1
|
Steinberg N, Tenenbaum G, Witchalls J, Waddington G. The impact of unexpected platform perturbation on ankle proprioception ability in static and dynamic starting positions. Gait Posture 2022; 98:167-172. [PMID: 36137355 DOI: 10.1016/j.gaitpost.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 02/02/2023]
Abstract
AIMS To examine the relationship between ankle proprioception and the ability to maintain balance with increased magnitudes of unexpected perturbations; and to compare the participants' ability to maintain balance following perturbations when starting from static and dynamic positions. METHODS Sixty physical education students (average 24.6 years) were tested for proprioception ability (AUC scores) and balance challenges presented on a perturbation treadmill. The degree at which participants lost postural balance was recorded in seven starting positions: standing-eyes-open (SO), standing-eyes-closed (SC), tandem-dominant (TD), tandem non-dominant, (TND) single-leg lateral side perturbation (SLP), single-leg medial side perturbation (SMP), and walking. Perturbation scores were analysed divided by tertiles. Multidimensional Unfolding SPSS Statistics 25 (PREFSCAL) was used to examine the relationships between data sets. RESULTS AUC scores of both dominant and non-dominant legs were significantly correlated with SO (r = 0.316; r = 0.445), SC (r = 0.364; r = 0.413), TD (r = 0.346; r = 0.308), and walking (r = 0.265; r = 0.439), respectively. In the dominant-leg, AUC scores of individuals with below-median SO scores were significantly worse compared to those with median SO scores (p = .046). In the non-dominant leg, individuals with above-median SC had significantly better AUC scores compared to those with lower-than-median SC (p = .008). Those with median and above-median SO and walking achieved better AUC scores than those with below-median (SO: p = .049, p = .004; walking: p = .016, p < .001, respectively). In dimension I, the SLP and SMP were located opposite one another; in dimension II, the TD and TND were located at the upper side, whereas SC, SO and walking were at the lowest side. CONCLUSIONS AUC scores were significantly correlated with the level at which postural balance was lost, whereby the better the proprioception ability, the better the ability to maintain balance. As such, the ability to maintain balance is harder in tandem positions than in standing and walking positions. This ability differed when perturbations were to the lateral or medial sides.
Collapse
Affiliation(s)
- Nili Steinberg
- Wingate College of Physical Education and Sports Sciences, Wingate Institute, Netanya, Israel.
| | - Galit Tenenbaum
- Wingate College of Physical Education and Sports Sciences, Wingate Institute, Netanya, Israel
| | - Jeremy Witchalls
- Research Institute for Sport and Exercise, University of Canberra, Australia
| | | |
Collapse
|
2
|
Dong M, Zhou Y, Li J, Rong X, Fan W, Zhou X, Kong Y. State of the art in parallel ankle rehabilitation robot: a systematic review. J Neuroeng Rehabil 2021; 18:52. [PMID: 33743757 PMCID: PMC7981854 DOI: 10.1186/s12984-021-00845-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/09/2021] [Indexed: 11/10/2022] Open
Abstract
Background The ankle joint complex (AJC) is of fundamental importance for balance, support, and propulsion. However, it is particularly susceptible to musculoskeletal and neurological injuries, especially neurological injuries such as drop foot following stroke. An important factor in ankle dysfunction is damage to the central nervous system (CNS). Correspondingly, the fundamental goal of rehabilitation training is to stimulate the reorganization and compensation of the CNS, and to promote the recovery of the motor system’s motor perception function. Therefore, an increasing number of ankle rehabilitation robots have been developed to provide long-term accurate and uniform rehabilitation training of the AJC, among which the parallel ankle rehabilitation robot (PARR) is the most studied. The aim of this study is to provide a systematic review of the state of the art in PARR technology, with consideration of the mechanism configurations, actuator types with different trajectory tracking control techniques, and rehabilitation training methods, thus facilitating the development of new and improved PARRs as a next step towards obtaining clinical proof of their rehabilitation benefits. Methods A literature search was conducted on PubMed, Scopus, IEEE Xplore, and Web of Science for articles related to the design and improvement of PARRs for ankle rehabilitation from each site’s respective inception from January 1999 to September 2020 using the keywords “ parallel”, “ ankle”, and “ robot”. Appropriate syntax using Boolean operators and wildcard symbols was utilized for each database to include a wider range of articles that may have used alternate spellings or synonyms, and the references listed in relevant publications were further screened according to the inclusion criteria and exclusion criteria. Results and discussion Ultimately, 65 articles representing 16 unique PARRs were selected for review, all of which have developed the prototypes with experiments designed to verify their usability and feasibility. From the comparison among these PARRs, we found that there are three main considerations for the mechanical design and mechanism optimization of PARRs, the choice of two actuator types including pneumatic and electrically driven control, the covering of the AJC’s motion space, and the optimization of the kinematic design, actuation design and structural design. The trajectory tracking accuracy and interactive control performance also need to be guaranteed to improve the effect of rehabilitation training and stimulate a patient’s active participation. In addition, the parameters of the reviewed 16 PARRs are summarized in detail with their differences compared by using figures and tables in the order they appeared, showing their differences in the two main actuator types, four exercise modes, fifteen control strategies, etc., which revealed the future research trends related to the improvement of the PARRs. Conclusion The selected studies showed the rapid development of PARRs in terms of their mechanical designs, control strategies, and rehabilitation training methods over the last two decades. However, the existing PARRs all have their own pros and cons, and few of the developed devices have been subjected to clinical trials. Designing a PARR with three degrees of freedom (DOFs) and whereby the mechanism’s rotation center coincides with the AJC rotation center is of vital importance in the mechanism design and optimization of PARRs. In addition, the design of actuators combining the advantages of the pneumatic-driven and electrically driven ones, as well as some new other actuators, will be a research hotspot for the development of PARRs. For the control strategy, compliance control with variable parameters should be further studied, with sEMG signal included to improve the real-time performance. Multimode rehabilitation training methods with multimodal motion intention recognition, real-time online detection and evaluation system should also be further developed to meet the needs of different ankle disability and rehabilitation stages. In addition, the clinical trials are in urgent need to help the PARRs be implementable as an intervention in clinical practice.
Collapse
Affiliation(s)
- Mingjie Dong
- Beijing Key Laboratory of Advanced Manufacturing Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, No.100, Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Yu Zhou
- Beijing Key Laboratory of Advanced Manufacturing Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, No.100, Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Jianfeng Li
- Beijing Key Laboratory of Advanced Manufacturing Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, No.100, Pingleyuan, Chaoyang District, Beijing, 100124, China.
| | - Xi Rong
- Department of Neurology, the Affiliated Hospital of Qingdao University, 59 Haier Road, Laoshan District, Qingdao, 266000, China
| | - Wenpei Fan
- Beijing Key Laboratory of Advanced Manufacturing Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, No.100, Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Xiaodong Zhou
- Beijing Institute of Control Engineering, Beijing, 100094, China
| | - Yuan Kong
- Beijing Key Laboratory of Advanced Manufacturing Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, No.100, Pingleyuan, Chaoyang District, Beijing, 100124, China
| |
Collapse
|