Chemical Engineering, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
| | - Joshua O Ighalo
- Department of Chemical Engineering, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
- Department of Chemical Engineering, Nnamdi Azikiwe University, P.M.B. 5025, Awka, Nigeria
| | | |
Collapse
|
16
|
Khan MS, Riaz N, Shaikh AJ, Shah JA, Hussain J, Irshad M, Awan MS, Syed A, Kallerhoff J, Arshad M, Bilal M. Graphene quantum dot and iron co-doped TiO 2 photocatalysts: Synthesis, performance evaluation and phytotoxicity studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112855. [PMID: 34628153 DOI: 10.1016/j.ecoenv.2021.112855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
The present study reports the synthesis, photocatalytic decolorization of reactive black 5 dye and phytotoxicity of graphene quantum dots (GQDs) and iron co-doped TiO2 photocatalysts via modified sol gel method. GQDs were synthesized by direct pyrolysis of citric acid (CA). Scanning electron microscopy (SEM) and energy dispersion spectroscopy (EDS), Raman spectroscopy, atomic force microscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), diffuse reflectance spectroscopy (DRS), Brunauer-Emmett-Teller (BET) and photoluminescence spectroscopy (PL) were used to determine the physicochemical properties of the best performing photocatalysts. The results indicated improved physicochemical properties of GQD-0.1Fe-TiO2-300 with root mean square roughness (Rz) (33.82 nm), higher surface area (170.79 m2 g-1), pore volume (0.08 cm3 g-1), and bandgap (2.94 eV). Moreover, GQD-0.1Fe co-doping of TiO2 greatly improved the photocatalytic decolorization efficiency for RB5 dye. The photocatalytic reaction followed the pseudo first order reaction with gradual decrease in Kapp values for increment in RB5 concentration. The KC value was obtained as 2.45 mg L-1 min-1 while the KLH value was 0.45 L mg-1 indicating the heterogeneous reaction system followed the Langmuir-Hinshelwood isotherm and simultaneously occurring adsorption and photocatalytic processes. Photocatalytic reaction mechanism studies exhibited the holes and OH radicals as the main active species in the GQD-0.1Fe-TiO2-300 responsible for the decolorization of RB5. The proposed reaction pathway showed that both Fe-TiO2 and GQDs play important role in generation of electrons and holes. Additionally, GQD-0.1Fe-TiO2-300 were durable up to four cycles. Phytotoxicity assay displayed that treated water and best performing photocatalysts had no effect on Lycopersicon esculentum seed germination. Therefore, the proposed system can pave a viable solution for safe usage of dye loaded wastewater and effluent for irrigation after treatment.
Collapse
Affiliation(s)
- Muhammad Saqib Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Nadia Riaz
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Ahson Jabbar Shaikh
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Jehanzeb Ali Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Jamshaid Hussain
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Muhammad Irshad
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - M Saifullah Awan
- Nano Science and Technology Department, National Centre for Physics (NCP), Shahdra Valley Road, Islamabad 44000, Pakistan
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455 Riyadh 11451, Saudi Arabia
| | | | - Muhammad Arshad
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan.
| | - Muhammad Bilal
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
| |
Collapse
|
17
|
Photocatalytic Degradation of Methylene Blue and Antibacterial Activity of Mesoporous TiO2-SBA-15 Nanocomposite Based on Rice Husk. ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/9290644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Concerns have been increased regarding the existence of pollutants in environmental water resources and their risks to the ecosystem and human society. TiO2 photocatalyst is considered as an effective photocatalyst to remove the pollutants. Herein, the mesoporous TiO2-SBA-15 was prepared using the rice husk extract as the silica source. The fabricated nanocomposites were characterized using FTIR, small and wide angle XRD, Raman spectroscopy, UV-vis, BET surface area analysis, and HRTEM. The photocatalytic efficiency of the composites for the degradation of methylene blue (MB) has been evaluated under UV irradiation. Interestingly, due to the excellent dispersion of TiO2 on the wall of SBA-15 and good hydrophilicity, the nanocomposites displayed a good catalytic activity. The higher photodegradation performance was achieved by the composite containing 10 wt% TiO2 by which the MB was fully degraded within 15-20 min of irradiation. Besides, TiO2-SBA-15 could effectively inhibit the growth of Gram-positive and Gram-negative bacteria. These results offer a practical and economic approach in the environmental management industries.
Collapse
|
18
|
Zhang Y, Zhang H, Tian S, Zhang L, Li W, Wang W, Yan X, Han N, Zhang X. The Photocatalysis-Enhanced TiO 2@HPAN Membrane with High TiO 2 Surface Content for Highly Effective Removal of Cationic Dyes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9415-9428. [PMID: 34310152 DOI: 10.1021/acs.langmuir.1c01066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The elimination of dye pollutants from wastewater is a significant concern that has prompted extensive research into the development of highly efficient photocatalytic membranes. A novel method was proposed to prepare photocatalysis-enhanced poly(acrylonitrile-methyl acrylate) (PAN-based) membranes in this study. In detail, the blended membrane containing SiO2@TiO2 nanoparticles with a shell-core structure was first prepared via thermal-induced phase separation. The SiO2 nanoshells were dissolved, and the released TiO2 nanoparticles migrated to the membrane surface during a simple hydrolysis process, which prevents the TiO2 nanoparticles from directly contacting or interacting with the polymer matrix. The hydrogen bonds bind the exposed TiO2 with the PAN membrane surface, resulting in the formation of the TiO2@HPAN hybrid membrane. The photocatalytic efficiency of the TiO2@HPAN membrane doubled compared with that of nonhydrolyzed membranes. In the presence of UV light, the hybrid membrane can degrade 99.8% of methylene blue solution in less than 2 h, compared to only 86.1% for the blended membranes. Further, the TiO2@HPAN membrane showed excellent photocatalytic activity for cationic dyes due to electrostatic attraction. Moreover, the high-flux recovery rate and recycling stability of the TiO2@HPAN membrane lead to an excellent antifouling property. The facile preparation method proposed in this work shows extraordinary potential for the development of highly efficient selective photocatalytic materials for cationic dyes to be used in wastewater treatment applications.
Collapse
Affiliation(s)
- Yaqi Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Haoran Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Shiwei Tian
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Longfei Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Wei Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Wei Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xuhuan Yan
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Na Han
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xingxiang Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
19
|
Nanoflower-like composites of ZnO/SiO2 synthesized using bamboo leaves ash as reusable photocatalyst. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.102973] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
20
|
Al Zoubi W, Salih Al-Hamdani AA, Sunghun B, Ko YG. A review on TiO2-based composites for superior photocatalytic activity. REV INORG CHEM 2021. [DOI: 10.1515/revic-2020-0025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
Heterogeneous photocatalysts was a promising material for removing organic pollutants. Titanium dioxide (TiO2) was a suitable photocatalyst for its cost efficiency and high stability to reduce various pollutants. Enhancing TiO2 photocatalyst performance by doping with changed metals or non-metal ions and organic compounds have been reviewed. These methods could enhance photoelectrochemical activity via: (i) by a donor of electrons via electron-donor agents that would produce particular defects in TiO2 structure and capture transporters of charge; (ii) by reducing recombination rate of the charge transporters and increasing degradation of pollutants. This study investigates the modification approaches of TiO2 that comprise methods for overcoming the essential TiO2 restrictions and enhancing the photocatalytic degradation of organic pollutants. Consequently, it emphasized on the current progress of modified-TiO2 used for different pollutants in ambient conditions. Amendment techniques, such as inorganic and organic parts as doping, are studied. The reported experimental results obtained with the photocatalytic oxidation process for degrading organic pollutants were also collected and assessed.
Collapse
Affiliation(s)
- Wail Al Zoubi
- Materials Electrochemistry Laboratory , School of Materials Science and Engineering, Yeungnam University , Gyeongsan 38541 , Republic of Korea
| | | | - Baek Sunghun
- Materials Electrochemistry Laboratory , School of Materials Science and Engineering, Yeungnam University , Gyeongsan 38541 , Republic of Korea
| | - Young Gun Ko
- Materials Electrochemistry Laboratory , School of Materials Science and Engineering, Yeungnam University , Gyeongsan 38541 , Republic of Korea
| |
Collapse
|
21
|
Herrera A, Tejada-Tovar C, González-Delgado ÁD. Enhancement of Cadmium Adsorption Capacities of Agricultural Residues and Industrial Fruit Byproducts by the Incorporation of Al 2O 3 Nanoparticles. ACS OMEGA 2020; 5:23645-23653. [PMID: 32984684 PMCID: PMC7512440 DOI: 10.1021/acsomega.0c02298] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/01/2020] [Indexed: 05/29/2023]
Abstract
In this work, two types of residues (industrial fruit byproducts and agricultural wastes) were studies as promising adsorbents for cadmium uptake. Adsorption experiments using the evaluated biomasses (corn crops CC, palm bagasse PB, orange peels OP, and lemon peels LP) were conducted in batch mode by varying initial solution pH (2, 4, and 6) as well as the particle size (0.355, 0.5, and 1 mm). The optimum operating conditions were defined for further adsorption tests. The biomasses were chemically modified with alumina nanoparticles to evaluate the enhancement in adsorption capacities and how the nature of biomass contributes to successful incorporation of nanotechnology-based materials. The point of zero charges was ranged between 4 and 5 for all biomasses. Simultaneously, the Böehm titration method confirmed the presence of lactonic and carboxylic acid groups on the surfaces of the biomasses. Optimum operating conditions for batch cadmium adsorption experiments were observed at pH 6. Moreover, no significant changes were detected as a function of biomass size. For corn cob and lemon peels, removal percentages at 86 and 88% were reached using particle size = 0.5 mm. For palm bagasse and orange peels, the optimum parameters were 0.355 and 1 mm, respectively. Al2O3 nanoparticles with a crystal size of 58 ± 12 nm were obtained by applying the sol-gel methodology. A higher cadmium removal percentage was detected after using the biomasses modified with the Al2O3 nanoparticles, determining for the agricultural wastes an adsorption capacity of 91% (CC-Al2O3) and 92% (PB-Al2O3). In comparison, the industrial fruit byproducts exhibited a removal percentage of 93% (LP-Al2O3) and 96% (OP-Al2O3). The modification of industrial fruit byproducts (lemon peels and orange peels) showed increases in adsorption efficiencies around 12-6% after incorporating alumina nanoparticles, suggesting that this type of biomass is more suitable for adsorption property enhancement using nanomaterials.
Collapse
Affiliation(s)
- Adriana Herrera
- Chemical
Engineering Department, Nanomaterials and Computer Aided Process Engineering
Research Group (NIPAC), University of Cartagena, Avenida del Consulado St. 30, Cartagena de Indias 130015, Colombia
| | - Candelaria Tejada-Tovar
- Chemical
Engineering Department, Process Design and Biomass Utilization Research
Group (IDAB), University of Cartagena, Avenida del Consulado St. 30, Cartagena de Indias 130015, Colombia
| | - Ángel Darío González-Delgado
- Chemical
Engineering Department, Nanomaterials and Computer Aided Process Engineering
Research Group (NIPAC), University of Cartagena, Avenida del Consulado St. 30, Cartagena de Indias 130015, Colombia
| |
Collapse
|
22
|
Efficient Method for the Concentration Determination of Fmoc Groups Incorporated in the Core-Shell Materials by Fmoc-Glycine. Molecules 2020; 25:molecules25173983. [PMID: 32882948 PMCID: PMC7504793 DOI: 10.3390/molecules25173983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/22/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
In this paper, we described the synthesis procedure of TiO2@SiO2 core-shell modified with 3-(aminopropyl)trimethoxysilane (APTMS). The chemical attachment of Fmoc-glycine (Fmoc-Gly-OH) at the surface of the core-shell structure was performed to determine the amount of active amino groups on the basis of the amount of Fmoc group calculation. We characterized nanostructures using various methods: transmission electron microscope (TEM), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) to confirm the modification effectiveness. The ultraviolet-visible spectroscopy (UV-vis) measurement was adopted for the quantitative determination of amino groups present on the TiO2@SiO2 core-shell surface by determination of Fmoc substitution. The nanomaterials were functionalized by Fmoc-Gly-OH and then the fluorenylmethyloxycarbonyl (Fmoc) group was cleaved using 20% (v/v) solution of piperidine in DMF. This reaction led to the formation of a dibenzofulvene-piperidine adduct enabling the estimation of free Fmoc groups by measurement the maximum absorption at 289 and 301 nm using UV-vis spectroscopy. The calculations of Fmoc loading on core-shell materials was performed using different molar absorption coefficient: 5800 and 6089 dm3 × mol-1 × cm-1 for λ = 289 nm and both 7800 and 8021 dm3 × mol-1 × cm-1 for λ = 301 nm. The obtained results indicate that amount of Fmoc groups present on TiO2@SiO2-(CH2)3-NH2 was calculated at 6 to 9 µmol/g. Furthermore, all measurements were compared with Fmoc-Gly-OH used as the model sample.
Collapse
|