1
|
Waszak I, Ruczyńska W, Podlesińska W. Contaminant levels versus toxicity bioassays in ecological risk assessment of sediments from the southern Baltic Sea. MARINE ENVIRONMENTAL RESEARCH 2024; 200:106665. [PMID: 39116736 DOI: 10.1016/j.marenvres.2024.106665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Surface sediments collected in 2021 from six locations in the southern Baltic Sea (Polish district) were examined by chemical and toxicological methods. Chemical analyses included polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), and their alkylated derivatives, butyltin compounds and 16 major and trace elements. The toxicity was measured using Ostracodtoxkit F and Microtox. The ecological risk of sediment was estimated by hazard quotient (HQ) calculation. Some PAHs, alkylated PAHs and metals (Zn, Hg, Cd and As) could pose a moderate risk in the sediments from the Gdańsk Deep and in the vicinity of the wrecks, but the risk resulting from the presence of all analyzed compounds was considered high for these sediments. In studies using biotests, sediments from the vicinity of the t/s Franken wreck and the Słupsk Furrow were highly toxic to test organisms. Ostracodtoxkit F, compared to Microtox, appeared a more sensitive test for measured compounds.
Collapse
Affiliation(s)
- Ilona Waszak
- Department of Food and Environmental Chemistry, National Marine Fisheries Research Institute, Kołłątaja 1, 81-332, Gdynia, Poland.
| | - Wiesława Ruczyńska
- Department of Food and Environmental Chemistry, National Marine Fisheries Research Institute, Kołłątaja 1, 81-332, Gdynia, Poland
| | - Weronika Podlesińska
- Gdynia Aquarium, National Marine Fisheries Research Institute, Kołłątaja 1, 81-332, Gdynia, Poland
| |
Collapse
|
2
|
Yang J, Ren L, Hua C, Tian Y, Yong X, Fang S. Identification of toxic metal contamination in surface sediments of the Xiaoqing River under a long-term perspective (1996-2020): Risks, sources and driving factors. ENVIRONMENTAL RESEARCH 2024; 251:118613. [PMID: 38432570 DOI: 10.1016/j.envres.2024.118613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
The contamination of sediments by toxic metals poses a significant threat to both river ecosystems and human health. In this study, the geo-accumulation index (Igeo), biotoxicity evaluation method, and potential ecological risk index (RI) were employed to analyze the contamination level, biotoxicity risk, and potential ecological risk of toxic metals in surface sediments of the Xiaoqing River. To identify toxic metal sources, Spearman correlation and principal component analysis with multiple linear regression analysis (PCA-MLR) were employed. Additionally, redundancy analysis (RDA) was utilized to investigate potential driving factors affecting toxic metal accumulation in sediments. The results revealed that the levels of the five investigated metals (Cr, Pb, As, Hg, and Cd) showed constant fluctuations during the period 1996-2020. The midstream was found to be more polluted than the upstream and downstream. In the research area, Hg was identified as the primary contaminant with high levels of contamination, posing a biotoxicity risk and potential ecological risk. Pollution sources were identified for two periods: A (1996-2010) and B (2011-2020), with industrial, agricultural, traffic, and natural sources being the main contributors. During period A, industrial sources accounted for the highest proportion (40.8%), followed by agricultural sources (36.6%), and geological natural sources (22.6%). During period B, agricultural sources accounted for the highest proportion (42%), followed by industrial and traffic sources (32.4%), and geological natural sources (25.6%). The distribution of toxic metals in the basin was significantly influenced by water pH, sediment organic matter, population density, and per capita GDP. The study results provide fundamental data for preventing pollution and managing water resources contaminated with toxic metals in the sediments of the Xiaoqing River in Jinan. Additionally, it serves as a reference for analyzing related ecological and environmental issues in the basin.
Collapse
Affiliation(s)
- Jiaying Yang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Lijun Ren
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Chunyu Hua
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Yueru Tian
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Xian Yong
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Shumin Fang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| |
Collapse
|
3
|
Kumar V, Kumar J, Alam A, Thakur VR, Kumar V, Srivastava SK, Kayal T, Jha DN, Das BK. Ecological and human health risk from exposure to metal contaminated sediments in a subtropical river affected by anthropogenic activities: A case study from river Yamuna. MARINE POLLUTION BULLETIN 2024; 203:116498. [PMID: 38761682 DOI: 10.1016/j.marpolbul.2024.116498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/03/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Heavy metal enrichment in river sediments poses a significant risk to human and aquatic health. The Yamuna River faces severe challenges due to untreated industrial and domestic wastewater discharge. The study evaluates sediment metal content, ecological and human health risks, and potential sources. Results showed Cd and Pb exhibited moderate to severe contamination and displayed ecological risk based on contamination factor, enrichment factor, and potential ecological risk. According to synergistic indices (pollution load index, PINemerow, toxic risk index, contamination security index, mean probable effects level quotients, and probability of toxicity), the sediment in the Yamuna River doesn't seem to have a risk or enrichment from combined metals. Cd and Pb mainly originate from anthropogenic sources. Hazard index (< 1) and carcinogenic risk (2.2 × 10-7 to 4.7 × 10-5) assessments suggest metal didn't pose any risk to humans exposed to sediment. The present study aids in developing pollution control strategies for the Yamuna River.
Collapse
Affiliation(s)
- Vikas Kumar
- ICAR-Central Inland Fisheries Research Institute, Regional Centre, Prayagraj 211002, India.
| | - Jeetendra Kumar
- ICAR-Central Inland Fisheries Research Institute, Regional Centre, Prayagraj 211002, India
| | - Absar Alam
- ICAR-Central Inland Fisheries Research Institute, Regional Centre, Prayagraj 211002, India
| | | | - Vijay Kumar
- ICAR-Central Inland Fisheries Research Institute, Regional Centre, Prayagraj 211002, India
| | - Saket Kumar Srivastava
- ICAR-Central Inland Fisheries Research Institute, Regional Centre, Prayagraj 211002, India
| | - Tania Kayal
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India
| | - Dharm Nath Jha
- ICAR-Central Inland Fisheries Research Institute, Regional Centre, Prayagraj 211002, India.
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India.
| |
Collapse
|
4
|
Dai L, Zhang B, Liao X, Wang L, Zhang Q, Tian S, Liang T, O'Connor D, Rinklebe J. Catchment land use effect on mercury concentrations in lake sediments: A high-resolution study of Qinghai Lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170260. [PMID: 38253105 DOI: 10.1016/j.scitotenv.2024.170260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Mercury (Hg) contamination in aquatic environments presents a significant ecological and human health concern. This study explored the relationship between catchment land use and Hg concentrations within Qinghai Lake sediment, the largest lake in China, situated on the Qinghai-Tibet plateau. The study entailed detailed mapping of Hg sediment concentrations and a subsequent environmental risk assessment. Considering the complex nature of the plateau landform and surface vegetation, the study area was delineated at a 100 km radius centered on Qinghai Lake, which was divided into 30 sectors to quantify relationships between land use and the sediment Hg concentration. The results revealed a mean sediment Hg concentration of 29.91 μg/kg, which was elevated above the background level. Kendall's correlation analysis revealed significant but weak associations between sediment Hg concentrations and three land use types: grassland (rangeland and trees) (rs = 0.27, p < 0.05), crops (rs = -0.37, p < 0.05), and bare ground (rs = -0.25, p < 0.1), suggesting that growing areas of grassland correlated with higher Hg levels in the lake sediment, in contrast to bare ground or crops area, which correlated with lower Hg concentrations. Multiple linear regression models also observed weak negative relationships between bare ground and crops with sediment Hg concentration. This research methodology enhances our understanding of the impact of land use on Hg accumulation in lake sediments and underscores the need for integrated watershed management strategies to mitigate Hg pollution in Qinghai Lake.
Collapse
Affiliation(s)
- Lijun Dai
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Zhang
- Beijing Municipal Ecological Environment Bureau, Beijing 100161, China
| | - Xiaoyong Liao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuhan Tian
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266021, China
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - David O'Connor
- School of Real Estate and Land Management, Royal Agricultural University, Stroud Rd, Cirencester GL7 6JS, United Kingdom
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| |
Collapse
|
5
|
Debnath A, Singh PK, Sharma YC. Spatial distribution of heavy metals in the sediments of River Ganges, India: Occurrence, contamination, source identification, seasonal variations, mapping, and ecological risk evaluation. MARINE POLLUTION BULLETIN 2024; 198:115910. [PMID: 38101065 DOI: 10.1016/j.marpolbul.2023.115910] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Present study analyzed the seasonal and spatial distribution patterns, sources, and ecological risks of seven heavy metals (Cr, Fe, Ni, Cu, Zn, Cd and Pb) in the sediments of River Ganges, finding that the majority of concentrations were lithologic, except for Cd, which was significantly higher than background standards. Elevated values of geochemical indices viz. Igeo, CF, RI, Cd, mCd, HQ, mHQ, and PN suggest moderate to high ecological risk in the benthic environment and its organisms due to the synergistic effect of heavy metals. The PEC-Qmetals revealed 8-10 % toxicity in the upstream and downstream sites, due to the influence of agricultural activities. Multivariate statistical techniques (PCM and PCA) indicated that Cd and Pb predominantly originated from anthropogenic sources, while other metals primarily derived from geological background. These geochemical findings may help to understand the potential risks and recommend strategies to mitigate the effects of metallic contamination in river sediments.
Collapse
Affiliation(s)
- Abhijit Debnath
- Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi, India.
| | - Prabhat Kumar Singh
- Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | | |
Collapse
|
6
|
Kumaravel A, Selvamani V, Hong SH. Photocatalytic Reduction of Methylene Blue by Surface-Engineered Recombinant Escherichia coli as a Whole-Cell Biocatalyst. Bioengineering (Basel) 2023; 10:1389. [PMID: 38135980 PMCID: PMC10741084 DOI: 10.3390/bioengineering10121389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
A novel Escherichia coli strain, created by engineering its cell surface with a cobalt-binding peptide CP1, was investigated in this study. The recombinant strain, pBAD30-YiaT-CP1, was structurally modeled to determine its cobalt-binding affinity. Furthermore, the effectiveness and specificity of pBAD30-CP1 in adsorbing and extracting cobalt from artificial wastewater polluted with the metal were investigated. The modified cells were subjected to cobalt concentrations (0.25 mM to 1 mM) and pH levels (pH 3, 5, 7, and 9). When exposed to a pH of 7 and a cobalt concentration of 1 mM, the pBAD30-CP1 strain had the best cobalt recovery efficiency, measuring 1468 mol/g DCW (Dry Cell Weight). Furthermore, pBAD30-CP1 had a higher affinity for cobalt than nickel and manganese. Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), and Energy-Dispersive X-ray Spectroscopy (EDS) were used to examine the physiochemical parameters of the recombinant cells after cobalt adsorption. These approaches revealed the presence of cobalt in a bound state on the cell surface in the form of nanoparticles. In addition, the cobalt-binding recombinant strains were used in the photocatalytic reduction of methylene blue, which resulted in a 59.52% drop in the observed percentage. This study shows that modified E. coli strains have the potential for efficient cobalt recovery and application in environmental remediation operations.
Collapse
Affiliation(s)
| | | | - Soon Ho Hong
- Department of Chemical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea; (A.K.); (V.S.)
| |
Collapse
|
7
|
Fiedler M. Long-Term Changes in the Pollution of Warta River Bottom Sediments with Heavy Metals, Poland-Case Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20105869. [PMID: 37239595 DOI: 10.3390/ijerph20105869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Variability in the heavy metal concentrations in aquatic environments may be influenced by a number of factors that may occur naturally or due to anthropopressure. This article presents the risk of contaminating Warta River bottom sediments with heavy metals such as As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, and Zn. Samples collected from 35 sites located along the river course were analysed over the period of 2010-2021. The calculated pollution indices are characterised by significant spatial variability that was additionally subject to changes in subsequent years. The analysis may have also been influenced by individual measurement results that, in extreme cases, may strongly deviate from the concentration values determined in the same site during the remaining years. The highest median concentrations of Cd, Cr, Cu, Hg, and Pb were in samples collected from sites that are surrounded by areas of anthropogenic land use. Samples from adjacent sites to agricultural areas showed the highest median concentrations of Co, Mn, and Ni, and Zn for those adjacent to forest areas. The research results indicate that, when analysing the degree of the risk of contaminating river bottom sediments with heavy metals, it is necessary to take into account long-term variability in metal concentrations. Taking into consideration data from only one year may lead to inappropriate conclusions and hinder planning protective measures.
Collapse
Affiliation(s)
- Michał Fiedler
- Department of Soil Science, Land Reclamation and Geodesy, Faculty of Environmental Engineering and Mechanical Engineering, Poznań University of Life Sciences, Piątkowska 94, 60-649 Poznań, Poland
| |
Collapse
|
8
|
Haghnazar H, Sabbagh K, Johannesson KH, Pourakbar M, Aghayani E. Phytoremediation capability of Typha latifolia L. to uptake sediment toxic elements in the largest coastal wetland of the Persian Gulf. MARINE POLLUTION BULLETIN 2023; 188:114699. [PMID: 36764150 DOI: 10.1016/j.marpolbul.2023.114699] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
The present study evaluated the status of sediment toxicity and pollution, and the phytoremediation capability of Typha latifolia L. (TlL) within the largest coastal wetland in the southwest of Iran, the Shadegan International Wetland. In eight sampling sites, covering the entire wetland, the concentration of six toxic elements (As, Cr, Cu, Ni, Pb, and Zn) in the surface sediment, root, and stem of TlL were measured. The results indicated that mean concentrations of Cr, Cu, Pb, and Zn were found to be higher than those in the local background, which likely indicates anthropogenic sources of these elements. Due to the presence of a nearby landfill, the results of modified pollution index (MPI) and aggregate toxicity index (ATI) indicated a moderately-heavily polluted level and moderate to high toxic degree, respectively. However, the medium-low level of toxicity toward living of organisms (21 % probability) was detected based on the assessment of the Sediment Quality Guidelines (SGQ). The results of our study indicate that the root and stem tissues of TlL are capable of acting as an indicator of Cu/Pb/Zn and Zn pollution in sediment, respectively. Considering the potential of phytoremediation, TlL represented both phytostabilization and phytoextraction capabilities for Pb and Zn and a significant increase was observed in the phytoremediation capability by increasing the distance from the landfill area. According to the results of the metal accumulation index (MAI) and comprehensive bioconcentration index (CBCI), TlL grown in the study area showed an acceptable performance in the accumulation of multiple toxic elements compared to that in Turkey, India, and Poland. Overall, TlL is a good candidate for the phytoremediation of sediments contaminated by Pb and Zn.
Collapse
Affiliation(s)
- Hamed Haghnazar
- Department of Watershed Sciences, Utah State University, UT, USA
| | - Kourosh Sabbagh
- Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Karen H Johannesson
- School for the Environment, University of Massachusetts Boston, Boston, MA, USA
| | - Mojtaba Pourakbar
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Ehsan Aghayani
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran.
| |
Collapse
|
9
|
Sojka M, Jaskuła J, Barabach J, Ptak M, Zhu S. Heavy metals in lake surface sediments in protected areas in Poland: concentration, pollution, ecological risk, sources and spatial distribution. Sci Rep 2022; 12:15006. [PMID: 36056130 PMCID: PMC9440085 DOI: 10.1038/s41598-022-19298-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/26/2022] [Indexed: 11/08/2022] Open
Abstract
This paper presents the state and spatial distribution of surface sediment contamination of 77 lakes in Poland by Cr, Ni, Cd, Pb, Zn, and Cu. The analyzed lakes were located within a network of nature protection areas in the territory of the European Union (EU). Spatial distribution of the heavy metals (HMs), factors favoring the delivery/accumulation of HMs in surface sediments, and pollution sources were analyzed. The results indicate the contamination of lake sediments by HMs, but the potentially toxic effects of HMs are only found in single lakes. The spatial distribution of Cr indicates predominant impacts of point sources, while for Pb, Ni, and Zn, the impact of non-point sources. The analysis showed the presence of areas with very high values of particular HMs (hot spots) in the western part of Poland, while a group of 5 lakes with very low values of Ni, Pb, and Zn (cold spots) was identified in the central part of Poland. Principal component analysis showed that presence of wetlands is a factor limiting HMs inflow to lakes. Also, lower HMs concentrations were found in lake surface sediments located in catchments with a higher proportion of national parks and nature reserves. Higher HMs concentrations were found in lakes with a high proportion of Special Protection Areas designated under the EU Birds Directive. The positive matrix factorization analysis identified four sources of HMs. High values of HMs concentrations indicate their delivery from industrial, urbanized, and agricultural areas. However, these impacts overlap, which disturbs the characteristic quantitative profiles assigned to these pollution sources.
Collapse
Affiliation(s)
- Mariusz Sojka
- Department of Land Improvement, Environmental Development and Spatial Management, Poznań University of Life Sciences, Piątkowska 94E, 60-649, Poznan, Poland
| | - Joanna Jaskuła
- Department of Land Improvement, Environmental Development and Spatial Management, Poznań University of Life Sciences, Piątkowska 94E, 60-649, Poznan, Poland
| | - Jan Barabach
- Department of Land Improvement, Environmental Development and Spatial Management, Poznań University of Life Sciences, Piątkowska 94E, 60-649, Poznan, Poland
| | - Mariusz Ptak
- Department of Hydrology and Water Management, Adam Mickiewicz University, Krygowskiego 10, 61-680, Poznan, Poland
| | - Senlin Zhu
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
10
|
Sojka M, Jaskuła J. Heavy Metals in River Sediments: Contamination, Toxicity, and Source Identification-A Case Study from Poland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191710502. [PMID: 36078217 PMCID: PMC9518182 DOI: 10.3390/ijerph191710502] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 05/28/2023]
Abstract
This study investigated the spatial distribution, contamination, potential ecological risks and quantities of pollutant sources of six heavy metals (HMs) in sediments of 47 rivers. The catchments of the investigated rivers are situated in Poland, but some of them are located in Slovakia, the Czech Republic, and Germany. Cluster analysis was applied to analyze the spatial distribution of Cd, Cr, Cu, Ni, Pb, and Zn in river sediments. Moran I and Getis-Ord Gi* statistics were calculated to reveal the distribution pattern and hotspot values. Principal component analysis (PCA) and positive matrix factorization (PMF) were used to identify pollution sources. Furthermore, geochemical indices and sediment quality guidelines allowed us to assess sediment contamination and potential toxic effects on aquatic biota. The results showed that in 1/3rd of the rivers, the HM pattern and concentrations indicate sediment contamination. The EF, PLI, and MPI indices indicate that concentrations were at a rather low level in 2/3rd of the analyzed rivers. Only in individual rivers may the HMs have toxic effects on aquatic biota. Spatial autocorrelation analysis using the Moran I statistic revealed a random and dispersed pattern of HMs in river sediments. PCA analysis identified two sources of HMs' delivery to the aquatic environment. Cr, Cu, Ni, Pb, and Zn originate from point and non-point sources, while Cd concentrations have a dominant natural origin. The PMF identified three sources of pollution. Among them, urban pollution sources are responsible for Cu delivery, agricultural pollution for Zn, and industrial pollution for Ni and Cr. Moreover, the analysis showed no relationship between catchment land-use patterns and HM content in river sediments.
Collapse
|
11
|
Haghnazar H, Hudson-Edwards KA, Kumar V, Pourakbar M, Mahdavianpour M, Aghayani E. Potentially toxic elements contamination in surface sediment and indigenous aquatic macrophytes of the Bahmanshir River, Iran: Appraisal of phytoremediation capability. CHEMOSPHERE 2021; 285:131446. [PMID: 34246092 DOI: 10.1016/j.chemosphere.2021.131446] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
To determine the status and sources of contamination and phytoremediation capability of Typha latifolia L. in the Bahmanshir River of Iran, the concentration of eight potentially toxic elements (As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn) in sediment and plant tissues from ten sampling sites were measured. Mean concentrations of Cd, Cr, Cu, Pb, and Zn in the sediment exceeded those of local background. PCA-MLR receptor analysis suggested that the sediment contamination was due to municipal wastewater/vehicular pollution and weathering/industrial/agricultural activities, with contributions of 66% and 34%, respectively. Average enrichment factor (EF) and modified hazard quotient (mHQ) for Pb and Cu were categorized as moderate. Modified pollution index (MPI) and modified ecological risk index (MRI) values suggested moderate to heavy pollution and low ecological risk, respectively. The values of sediment quality guidelines (SQGs), ecological contamination index (ECI), contamination severity index (CSI), and toxic risk index (TRI) were all similar, reflecting low to moderate contamination and toxicity. Typha latifolia L. showed good phytostabilization capability for Cd, Cu, and Pb, and phytoextraction capacity for Zn. Using the metal accumulation index (MAI) and the comprehensive bioconcentration index (CBCI), Typha latifolia L. was shown to have acceptable performance in the accumulation of Cd, Cu, Pb, and Zn and thus, can be considered a good candidate for bioaccumulation of these elements in the study area. Overall, this study suggests that phytoremediation using Typha latifolia L. could be a practical method for uptake and remove of potentially toxic elements from aquatic environments.
Collapse
Affiliation(s)
- Hamed Haghnazar
- Department of Water and Environmental Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Karen A Hudson-Edwards
- Environment and Sustainability Institute and Camborne School of Mines, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Vinod Kumar
- Department of Botany, Government Degree College, Ramban, 182144, Jammu and Kashmir, India
| | - Mojtaba Pourakbar
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mostafa Mahdavianpour
- Department of Environmental Health Engineering, Abadan University of Medical Sciences, Abadan, Iran
| | - Ehsan Aghayani
- Department of Environmental Health Engineering, Abadan University of Medical Sciences, Abadan, Iran.
| |
Collapse
|
12
|
Debnath A, Singh PK, Chandra Sharma Y. Metallic contamination of global river sediments and latest developments for their remediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113378. [PMID: 34435569 DOI: 10.1016/j.jenvman.2021.113378] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
This review article represents the comparative study of heavy metal concentration in water and sediments of 43 important global rivers. The review is a solitary effort in the area of heavy metal contamination of river-sediments during last ten years. The interpretation of heavy metal contamination in sediments has been verified with different indices, factors, codes and reference guidelines, which is based on geochemical data linked to background value of metals. It is observed that health hazards arise due to dynamics of movement of metals between water and sediments, which is primarily influenced by several factors such as physical, chemical, biological, hydrological and environmental. Also, the reason behind accumulation and assimilation of heavy metals on river water system is explained with appropriate mechanisms. Several factors e.g. pH, ORP, organic matter etc. are mainly involved in the distribution, accumulation and assimilation of metals in the sediment phase to water phase. Remediation technologies such as in-situ and ex-situ have been discussed for the removal of heavy metals from contaminated sediments. We have also compared the performance efficiencies of the technologies adopted by different researchers during the period 2003 to 2019 for the removal of metal bound sediments. Many researchers have preferred in-situ over ex-situ remediation due to low cost and time saving remediation effects. In this work we have also incorporated the safety measures and strategies which can prevent the metal accumulation in sediments of river system.
Collapse
Affiliation(s)
- Abhijit Debnath
- Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Prabhat Kumar Singh
- Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | | |
Collapse
|
13
|
Huang CW, Yen PL, How CM, Chai ZY, Liao VHC. Levels of bioavailable manganese in river sediment may elevate reproductive risk in model organism Caenorhabditis elegans. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 239:105958. [PMID: 34509924 DOI: 10.1016/j.aquatox.2021.105958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Manganese occurs naturally in sediment, yet anthropogenic sources, such as industrial wastewater and mining, increases Mn concentration. However, the environmental risk of bioavailable Mn is often overlooked and infrequently addressed. A probabilistic risk assessment was conducted to determine the effects of bioavailable Mn in river sediments on reproduction in model organism Caenorhabditis elegans using in utero egg counts and germline apoptosis as biomarkers. The lowest-observed-adverse-effect level (LOAEL) of sediment Mn that decreases in utero egg counts or increases germline apoptosis in C. elegans was 50 or 10 mg of Mn(II) per kg of dry weight sediment, respectively. Effect and exposure analyses were conducted using Hill model-simulated concentration-response curves and Mn concentrations of Laojie River sediment. Risk quotients (RQs) and exceedance risk (ER) analyses showed that bioavailable levels of Mn in Laojie River sediments from downstream sites collected during the dry season elevate reproductive risk as measured by germline apoptosis. These findings suggest that bioavailable levels of Mn in sediment exert negative impacts, and germline apoptosis is a sensitive biomarker for reproductive risk assessment. Our results also suggest that the anthropogenic Mn pollution in river sediment and spatial-seasonal bioavailability of Mn should be considered to improve sediment quality control.
Collapse
Affiliation(s)
- Chi-Wei Huang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| | - Pei-Ling Yen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| | - Chun Ming How
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| | - Zhen You Chai
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan.
| |
Collapse
|
14
|
Evaluation of the Ecological Benefits of Recycling Multiple Metals from Lithium Battery Saggars Based on Emergy Analysis. SUSTAINABILITY 2021. [DOI: 10.3390/su131910745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
With the rapid development of China’s new energy industry, the use of lithium-ion batteries has increased sharply, and the demand for battery cathode metals such as nickel, cobalt, and manganese has also increased rapidly. Scrapped ceramic saggars that are used to produce the cathode materials of lithium-ion batteries contain large amounts of nickel, cobalt, and manganese compounds; thus, recycling these saggars has high economic value and ecological significance. In this paper, the emergy method is used to analyze the ecological benefits of the typical Ni–Co-containing saggar recycling process in China. This paper constructs an ecoefficiency evaluation index for industrial systems based on emergy analysis to analyze the recycling of nickel and cobalt saggars. The ecological benefits are analyzed, and the following conclusions are drawn. (1) The Ni–Co-containing saggar recycling production line has good economic and ecological benefits. (2) The process has room for improvement in the energy use efficiency and clean energy use of the crystallization process and the efficiency of chemical use in the cascade separation and purification process. This study also establishes a set of emergy analysis methods and indicator system for the evaluation of the ecological benefit of the recycling industry, which can provide a reference for the evaluation of the eco-economic benefit of similar recycling industry processes.
Collapse
|
15
|
Hydrochemical Assessment of the Irrigation Water Quality of the El-Salam Canal, Egypt. WATER 2021. [DOI: 10.3390/w13172428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The El-Salam canal in Egypt is considered an important stream of fresh water for the agricultural sector that extends from the Nile River to Sinai, while it is subjected to several anthropogenic stresses. In this study, five-georeferenced stations (named from S1 to S5) were monitored along the El-Salam Canal before El-Sahara of the Suez Canal, via the estimation of the WQ index based on major cations and anions analysis including salinity hazard, permeability index, residual sodium carbonate, magnesium hazard, sodium percentage, sodium adsorption ratio, Kelley index, potential salinity, total hardness, and irrigation water quality index (IWQI). The sequence of average concentration of cations in water were Na+ > Ca2+ > Mg2+ > K+. The major cations constitute around 60% of the total dissolved salts. While the sequence of major anions in water were SO42− > HCO3− > Cl− > CO32−. These cations and anions showed an increasing trend from S1 (intake of the canal) to S5 (before El-Sahara) of the El-Salam Canal. Moreover, the order of heavy metals was Zn < Cd < Cr < Ni < Fe < Mn < Co < Cu < Pb. According to the US EPA (1999) guidelines, the levels of Fe and Zn in the El-Salam Canal are within the permissible limits for drinking and irrigation purposes, while Mn, Pb, Cu, Co, Ni, Cr, and Cd were detected at higher concentrations than those recommended. The value of IWQI in water samples varied from 40.26 to 114.82. The samples of S1 showed good water, the samples of region S2 (after mixing with Faraskour drainage) showed poor water quality, samples of regions S3 (after mixing with the El-Serw drain waters) and S5 (before El-Sahara) fell under the very poor water category and samples of region S4 (after mixing with the Hadous drainage) showed unsuitable water. Croplands irrigated with such water will not be exposed to any alkaline risks but will be exposed to the risk of salinity, which is more severe after mixing at the S3 and S4 sites. It is recommended to treat the drainage water before mixing with the irrigation water of El-Salam Canal to raise the suitability of irrigation water for crops, particularly for the Hadous drain.
Collapse
|
16
|
Paul V, Sankar MS, Vattikuti S, Dash P, Arslan Z. Pollution assessment and land use land cover influence on trace metal distribution in sediments from five aquatic systems in southern USA. CHEMOSPHERE 2021; 263:128243. [PMID: 33297190 DOI: 10.1016/j.chemosphere.2020.128243] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 06/12/2023]
Abstract
Trace elements and heavy metals concentrate in aquatic sediments, potentially endangering benthic organisms. Comparing the concentration of metals in different aquatic bodies will help evaluate their accumulation and distribution characteristics within these systems. Metal pollution and enrichment indices in sediments from diverse aquatic systems in Southern USA, including agricultural ponds, man-made reservoir, river, swamp, and coastal environment were investigated. Following total digestion of the sediments, the concentrations of chromium (Cr), cobalt (Co), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), cadmium (Cd), antimony (Sb), lead (Pb), and uranium (U) were measured using inductively coupled plasma-mass spectrometry (ICP-MS). Pb was found to be highly enriched in the sediment samples from all five environments. The samples from coastal and agricultural ponds showed highest degree of anthropogenic modification (enrichment factor >10), especially with Se, U, and Pb. Agricultural ponds, previously unknown as a metal hotspot, had the most deteriorated sediment quality as determined by high pollution load index (>1) and contamination factor (>6) for Cd and U. Principal component analysis comparing land use land cover distribution surrounding the aquatic systems to metal concentrations confirmed that agriculture-related land activities correlated well with majority of the metals. Overall, compared to agricultural ponds and coastal regions, sediments in river, swamp and man-made reservoir systems contained relatively fewer metal pollutants, the former two serving as collection points for metal-laden fertilizers and chemicals. The research provides key insights into simultaneously comparing metal accumulation in multiple water bodies and is useful to test and develop effective sediment quality guidelines.
Collapse
Affiliation(s)
- Varun Paul
- Department of Geosciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - M S Sankar
- Department of Geosciences, Mississippi State University, Mississippi State, MS, 39762, USA; Geosystems Research Institute, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Shannon Vattikuti
- Department of Geosciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Padmanava Dash
- Department of Geosciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Zikri Arslan
- U.S. Geological Survey, MS 973, Federal Center, Denver, CO, 80225, USA
| |
Collapse
|