1
|
Biswas D, Kumari N, Lachén-Montes M, Dutta S, Agrawal I, Samanta D, Shenoy SV, Halder A, Fernández-Irigoyen J, Padhye AR, Santamaría E, Srivastava S. Deep Phosphoproteome Landscape of Interhemispheric Functionality of Neuroanatomical Regions of the Human Brain. J Proteome Res 2022; 22:1043-1055. [PMID: 36317652 DOI: 10.1021/acs.jproteome.2c00244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Post-translational modifications (PTMs) are one of the compulsive and predominant biological processes that regulate the diverse molecular mechanism, modulate the onset of disease, and are the reason behind the functional diversity of proteins. Despite the widespread research findings in neuroproteomics, one of the key drawbacks has been the lack of proteome-level knowledge of hemispheric lateralization. We have investigated the proteome level expression in different neuroanatomical regions under the Human Brain Proteome Project (HBPP) and developed the global interhemispheric brain proteome map (Brainprot) earlier. Furthermore, this study has extended to decipher the phosphoproteome map of human brain interhemispheric regions through high-resolution mass spectrometry. The phosphoproteomics examination of 12 unique interhemispheric neurological brain regions using Orbitrap fusion liquid chromatography with tandem mass spectrometry provided comprehensive coverage of 996 phosphoproteins, 2010 phosphopeptides, and 3567 phosphosites. Moreover, interhemispheric phosphoproteome profiling has been categorized according to synaptic ontologies and interhemispheric expression to understand the functionality. Finally, we have integrated the phosphosites data under the PhosphoMap section in the Inter-Hemispheric Brain Proteome Map Portal (https://www.brainprot.org/) for the advancement and support of the ongoing neuroproteomics research worldwide. Data is available via ProteomeXchange with the identifier PXD031188.
Collapse
Affiliation(s)
- Deeptarup Biswas
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| | - Neha Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| | - Mercedes Lachén-Montes
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Navarra Institute for Health Research (IdiSNA), 31008Pamplona, Spain
| | - Sampurna Dutta
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata700032, India
| | - Ishita Agrawal
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi221005, India
| | - Debabrata Samanta
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal721302, India
| | - Sanjyot Vinayak Shenoy
- Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| | - Ankit Halder
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Navarra Institute for Health Research (IdiSNA), 31008Pamplona, Spain
| | - Advait Rahul Padhye
- Department of Computer Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Navarra Institute for Health Research (IdiSNA), 31008Pamplona, Spain
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| |
Collapse
|
2
|
Duan K, Ma Y, Tan J, Miao Y, Zhang Q. Identification of genetic molecular markers and immune infiltration characteristics of Alzheimer's disease through weighted gene co-expression network analysis. Front Neurol 2022; 13:947781. [PMID: 36071897 PMCID: PMC9441600 DOI: 10.3389/fneur.2022.947781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Background Alzheimer's disease (AD) is a progressive neurodegenerative disease that leads to cognitive impairment and memory loss. Currently, the pathogenesis and underlying causative genes of AD remain unclear, and there exists no effective treatment for this disease. This study explored AD-related diagnostic and therapeutic biomarkers from the perspective of immune infiltration by analyzing public data from the NCBI Gene Expression Omnibus database. Method In this study, weighted gene co-expression network analysis (WGCNA) was conducted to identify modules and hub genes contributing to AD development. A protein–protein interaction network was constructed when the genes in the modules were enriched and examined by Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Furthermore, a gene network was established using topological WGCNA, from which five hub genes were selected. Logistic regression analysis and receiver operating characteristic curve analysis were performed to explore the clinical value of genes in AD diagnosis. The genes in the core module intersected with the hub genes, and four intersection genes (ATP2A2, ATP6V1D, CAP2, and SYNJ1) were selected. These four genes were enriched by gene set enrichment analysis (GSEA). Finally, an immune infiltration analysis was performed. Results The GO/KEGG analysis suggested that genes in the core module played a role in the differentiation and growth of neural cells and in the transmission of neurotransmitters. The GSEA of core genes showed that these four genes were mainly enriched in immune/infection pathways (e.g., cholera infection and Helicobacter pylori infection pathways) and other metabolic pathways. An investigation of immune infiltration characteristics revealed that activated mast cells, regulatory T cells, plasma cells, neutrophils, T follicular helper cells, CD8 T cells, resting memory CD4 T cells, and M1 macrophages were the core immune cells contributing to AD progression. qRT-PCR analysis showed that the ATP6V1D is upregulated in AD. Conclusion The results of enrichment and immuno-osmotic analyses indicated that immune pathways and immune cells played an important role in the occurrence and development of AD. The selected key genes were used as biomarkers related to the pathogenesis of AD to further explore the pathways and cells, which provided new perspectives on therapeutic targets in AD.
Collapse
Affiliation(s)
- KeFei Duan
- Department of Geriatrics, Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuan Ma
- Department of Geriatrics, Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jin Tan
- Department of Geriatrics, Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuyang Miao
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Qiang Zhang
- Department of Geriatrics, Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Qiang Zhang
| |
Collapse
|
3
|
Wan Y, Qiu S, Yin L, Gao X, Jiang Y, Feng S, Tang C. CAP2 contributes to tumorigenesis in gastric cancer by targeting transcription factor SOX9. J Gastrointest Oncol 2021; 12:268-277. [PMID: 34012625 DOI: 10.21037/jgo-20-234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Gastric cancer (GC) is one of the most common tumors and the major cause of cancer-related mortality in the world. The purpose of this study is to identify new biomarker and reveal its potential molecular mechanism in GC. Methods The expression of CAP2 was observed by the bioinformatics analysis and western blot assays. The effects of CAP2 on cell proliferation and growth were tested by MTT assay, EdU assay, colony formation assay, and flow cytometric assay, respectively. ChIP and dual-luciferase assays were confirmed that SOX9 binding sites were putative regulatory elements in the transcriptional activation of CAP2. Furthermore, western blot and xenograft assays were applied to examine whether SOX9 was involved in the regulation of CAP2 expression. Results We reported that CAP2 is overexpressed in GC cells and tissues and related to a poorer prognosis for GC patients. Moreover, we found that knockdown of CAP2 suppressed the proliferation, growth, and cell cycle of GC cells. Besides, the transcription factor SOX9 participated in the CAP2-mediated proliferation of GC cells in vitro and in vivo. Conclusions Our results provide novel evidence that CAP2 plays an essential role in the genesis and development of GC, thus potentially highlighting this gene as a therapeutic target.
Collapse
Affiliation(s)
- Ying Wan
- Department of Geratology, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Shengkui Qiu
- Department of General Surgery, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Lei Yin
- Department of General Surgery, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Xuesong Gao
- Department of General Surgery, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Yasu Jiang
- Department of General Surgery, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Shichun Feng
- Department of General Surgery, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Chong Tang
- Department of General Surgery, Affiliated Hospital 2 of Nantong University, Nantong, China
| |
Collapse
|
4
|
Drug Repurposing in Medulloblastoma: Challenges and Recommendations. Curr Treat Options Oncol 2020; 22:6. [PMID: 33245404 DOI: 10.1007/s11864-020-00805-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
OPINION STATEMENT Medulloblastoma is the most frequently diagnosed primary malignant brain tumor among children. Currently available therapeutic strategies are based on surgical resection, chemotherapy, and/or radiotherapy. However, majority of patients quickly develop therapeutic resistance and are often left with long-term therapy-related side effects and sequelae. Therefore, there remains a dire need to develop more effective therapeutics to overcome the acquired resistance to currently available therapies. Unfortunately, the process of developing novel anti-neoplastic drugs from bench to bedside is highly time-consuming and very expensive. A wide range of drugs that are already in clinical use for treating non-cancerous diseases might commonly target tumor-associated signaling pathways as well and hence be of interest in treating different cancers. This is referred to as drug repurposing or repositioning. In medulloblastoma, drug repurposing has recently gained a remarkable interest as an alternative therapy to overcome therapy resistance, wherein existing non-tumor drugs are being tested for their potential anti-neoplastic effects outside the scope of their original use.
Collapse
|
5
|
Rust MB, Khudayberdiev S, Pelucchi S, Marcello E. CAPt'n of Actin Dynamics: Recent Advances in the Molecular, Developmental and Physiological Functions of Cyclase-Associated Protein (CAP). Front Cell Dev Biol 2020; 8:586631. [PMID: 33072768 PMCID: PMC7543520 DOI: 10.3389/fcell.2020.586631] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022] Open
Abstract
Cyclase-associated protein (CAP) has been discovered three decades ago in budding yeast as a protein that associates with the cyclic adenosine monophosphate (cAMP)-producing adenylyl cyclase and that suppresses a hyperactive RAS2 variant. Since that time, CAP has been identified in all eukaryotic species examined and it became evident that the activity in RAS-cAMP signaling is restricted to a limited number of species. Instead, its actin binding activity is conserved among eukaryotes and actin cytoskeleton regulation emerged as its primary function. However, for many years, the molecular functions as well as the developmental and physiological relevance of CAP remained unknown. In the present article, we will compile important recent progress on its molecular functions that identified CAP as a novel key regulator of actin dynamics, i.e., the spatiotemporally controlled assembly and disassembly of actin filaments (F-actin). These studies unraveled a cooperation with ADF/Cofilin and Twinfilin in F-actin disassembly, a nucleotide exchange activity on globular actin monomers (G-actin) that is required for F-actin assembly and an inhibitory function towards the F-actin assembly factor INF2. Moreover, by focusing on selected model organisms, we will review current literature on its developmental and physiological functions, and we will present studies implicating CAP in human pathologies. Together, this review article summarizes and discusses recent achievements in understanding the molecular, developmental and physiological functions of CAP, which led this protein emerge as a novel CAPt'n of actin dynamics.
Collapse
Affiliation(s)
- Marco B Rust
- Molecular Neurobiology Group, Institute of Physiological Chemistry, University of Marburg, Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, University of Marburg and Justus-Liebig-University Giessen, Giessen, Germany
| | - Sharof Khudayberdiev
- Molecular Neurobiology Group, Institute of Physiological Chemistry, University of Marburg, Marburg, Germany
| | - Silvia Pelucchi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| |
Collapse
|