1
|
Huang SKH, Bueno PRP, Garcia PJB, Lee MJ, De Castro-Cruz KA, Leron RB, Tsai PW. Antioxidant, Anti-Inflammatory and Antiproliferative Effects of Osmanthus fragrans (Thunb.) Lour. Flower Extracts. PLANTS (BASEL, SWITZERLAND) 2023; 12:3168. [PMID: 37687413 PMCID: PMC10489841 DOI: 10.3390/plants12173168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Osmanthus fragrans (Thunb.) Lour. flowers (OF-F) have been traditionally consumed as a functional food and utilized as folk medicine. This study evaluated the antioxidant, anti-inflammatory and cytotoxic effects of OF-F extracts on prostate cancer cells (DU-145) and determined possible protein-ligand interactions of its compounds in silico. The crude OF-F extracts-water (W) and ethanol (E) were tested for phytochemical screening, antioxidant, anti-inflammatory, and anti-cancer. Network and molecular docking analyses of chemical markers were executed to establish their application for anticancer drug development. OF-F-E possessed higher total polyphenols (233.360 ± 3.613 g/kg) and tannin (93.350 ± 1.003 g/kg) contents than OF-F-W. In addition, OF-F-E extract demonstrated effective DPPH scavenging activity (IC50 = 0.173 ± 0.004 kg/L) and contained a high FRAP value (830.620 ± 6.843 g Trolox/kg). In cell culture experiments, OF-F-E significantly reduced NO levels and inhibited cell proliferation of RAW-264.7 and DU-145 cell lines, respectively. Network analysis revealed O. fragrans (Thunb.) Lour. metabolites could affect thirteen molecular functions and thirteen biological processes in four cellular components. These metabolites inhibited key proteins of DU-145 prostate cancer using molecular docking with rutin owning the highest binding affinity with PIKR31 and AR. Hence, this study offered a new rationale for O. fragrans (Thunb.) Lour. metabolites as a medicinal herb for anticancer drug development.
Collapse
Affiliation(s)
- Steven Kuan-Hua Huang
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan; (S.K.-H.H.); (M.-J.L.)
- Division of Urology, Department of Surgery, Chi Mei Medical Center, Tainan 711, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Paolo Robert P. Bueno
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Metro Manila 1000, Philippines;
- School of Medicine, The Manila Times College of Subic, Zambales 2222, Philippines
- Department of Chemistry, College of Science, Adamson University, Metro Manila 1000, Philippines
| | - Patrick Jay B. Garcia
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Metro Manila 1002, Philippines; (P.J.B.G.); (K.A.D.C.-C.); (R.B.L.)
- School of Graduate Studies, Mapúa University, Metro Manila 1002, Philippines
| | - Mon-Juan Lee
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan; (S.K.-H.H.); (M.-J.L.)
| | - Kathlia A. De Castro-Cruz
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Metro Manila 1002, Philippines; (P.J.B.G.); (K.A.D.C.-C.); (R.B.L.)
| | - Rhoda B. Leron
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Metro Manila 1002, Philippines; (P.J.B.G.); (K.A.D.C.-C.); (R.B.L.)
| | - Po-Wei Tsai
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan; (S.K.-H.H.); (M.-J.L.)
| |
Collapse
|
2
|
Radwan EM, Abo-Elabass E, Abd El-Baky AE, Alshwyeh HA, Almaimani RA, Almaimani G, Ibrahim IAA, Albogami A, Jaremko M, Alshawwa SZ, Saied EM. Unveiling the antitumor potential of novel N-(substituted-phenyl)-8-methoxycoumarin-3-carboxamides as dual inhibitors of VEGFR2 kinase and cytochrome P450 for targeted treatment of hepatocellular carcinoma. Front Chem 2023; 11:1231030. [PMID: 37601910 PMCID: PMC10436493 DOI: 10.3389/fchem.2023.1231030] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Being the sixth most diagnosed cancer and the fourth leading cause of cancer-related deaths worldwide, liver cancer is considered as a serious disease with a high prevalence and poor prognosis. Current anticancer drugs for liver cancer have drawbacks, such as limited efficacy in later stages of the disease, toxicity to healthy cells, and the potential for drug resistance. There is ample evidence that coumarin-based compounds are potent anticancer agents, with numerous analogues currently being investigated in preclinical and clinical studies. The current study aimed to explore the antitumor potency of a new class of 8-methoxycoumarin-3-carboxamides against liver cancer. Toward this aim, we have designed, synthesized, and characterized a new set of N-(substituted-phenyl)-8-methoxycoumarin-3-carboxamide analogues. The assessment of antitumor activity revealed that the synthesized class of compounds possesses substantial cytotoxicity toward Hep-G2 cells when compared to staurosporine, without significant impact on normal cells. Out of the synthesized compounds, compound 7 demonstrated the most potent cytotoxic effect against Hep-G2 cells with an IC50 of 0.75 µM, which was more potent than the drug staurosporine (IC50 = 8.37 µM). The investigation into the mechanism behind the antiproliferative activity of compound 7 revealed that it interferes with DNA replication and induces DNA damage, leading to cell cycle arrest as demonstrated by a significant decrease in the percentage of cells in the G1 and G2/M phases, along with an increase in the percentage of cells in the S phase. Flow cytometric analysis further revealed that compound 7 has the ability to trigger programmed cell death by inducing necrosis and apoptosis in HepG-2 cells. Further explorations into the mechanism of action demonstrated that compound 7 displays a potent dual-inhibitory activity toward cytochrome P450 and vascular endothelial growth factor receptor-2 (VEGFR-2) proteins, as compared to sorafenib drug. Further, detailed computational studies revealed that compound 7 displays a considerable binding affinity toward the binding cavity of VEGFR2 and CYP450 proteins. Taken together, our findings indicate that the newly synthesized class of compounds, particularly compound 7, could serve as a promising scaffold for the development of highly effective anticancer agents against liver cancer.
Collapse
Affiliation(s)
- Eman M. Radwan
- The Division of Organic Chemistry, Chemistry Department, Faculty of Science, Port-Said University, Port-Said, Egypt
| | - Eman Abo-Elabass
- The Division of Biochemistry, Chemistry Department, Faculty of Science, Port-Said University, Port-Said, Egypt
| | - Atef E. Abd El-Baky
- Biochemistry Department, Faculty of Pharmacy, Port-Said University, Port-Said, Egypt
| | - Hussah Abdullah Alshwyeh
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Riyad A. Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghassan Almaimani
- Department of Surgery, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdulaziz Albogami
- Biology Department, Faculty of science, Al-Baha University, Al Aqiq, Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences (BESE) and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Samar Z. Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
3
|
Callil-Soares PH, Biasi LCK, Pessoa Filho PDA. Effect of preprocessing and simulation parameters on the performance of molecular docking studies. J Mol Model 2023; 29:251. [PMID: 37452150 DOI: 10.1007/s00894-023-05637-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
CONTEXT Molecular docking is an important and rapid tool that provides a comprehensive view of different molecular mechanisms. It is often used to verify the binding interactions of many pairs of molecules and is much faster than more rigorous approaches. However, its application requires carefully preprocessing each molecule and selecting a series of simulation parameters, which is not always done correctly. We show how preprocessing and simulation parameters can positively or negatively impact molecular docking performance. For example, the inclusion of hydrogen atoms leads to better redocking scores, but molecular dynamics simulations must be performed under certain constraints; otherwise, it may worsen performance rather than improve it. This study clarifies the importance and influence of these different parameters in the simulation results. METHODS We analyzed the influence of different parameters on the predictive ability of molecular docking techniques using two software packages: AutoDock Vina and AutoDock-GPU. Thus, 90 receptor-ligand complexes were redocked, evaluating the root mean square deviation (RMSD) between the original position of the ligand (receptor-ligand complex obtained experimentally) and that obtained by the software for every analysis. We investigated the influence of hydrogen atoms (on the receptor and on the receptor-ligand complex), partial charges (QEq, QTPIE, EEM, EEM2015ha, MMFF94, Gasteiger-Marsili, and no charge), search boxes (size and exhaustiveness), ligand characteristics (size and number of torsions), and the use of molecular dynamics (of the receptor or the receptor-ligand complex) before docking analyses.
Collapse
Affiliation(s)
- Pedro Henrique Callil-Soares
- Chemical Engineering Department, Polytechnic School of the University of São Paulo, Av. Lineu Prestes, 580, São Paulo, 05508-000, Brazil
| | - Lilian Caroline Kramer Biasi
- Chemical Engineering Department, Polytechnic School of the University of São Paulo, Av. Lineu Prestes, 580, São Paulo, 05508-000, Brazil.
| | - Pedro de Alcântara Pessoa Filho
- Chemical Engineering Department, Polytechnic School of the University of São Paulo, Av. Lineu Prestes, 580, São Paulo, 05508-000, Brazil
| |
Collapse
|
4
|
Synthesis and Cytotoxicity Evaluation of Novel Coumarin-Palladium(II) Complexes against Human Cancer Cell Lines. Pharmaceuticals (Basel) 2022; 16:ph16010049. [PMID: 36678546 PMCID: PMC9866340 DOI: 10.3390/ph16010049] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
Two newly synthesized coumarin-palladium(II) complexes (C1 and C2) were characterized using elemental analysis, spectroscopy (IR and 1H-13C NMR), and DFT methods at the B3LYP-D3BJ/6-311+G(d,p) level of theory. The in vitro and in silico cytotoxicity of coumarin ligands and their corresponding Pd(II) complexes was examined. For in vitro testing, five cell lines were selected, namely human cervical adenocarcinoma (HeLa), the melanoma cell line (FemX), epithelial lung carcinoma (A549), the somatic umbilical vein endothelial cell line (EA.hi926), and pancreatic ductal adenocarcinoma (Panc-1). In order to examine the in silico inhibitory potential and estimate inhibitory constants and binding energies, molecular docking studies were performed. The inhibitory activity of C1 and C2 was investigated towards epidermal growth factor receptor (EGFR), receptor tyrosine kinase (RTK), and B-cell lymphoma 2 (BCL-2). According to the results obtained from the molecular docking simulations, the inhibitory activity of the investigated complexes towards all the investigated proteins is equivalent or superior in comparison with current therapeutical options. Moreover, because of the low binding energies and the high correlation rate with experimentally obtained results, it was shown that, out of the three, the inhibition of RTK is the most probable mechanism of the cytotoxic activity of the investigated compounds.
Collapse
|
5
|
Pan Y, Liu T, Wang X, Sun J. Research progress of coumarins and their derivatives in the treatment of diabetes. J Enzyme Inhib Med Chem 2022; 37:616-628. [PMID: 35067136 PMCID: PMC8788346 DOI: 10.1080/14756366.2021.2024526] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Diabetes is a group of metabolic diseases characterised by chronic hyperglycaemia caused by multiple causes, which is caused by insulin secretion and/or utilisation defects. It is characterised by increased fasting and postprandial blood glucose levels due to insulin deficiency or insulin resistance. It is reported that the harm of diabetes mainly comes from its complications, and the cardiovascular disease caused by diabetes is the primary cause of its harm. China has the largest number of diabetic patients in the world, and the prevention and control of diabetes are facing great challenges. In recent years, many kinds of literature have been published abroad, which have proved that coumarin and its derivatives are effective in the treatment of diabetic complications such as nephropathy and cardiovascular disease. In this paper, the types of antidiabetic drugs and the anti-diabetic mechanism of coumarins were reviewed.
Collapse
Affiliation(s)
- Yinbo Pan
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University, Jinan, Shandong, China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Teng Liu
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University, Jinan, Shandong, China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaojing Wang
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University, Jinan, Shandong, China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jie Sun
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University, Jinan, Shandong, China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
6
|
Almeida FCL, Sanches K, Pinheiro-Aguiar R, Almeida VS, Caruso IP. Protein Surface Interactions-Theoretical and Experimental Studies. Front Mol Biosci 2021; 8:706002. [PMID: 34307462 PMCID: PMC8298896 DOI: 10.3389/fmolb.2021.706002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
In this review, we briefly describe a theoretical discussion of protein folding, presenting the relative contribution of the hydrophobic effect versus the stabilization of proteins via direct surface forces that sometimes may be overlooked. We present NMR-based studies showing the stability of proteins lacking a hydrophobic core which in turn present hydrophobic surface clusters, such as plant defensins. Protein dynamics measurements by NMR are the key feature to understand these dynamic surface clusters. We contextualize the measurement of protein dynamics by nuclear relaxation and the information available at protein surfaces and water cavities. We also discuss the presence of hydrophobic surface clusters in multidomain proteins and their participation in transient interactions which may regulate the function of these proteins. In the end, we discuss how surface interaction regulates the reactivity of certain protein post-translational modifications, such as S-nitrosation.
Collapse
Affiliation(s)
- Fabio C L Almeida
- Institute of Medical Biochemistry-IBqM, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center for Structural Biology and Bioimaging (CENABIO)/National Center for Nuclear Magnetic Resonance (CNRMN), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Karoline Sanches
- Institute of Medical Biochemistry-IBqM, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center for Structural Biology and Bioimaging (CENABIO)/National Center for Nuclear Magnetic Resonance (CNRMN), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Multiuser Center for Biomolecular Innovation (CMIB), Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University "Júlio de Mesquita Filho" (UNESP), São Paulo, Brazil
| | - Ramon Pinheiro-Aguiar
- Institute of Medical Biochemistry-IBqM, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center for Structural Biology and Bioimaging (CENABIO)/National Center for Nuclear Magnetic Resonance (CNRMN), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vitor S Almeida
- Institute of Medical Biochemistry-IBqM, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center for Structural Biology and Bioimaging (CENABIO)/National Center for Nuclear Magnetic Resonance (CNRMN), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Icaro P Caruso
- Institute of Medical Biochemistry-IBqM, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center for Structural Biology and Bioimaging (CENABIO)/National Center for Nuclear Magnetic Resonance (CNRMN), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Multiuser Center for Biomolecular Innovation (CMIB), Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University "Júlio de Mesquita Filho" (UNESP), São Paulo, Brazil
| |
Collapse
|
7
|
Thermodynamic profile and molecular modeling of the interaction between Grb2 dimer and flavonoids Rutin and Morin. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Exploration in the mechanism of fucosterol for the treatment of non-small cell lung cancer based on network pharmacology and molecular docking. Sci Rep 2021; 11:4901. [PMID: 33649481 PMCID: PMC7921686 DOI: 10.1038/s41598-021-84380-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 02/15/2021] [Indexed: 12/23/2022] Open
Abstract
Fucosterol, a sterol isolated from brown algae, has been demonstrated to have anti-cancer properties. However, the effects and underlying molecular mechanism of fucosterol on non-small cell lung cancer remain to be elucidated. In this study, the corresponding targets of fucosterol were obtained from PharmMapper, and NSCLC related targets were gathered from the GeneCards database, and the candidate targets of fucosterol-treated NSCLC were predicted. The mechanism of fucosterol against NSCLC was identified in DAVID6.8 by enrichment analysis of GO and KEGG, and protein–protein interaction data were collected from STRING database. The hub gene GRB2 was further screened out and verified by molecular docking. Moreover, the relationship of GRB2 expression and immune infiltrates were analyzed by the TIMER database. The results of network pharmacology suggest that fucosterol acts against candidate targets, such as MAPK1, EGFR, GRB2, IGF2, MAPK8, and SRC, which regulate biological processes including negative regulation of the apoptotic process, peptidyl-tyrosine phosphorylation, positive regulation of cell proliferation. The Raf/MEK/ERK signaling pathway initiated by GRB2 showed to be significant in treating NSCLC. In conclusion, our study indicates that fucosterol may suppress NSCLC progression by targeting GRB2 activated the Raf/MEK/ERK signaling pathway, which laying a theoretical foundation for further research and providing scientific support for the development of new drugs.
Collapse
|
9
|
Lončar M, Jakovljević M, Šubarić D, Pavlić M, Buzjak Služek V, Cindrić I, Molnar M. Coumarins in Food and Methods of Their Determination. Foods 2020; 9:E645. [PMID: 32443406 PMCID: PMC7278589 DOI: 10.3390/foods9050645] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 01/12/2023] Open
Abstract
Coumarin is a natural product with aromatic and fragrant characteristics, widespread in the entire plant kingdom. It is found in different plant sources such as vegetables, spices, fruits, and medicinal plants including all parts of the plants-fruits, roots, stems and leaves. Coumarin is found in high concentrations in certain types of cinnamon, which is one of the most frequent sources for human exposure to this substance. However, human exposure to coumarin has not been strictly determined, since there are no systematic measurements of consumption of cinnamon-containing foods. The addition of pure coumarin to foods is not allowed, since large amounts of coumarin can be hepatotoxic. However, according to the new European aroma law, coumarin may be present in foods only naturally or as a flavoring obtained from natural raw materials (as is the case with cinnamon). In this paper, the overview of the current European regulations on coumarin levels in food is presented, along with the most common coumarin food sources, with a special emphasis on cinnamon-containing food. Human exposure to coumarins in food is also reviewed, as well as the methods for determination and separation of coumarin and its derivatives in food.
Collapse
Affiliation(s)
- Mirjana Lončar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000 Osijek, Croatia; (M.L.); (M.J.); (D.Š.)
| | - Martina Jakovljević
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000 Osijek, Croatia; (M.L.); (M.J.); (D.Š.)
| | - Drago Šubarić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000 Osijek, Croatia; (M.L.); (M.J.); (D.Š.)
| | - Martina Pavlić
- Croatian Agency for Agriculture and Food, Vinkovačka cesta 63c, 31000 Osijek, Croatia; (M.P.); (V.B.S.)
| | - Vlatka Buzjak Služek
- Croatian Agency for Agriculture and Food, Vinkovačka cesta 63c, 31000 Osijek, Croatia; (M.P.); (V.B.S.)
| | - Ines Cindrić
- Karlovac University of Applied Sciences, Trg J. J. Strossmayera 9, 47000 Karlovac, Croatia;
| | - Maja Molnar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000 Osijek, Croatia; (M.L.); (M.J.); (D.Š.)
| |
Collapse
|