1
|
Shirazpour S, Khaksari M, Gaini AA, Bashiri H, Khoramipour K, Rafie F. Can resisted swimming exercise substitute for the protective effects of estrogen on cardiometabolic risk factors in obese postmenopausal rat model? IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2025; 28:718-727. [PMID: 40343300 PMCID: PMC12057744 DOI: 10.22038/ijbms.2025.82005.17745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/30/2024] [Indexed: 05/11/2025]
Abstract
Objectives Following our previous studies on the anti-obesity and cardioprotective effects of 17-beta estradiol (E2), this study was designed to determine the effects of Resisted swimming (RSW) training and E2 (alone and in combination) on cardiometabolic risk factors in an obese postmenopausal rat model. Materials and Methods Female ovariectomized rats (OVX) were given a standard diet (SD) or a 60% high-fat diet (HFD) for 16 weeks and were divided into two groups: SD and HFD. The rats were divided into ten groups to assess the effects of 8 weeks of E2 (1 mg/kg, IP) administration and RSW (5 days a week) on cardiometabolic risk factors. Parameters including body weight, BMI, visceral fat, blood glucose (BG), and cardiac oxidative stress were assessed 72 hr after the last swimming session. Results HFD increased body weight, BMI, visceral fat, and BG levels in OVX rats. Additionally, it negatively affected the lipid profile and cardiac oxidative stress, but both E2 and RSW reduced these parameters in HFD-fed OVX rats. Although RSW and E2 equally prevented these changes, swimming was more effective than estrogen in increasing HDL levels in the SD group. The combination of E2 and RSW had a more significant effect on modulating glucose, TAC, TG, and HDL indices than the individual treatments. Conclusion Overall, RSW ameliorates cardiometabolic risk factors in postmenopausal conditions caused by obesity, probably by modulating cardiac oxidative stress. It is also an effective non-pharmacological treatment for E2 substitution.
Collapse
Affiliation(s)
- Sara Shirazpour
- Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Ali Gaini
- Department of Exercise Physiology, University of Tehran, Tehran, Iran
| | - Hamideh Bashiri
- Institute of Neuropharmacology, Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Kayvan Khoramipour
- Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain
| | - Forouzan Rafie
- Institute of Neuropharmacology, Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Emory University School of Medicine Division of Geriatrics and Gerontology, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Zima L, Moore AN, Smolen P, Kobori N, Noble B, Robinson D, Hood KN, Homma R, Al Mamun A, Redell JB, Dash PK. The evolving pathophysiology of TBI and the advantages of temporally-guided combination therapies. Neurochem Int 2024; 180:105874. [PMID: 39366429 PMCID: PMC12011104 DOI: 10.1016/j.neuint.2024.105874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Several clinical and experimental studies have demonstrated that traumatic brain injury (TBI) activates cascades of biochemical, molecular, structural, and pathological changes in the brain. These changes combine to contribute to the various outcomes observed after TBI. Given the breadth and complexity of changes, combination treatments may be an effective approach for targeting multiple detrimental pathways to yield meaningful improvements. In order to identify targets for therapy development, the temporally evolving pathophysiology of TBI needs to be elucidated in detail at both the cellular and molecular levels, as it has been shown that the mechanisms contributing to cognitive dysfunction change over time. Thus, a combination of individual mechanism-based therapies is likely to be effective when maintained based on the time courses of the cellular and molecular changes being targeted. In this review, we will discuss the temporal changes of some of the key clinical pathologies of human TBI, the underlying cellular and molecular mechanisms, and the results from preclinical and clinical studies aimed at mitigating their consequences. As most of the pathological events that occur after TBI are likely to have subsided in the chronic stage of the disease, combination treatments aimed at attenuating chronic conditions such as cognitive dysfunction may not require the initiation of individual treatments at a specific time. We propose that a combination of acute, subacute, and chronic interventions may be necessary to maximally improve health-related quality of life (HRQoL) for persons who have sustained a TBI.
Collapse
Affiliation(s)
- Laura Zima
- Departments of Neurosurgery, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Anthony N Moore
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Paul Smolen
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Nobuhide Kobori
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Brian Noble
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Dustin Robinson
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Kimberly N Hood
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Ryota Homma
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Amar Al Mamun
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - John B Redell
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Pramod K Dash
- Departments of Neurosurgery, The University of Texas McGovern Medical School, Houston, TX, USA; Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
3
|
Song X, Zhang Y, Tang Z, Du L. Advantages of nanocarriers for basic research in the field of traumatic brain injury. Neural Regen Res 2024; 19:237-245. [PMID: 37488872 PMCID: PMC10503611 DOI: 10.4103/1673-5374.379041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/01/2023] [Accepted: 05/06/2023] [Indexed: 07/26/2023] Open
Abstract
A major challenge for the efficient treatment of traumatic brain injury is the need for therapeutic molecules to cross the blood-brain barrier to enter and accumulate in brain tissue. To overcome this problem, researchers have begun to focus on nanocarriers and other brain-targeting drug delivery systems. In this review, we summarize the epidemiology, basic pathophysiology, current clinical treatment, the establishment of models, and the evaluation indicators that are commonly used for traumatic brain injury. We also report the current status of traumatic brain injury when treated with nanocarriers such as liposomes and vesicles. Nanocarriers can overcome a variety of key biological barriers, improve drug bioavailability, increase intracellular penetration and retention time, achieve drug enrichment, control drug release, and achieve brain-targeting drug delivery. However, the application of nanocarriers remains in the basic research stage and has yet to be fully translated to the clinic.
Collapse
Affiliation(s)
- Xingshuang Song
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
- Department of Pharmaceutics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yizhi Zhang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
- Department of Pharmaceutics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ziyan Tang
- Department of Pharmaceutics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Lina Du
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
- Department of Pharmaceutics, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
4
|
Amirkhosravi L, khaksari M, Amiresmaili S, Sanjari M, Khorasani P, Hashemian M. Evaluating the neuroprotective effects of progesterone receptors on experimental traumatic brain injury: The PI3K/Akt pathway. Brain Behav 2023; 13:e3244. [PMID: 37661235 PMCID: PMC10636406 DOI: 10.1002/brb3.3244] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/11/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND Studies have confirmed the salutary effects of progesterone (P4) on traumatic brain injury (TBI). This study investigated the beneficial effects of P4 via its receptors on TBI, and also whether progesterone receptors (PRs) can modulate TBI through PI3K/Akt pathway. MATERIAL AND METHODS Marmarou method was utilized to induce diffuse TBI in ovariectomized rats. P4 (1.7 mg/kg) or the vehicle (oil) was administered 30 min after TBI induction. Moreover, RU486 (PR antagonist) and its vehicle (DMSO) were injected before TBI induction and P4 injection. Brain Evans blue content, brain water content (WC), various oxidative stress parameters, IL-1β levels, tumor necrosis factor-α (TNF-α), histopathological alterations, and also phosphorylated Akt (p-Akt) and PI3K expressions in the brain were assessed 24 h after TBI. The veterinary comma scale (VCS) was measured before and after TBI at different times. RESULTS The findings revealed that P4 caused an increase in VCS and a decrease in brain WC, oxidative stress, TNF-α and IL-1β levels. RU486 inhibited the beneficial effects of P4 on these indices. Moreover, RU486 prevented the reduction of brain edema, inflammation, and apoptosis caused by P4. Moreover, P4 following TBI increased the expression of PI3K/p-Akt protein in the brain. RU486 eliminated the effects of P4 on PI3K/p-Akt expression. CONCLUSION According to these findings, PRs are acting as critical mediators for the neuroprotective properties of P4 on oxidative stress, pro-inflammatory cytokine levels, and neurological outcomes. PRs also play an important role in regulating the PI3K/p-Akt expression and nongenomic function of P4.
Collapse
Affiliation(s)
- Ladan Amirkhosravi
- Endocrinology and Metabolism Research CenterInstitute of Basic and Clinical Physiology SciencesKerman University of Medical SciencesKermanIran
| | - Mohammad khaksari
- Physiology Research CenterInstitute of NeuropharmacologyKerman University of Medical SciencesKermanIran
| | | | - Mojgan Sanjari
- Endocrinology and Metabolism Research CenterInstitute of Basic and Clinical Physiology SciencesKerman University of Medical SciencesKermanIran
| | - Parisa Khorasani
- Department of Pathology, Pathology, and Stem Cells Research Center, Afzalipour Medical FacultyKerman University of Medical SciencesKermanIran
| | - Morteza Hashemian
- Neuroscience Research Center, Institute of NeuropharmacologyKerman University of Medical SciencesKermanIran
| |
Collapse
|
5
|
Gatto A, Capossela L, Conti G, Eftimiadi G, Ferretti S, Manni L, Curatola A, Graglia B, Di Sarno L, Calcagni ML, Di Giuda D, Cecere S, Romeo DM, Soligo M, Picconi E, Piastra M, Della Marca G, Staccioli S, Ruggiero A, Cocciolillo F, Pulitanò S, Chiaretti A. Intranasal human-recombinant NGF administration improves outcome in children with post-traumatic unresponsive wakefulness syndrome. Biol Direct 2023; 18:61. [PMID: 37789391 PMCID: PMC10546699 DOI: 10.1186/s13062-023-00418-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Severe traumatic brain injury (TBI) is one of the most dramatic events in pediatric age and, despite advanced neuro-intensive care, the survival rate of these patients remains low. Children suffering from severe TBI show long-term sequelae, more pronounced in behavioral, neurological and neuropsychological functions leading to, in the most severe cases, an unresponsive wakefulness syndrome (UWS). Currently, no effective treatments can restore neuronal loss or produce significant improvement in these patients. In experimental animal models, human- recombinant Nerve Growth Factor (hr-NGF) promotes neural recovery supporting neuronal growth, differentiation and survival of brain cells and up-regulating the neurogenesis-associated processes. Only a few studies reported the efficacy of intranasal hr-NGF administration in children with post- traumatic UWS. METHODS Children with the diagnosis of post-traumatic UWS were enrolled. These patients underwent a treatment with intranasal hr-NGF administration, at a total dose of 50 gamma/kg, three times a day for 7 consecutive days. The treatment schedule was performed for 4 cycles, at one month distance each. Neuroradiogical evaluation by Positron Emission Tomography scan (PET), Single Photon Emission Computed Tomography (SPECT), Electroencephalography (EEG), and Power Spectral Density (PSD) was determined before the treatment and one month after the end. Neurological assessment was also deepened by using modified Ashworth Scale, Gross Motor Function Measure, and Disability Rating Scale. RESULTS Three children with post-traumatic UWS were treated. hr-NGF administration improved functional (PET and SPECT) and electrophysiological (EEG and PSD) assessment. Also clinical conditions improved, mainly for the reduction of spasticity and with the acquisition of voluntary movements, facial mimicry, attention and verbal comprehension, ability to cry, cough reflex, oral motility, and feeding capacity, with a significant improvement of their neurological scores. No side effects were reported. CONCLUSION These promising results and the ease of administration of this treatment make it worthwhile to be investigated further, mainly in the early stages from severe TBI and in patients with better baseline neurological conditions, to explore more thoroughly the benefits of this new approach on neuronal function recovery after traumatic brain damage.
Collapse
Affiliation(s)
- Antonio Gatto
- Dipartimento di Pediatria, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Lavinia Capossela
- Dipartimento di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giorgio Conti
- Terapia Intensiva Pediatrica, Dipartimento di Scienze dell'Emergenza, Anestesiologiche e Rianimazione, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Gemma Eftimiadi
- Dipartimento di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Serena Ferretti
- Dipartimento di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luigi Manni
- Istituto di Farmacologia Traslazionale, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Antonietta Curatola
- Dipartimento di Pediatria, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Benedetta Graglia
- Dipartimento di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lorenzo Di Sarno
- Dipartimento di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Lucia Calcagni
- UOC di Medicina Nucleare, Fondazione Policlinico Universitario "A. Gemelli" IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Daniela Di Giuda
- UOC di Medicina Nucleare, Fondazione Policlinico Universitario "A. Gemelli" IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stefano Cecere
- Dipartimento di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Domenico Marco Romeo
- Unità di Neurologia Pediatrica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Marzia Soligo
- Istituto di Farmacologia Traslazionale, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Enzo Picconi
- Terapia Intensiva Pediatrica, Dipartimento di Scienze dell'Emergenza, Anestesiologiche e Rianimazione, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Marco Piastra
- Terapia Intensiva Pediatrica, Dipartimento di Scienze dell'Emergenza, Anestesiologiche e Rianimazione, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Giacomo Della Marca
- Dipartimento di Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Susanna Staccioli
- Dipartimento di Neuroriabilitazione Intensiva, Ospedale Pediatrico "Bambino Gesù", Rome, Italy
| | - Antonio Ruggiero
- Oncologia Pediatrica, Fondazione Policlinico Universitario A.Gemelli IRCCS - Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fabrizio Cocciolillo
- UOC di Medicina Nucleare, Fondazione Policlinico Universitario "A. Gemelli" IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Silvia Pulitanò
- Terapia Intensiva Pediatrica, Dipartimento di Scienze dell'Emergenza, Anestesiologiche e Rianimazione, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Antonio Chiaretti
- Dipartimento di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy.
- Department of Women's Health Sciences, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy.
| |
Collapse
|
6
|
Zhao Q, Li H, Li H, Zhang J. Research progress on pleiotropic neuroprotective drugs for traumatic brain injury. Front Pharmacol 2023; 14:1185533. [PMID: 37475717 PMCID: PMC10354289 DOI: 10.3389/fphar.2023.1185533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023] Open
Abstract
Traumatic brain injury (TBI) has become one of the most important causes of death and disability worldwide. A series of neuroinflammatory responses induced after TBI are key factors for persistent neuronal damage, but at the same time, such inflammatory responses can also promote debris removal and tissue repair after TBI. The concept of pleiotropic neuroprotection delves beyond the single-target treatment approach, considering the multifaceted impacts following TBI. This notion embarks deeper into the research-oriented treatment paradigm, focusing on multi-target interventions that inhibit post-TBI neuroinflammation with enhanced therapeutic efficacy. With an enriched comprehension of TBI's physiological mechanisms, this review dissects the advancements in developing pleiotropic neuroprotective pharmaceuticals to mitigate TBI. The aim is to provide insights that may contribute to the early clinical management of the condition.
Collapse
Affiliation(s)
- Qinghui Zhao
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| | - Huige Li
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| | - Hongru Li
- Zhumadian Central Hospital, Zhumadian, China
| | - Jianhua Zhang
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| |
Collapse
|
7
|
Wei C, Wang J, Yu J, Tang Q, Liu X, Zhang Y, Cui D, Zhu Y, Mei Y, Wang Y, Wang W. Therapy of traumatic brain injury by modern agents and traditional Chinese medicine. Chin Med 2023; 18:25. [PMID: 36906602 PMCID: PMC10008617 DOI: 10.1186/s13020-023-00731-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/27/2023] [Indexed: 03/13/2023] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of disability and death, and the social burden of mortality and morbidity caused by TBI is significant. Under the influence of comprehensive factors, such as social environment, lifestyle, and employment type, the incidence of TBI continues to increase annually. Current pharmacotherapy of TBI mainly focuses on symptomatic supportive treatment, aiming to reduce intracranial pressure, ease pain, alleviate irritability, and fight infection. In this study, we summarized numerous studies covering the use of neuroprotective agents in different animal models and clinical trials after TBI. However, we found that no drug has been approved as specifically effective for the treatment of TBI. Effective therapeutic strategies for TBI remain an urgent need, and attention is turning toward traditional Chinese medicine. We analyzed the reasons why existing high-profile drugs had failed to show clinical benefits and offered our views on the research of traditional herbal medicine for treating TBI.
Collapse
Affiliation(s)
- Chunzhu Wei
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingbo Wang
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jintao Yu
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Tang
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinjie Liu
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanlong Zhang
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dandan Cui
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqiong Zhu
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanli Mei
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanjun Wang
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wenzhu Wang
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Bentley C, Hazeldine J, Bravo L, Taylor AE, Gilligan LC, Shaheen F, Acharjee A, Gkoutos G, Foster MA, Arlt W, Lord JM. The ultra-acute steroid response to traumatic injury: a cohort study. Eur J Endocrinol 2023; 188:7049580. [PMID: 36809311 DOI: 10.1093/ejendo/lvad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/21/2022] [Accepted: 02/08/2023] [Indexed: 02/23/2023]
Abstract
OBJECTIVE Trauma-induced steroid changes have been studied post-hospital admission, resulting in a lack of understanding of the speed and extent of the immediate endocrine response to injury. The Golden Hour study was designed to capture the ultra-acute response to traumatic injury. DESIGN We conducted an observational cohort study including adult male trauma patients <60 years, with blood samples drawn ≤1 h of major trauma by pre-hospital emergency responders. METHODS We recruited 31 adult male trauma patients (mean age 28 [range 19-59] years) with a mean injury severity score (ISS) of 16 (IQR 10-21). The median time to first sample was 35 (range 14-56) min, with follow-up samples collected 4-12 and 48-72 h post-injury. Serum steroids in patients and age- and sex-matched healthy controls (HCs) (n = 34) were analysed by tandem mass spectrometry. RESULTS Within 1 h of injury, we observed an increase in glucocorticoid and adrenal androgen biosynthesis. Cortisol and 11-hydroxyandrostendione increased rapidly, whilst cortisone and 11-ketoandrostenedione decreased, reflective of increased cortisol and 11-oxygenated androgen precursor biosynthesis by 11β-hydroxylase and increased cortisol activation by 11β-hydroxysteroid dehydrogenase type 1. Active classic gonadal androgens testosterone and 5α-dihydrotestosterone decreased, whilst the active 11-oxygenated androgen 11-ketotestosterone maintained pre-injury levels. CONCLUSIONS Changes in steroid biosynthesis and metabolism occur within minutes of traumatic injury. Studies that address whether ultra-early changes in steroid metabolism are associated with patient outcomes are now required.
Collapse
Affiliation(s)
- Conor Bentley
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham B15 2TT, United Kingdom
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jon Hazeldine
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham B15 2TT, United Kingdom
| | - Laura Bravo
- Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Angela E Taylor
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Lorna C Gilligan
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Fozia Shaheen
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Animesh Acharjee
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham B15 2TT, United Kingdom
- Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, United Kingdom
| | - George Gkoutos
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham B15 2TT, United Kingdom
- Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, United Kingdom
- Medical Research Council Health Data Research UK (HDR), United Kingdom
| | - Mark A Foster
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham B15 2TT, United Kingdom
- Royal Centre for Defence Medicine, Birmingham Research Park, Birmingham B15 2SQ, United Kingdom
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
- National Institute for Health Research Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2GW, United Kingdom
| | - Janet M Lord
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham B15 2TT, United Kingdom
- National Institute for Health Research Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2GW, United Kingdom
| |
Collapse
|
9
|
Yang X, Cao JF, Chen S, Xiong L, Zhang L, Wu M, Wang C, Xu H, Chen Y, Yang S, Zhong L, Wei X, Xiao Z, Gong Y, Li Y, Zhang X. Molecular docking and molecular dynamics simulation study the mechanism of progesterone in the treatment of spinal cord injury. Steroids 2022; 188:109131. [PMID: 36273543 DOI: 10.1016/j.steroids.2022.109131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/10/2022] [Accepted: 10/14/2022] [Indexed: 11/08/2022]
Abstract
PURPOSE Spinal cord injury can lead to incomplete or complete loss of voluntary movement and sensory function, leading to serious complications. Numerous studies have shown that progesterone exhibits strong therapeutic potential for spinal cord injury. However, the mechanism by which progesterone treats spinal cord injury remains unclear. Therefore, this article explores the mechanism of progesterone in the treatment of spinal cord injury by means of molecular docking and molecular dynamics simulation. METHODS We used bioinformatics to screen active pharmaceutical ingredients and potential targets, and molecular docking and molecular dynamics were used to validate and analysis by the supercomputer platform. RESULTS Progesterone had 3606 gene targets, spinal cord injury had 6560 gene targets, the intersection gene targets were 2355. GO and KEGG analysis showed that the abundant pathways involved multiple pathways related to cell metabolism and inflammation. Molecular docking showed that progesterone played a role in treating spinal cord injury by acting on BDNF, AR, NGF and TNF. Molecular dynamics was used to prove and analyzed the binding stability of active ingredients and protein targets, and AR/Progesterone combination has the strongest binding energy. CONCLUSION Progesterone promotes recovery from spinal cord injury by promoting axonal regeneration, remyelination, neuronal survival and reducing inflammation.
Collapse
Affiliation(s)
- Xingyu Yang
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Jun-Feng Cao
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Shengyan Chen
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Li Xiong
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | | | - Mei Wu
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Chaochao Wang
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Hengxiang Xu
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Yijun Chen
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Siqi Yang
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Li Zhong
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, Chengdu, China
| | - Xiaoliang Wei
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, Chengdu, China
| | - Zixuan Xiao
- Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Yunli Gong
- Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Yang Li
- Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Xiao Zhang
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, Chengdu, China
| |
Collapse
|
10
|
Nasre-Nasser RG, Severo MMR, Pires GN, Hort MA, Arbo BD. Effects of Progesterone on Preclinical Animal Models of Traumatic Brain Injury: Systematic Review and Meta-analysis. Mol Neurobiol 2022; 59:6341-6362. [PMID: 35922729 DOI: 10.1007/s12035-022-02970-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/21/2022] [Indexed: 12/09/2022]
Abstract
Since the publication of two phase III clinical trials not supporting the use of progesterone in patients with traumatic brain injury (TBI), several possible explanations have been postulated, including limitations in the analysis of results from preclinical evidence. Therefore, to address this question, a systematic review and meta-analysis was performed to evaluate the effects of progesterone as a neuroprotective agent in preclinical animal models of TBI. A total of 48 studies were included for review: 29 evaluated brain edema, 21 evaluated lesion size, and 0 studies reported the survival rate. In the meta-analysis, it was found that progesterone reduced brain edema (effect size - 1.73 [- 2.02, - 1.44], p < 0.0001) and lesion volume (effect size - 0.40 [- 0.65, - 0.14], p = 0.002). Lack of details in the studies hindered the assessment of risk of bias (through the SYRCLE tool). A funnel plot asymmetry was detected, suggesting a possible publication bias. In conclusion, preclinical studies show that progesterone has an anti-edema effect in animal models of TBI, decreasing lesion volume or increasing remaining tissue. However, more studies are needed using assessing methods with lower risk of histological artifacts.
Collapse
Affiliation(s)
- Raif Gregorio Nasre-Nasser
- Programa de Pós-Graduação Em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande (FURG), Porto Alegre, Rio Grande do Sul, Brazil
| | - Maria Manoela Rezende Severo
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos 2600, Building UFRGS 21116, Room 430, Zip code, Porto Alegre - RS, 90035-003, Brazil
| | - Gabriel Natan Pires
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and Meta-Analysis (BRISA), Rio de Janeiro, Brazil
| | - Mariana Appel Hort
- Programa de Pós-Graduação Em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande (FURG), Porto Alegre, Rio Grande do Sul, Brazil
| | - Bruno Dutra Arbo
- Programa de Pós-Graduação Em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande (FURG), Porto Alegre, Rio Grande do Sul, Brazil.
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos 2600, Building UFRGS 21116, Room 430, Zip code, Porto Alegre - RS, 90035-003, Brazil.
| |
Collapse
|
11
|
Abstract
Traumatic brain injury is a devastating, life-changing event in most cases. After the primary brain insult, it is helpful to use evidence-based monitoring techniques to guide implementation of essential interventions to minimize secondary injury and thereby improve patient outcomes. An update on multimodal neuromonitoring is provided in this narrative review, with discussion of tools and techniques currently used in the treatment of patients with brain injury. Neuroprotective treatments, from the well-studied targeted temperature management to new potential therapeutics under investigation, such as glyburide, also are presented.
Collapse
Affiliation(s)
- Maureen Scarboro
- Maureen Scarboro is Acute Care Nurse Practitioner, Neurosurgery, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, 22 S Greene St, Baltimore, MD 21201
| | - Karen A McQuillan
- Karen A. McQuillan is Lead Clinical Nurse Specialist, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, Maryland
| |
Collapse
|