1
|
Alzarea SI, Afzal M, Moglad E, Alhassan HH, Alzarea AI, Alsaidan OA, Sayyed N, Kazmi I. In silico and in vivo evaluation of erucic acid against pentylenetetrazole-induced seizures in mice by modulating oxidative stress, neurotransmitters and neuroinflammation markers. Nutr Neurosci 2025:1-16. [PMID: 40022513 DOI: 10.1080/1028415x.2025.2463677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
BACKGROUND Pentylenetetrazole (PTZ) is a commonly used chemical to induce epileptic seizures in experimental animals. AIM To investigate the neuroprotective effects of erucic acid against PTZ-induced seizures in mice and explore its underlying mechanisms. METHODOLOGY The mice were randomly allocated into four groups: normal control, PTZ-treated (35 mg/kg via intraperitoneal injection), and PTZ + erucic acid (at doses of 10 and 20 mg/kg). Various parameters were assessed, including the percentage of animals experiencing convulsions, latency to death, percentage of deaths, levels of neurotransmitters, pro-inflammatory cytokines such as interleukin-6 (IL-6), interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), nuclear factor kappa B (NF-κB), oxidative stress marker malondialdehyde (MDA), antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH), and caspase-3. The docking analysis was performed using AutoDock Vina software. RESULTS Erucic acid markedly reduced the severity and frequency of PTZ-induced seizures, significantly decreased mortality rates, and restored altered neurotransmitter levels in mice. It alleviated oxidative stress by increasing the activity of antioxidant enzymes and reducing malondialdehyde (MDA) levels. Additionally, erucic acid mitigated neuroinflammation by downregulating pro-inflammatory cytokine production and inhibiting NF-κB activation. Molecular docking studies demonstrated that erucic acid exhibited strong binding affinities toward key molecular targets, including GABA (-4.546), NF-κB (-5.982), and caspase-3 (-5.22), suggesting its potential as a neuroprotective agent. CONCLUSION Erucic acid may be an effective natural compound in PTZ-induced seizures in mice by restoring neurotransmitters, oxidative stress and neuroinflammatory mediators. It could prove to be a better alternative in the treatment of epilepsy.
Collapse
Affiliation(s)
- Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Hassan H Alhassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | | | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Nadeem Sayyed
- School of Pharmacy, Glocal University, Saharanpur, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Khoshkroodian B, Javid H, Pourbadie HG, Sayyah M. Toll-Like Receptor 1/2 Postconditioning by the Ligand Pam3cys Tempers Posttraumatic Hyperexcitability, Neuroinflammation, and Microglial Response: A Potential Candidate for Posttraumatic Epilepsy. Inflammation 2024:10.1007/s10753-024-02109-z. [PMID: 39044002 DOI: 10.1007/s10753-024-02109-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
Toll-like receptors (TLRs) are activated by endogenous molecules released from damaged cells and contribute to neuroinflammation following traumatic brain injury (TBI) and epilepsy. TLR1/2 agonist tri-palmitoyl-S-glyceryl-cysteine (Pam3cys) is a vaccine adjuvant with confirmed safety in humans. We assessed impact of TLR1/2 postconditioning by Pam3cys on epileptogenesis and neuroinflammation in male rats, 6, 24, and 48 h after mild-to-moderate TBI. Pam3cys was injected into cerebral ventricles 30 min after controlled cortical impact (CCI) injury. After 24 h, rats underwent chemical kindling by once every other day injections of pentylenetetrazole (PTZ) 35 mg/kg until development of generalized seizures. Number of intact neurons, brain expression of proinflammatory cytokine TNF-α, anti-inflammatory cytokine IL-10, and marker of anti-inflammatory microglia arginase1 (Arg1) were determined by immunoblotting. Astrocytes and macrophage/microglia activation/polarization at the contused area was assessed by double immunostaining with Iba1/Arg1, Iba1/iNOS and GFAP/iNOS, specific antibodies. The CCI-injured rats became kindled by less number of PTZ injections than sham-operated rats (9 versus 14 injections, p < 0.0001). Pam3cys treatment returned the accelerated rate of epileptogenesis in TBI state to the sham level. Pam3cys decreased neural death 48 h after TBI. It decreased TNF-α (6 h post-TBI, p < 0.01), and up-regulated IL-10 (p < 0.01) and Arg1 (p < 0.05) 48 h after TBI. The iNOS-positive cells decreased (p < 0.001) whereas Iba1/Arg1-positive cells enhanced (p < 0.01) after Pam3cys treatment. Pam3cys inhibits TBI-accelerated acquisition of seizures. Pam3cys reprograms microglia and up-regulates anti-inflammatory cytokines during the first few days after TBI. This capacity along with the clinical safety, makes Pam3cys a potential candidate for development of effective medications against posttraumatic epilepsy.
Collapse
Affiliation(s)
- Bahar Khoshkroodian
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Pasteur Street, Tehran, 13169455, Iran
| | - Hanieh Javid
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Pasteur Street, Tehran, 13169455, Iran
- Department of Neuroscience and Addition, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Gholami Pourbadie
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Pasteur Street, Tehran, 13169455, Iran
| | - Mohammad Sayyah
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Pasteur Street, Tehran, 13169455, Iran.
| |
Collapse
|
3
|
Moezi L, Pirsalami F, Dastgheib M, Oftadehgan S, Purkhosrow A, Sattarinezhad E. Acute and Sub-chronic Anticonvulsant Effects of Edaravone on Seizure Induced by Pentylenetetrazole or Electroshock in Mice, Nitric Oxide Involvement. IRANIAN JOURNAL OF MEDICAL SCIENCES 2023; 48:329-340. [PMID: 37791336 PMCID: PMC10542921 DOI: 10.30476/ijms.2022.94177.2544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 05/23/2022] [Accepted: 06/25/2022] [Indexed: 10/05/2023]
Abstract
Background Edaravone is an anti-stroke medication that may have nitric oxide (NO) modulating properties. This study evaluated the role of NO in the acute and sub-chronic anticonvulsant effects of edaravone in murine models of seizures induced by intraperitoneal (IP) or intravenous (IV) injections of pentylenetetrazole (PTZ) or electroshock (maximal electroshock seizure [MES]). Methods 132 male albino mice were randomly divided into 22 groups (n=6) and given IP injections of vehicle or edaravone either acutely or for eight days (sub-chronically). The seizure was induced by electroshock or PTZ (IP or IV). The following edaravone doses were used: 7.5, 10, 12.5 (acute); 5, 7.5, 10 (sub-chronic) in IP PTZ model; 5, 7.5, 10 in IV PTZ model; and 5, 10 mg/Kg in the MES. To evaluate NO involvement, 216 mice were randomly divided into 36 groups (n=6) and pretreated with vehicle, edaravone, a non-specific nitric oxide synthase (NOS) inhibitor: N(ω)-nitro-L-arginine methyl ester (L-NAME) (5 mg/Kg), a specific nNOS inhibitor: 7-nitroindazole (7-NI) (60 mg/Kg), or a combination of edaravone plus L-NAME or 7-NI, either acutely or for eight days before seizure induction. Doses of edaravone were as follows: in IP PTZ model: 12.5 (acute) and 10 (sub-chronic); in IV PTZ model: 10; and in the MES: 5 mg/Kg. Data were analyzed using the one-way analysis of variance (ANOVA) followed by Tukey's test (SPSS 18). P≤0.05 was considered statistically significant. Results In the IP PTZ model, edaravone increased time latencies to seizures (P<0.001), prevented tonic seizures, and death. Edaravone increased the seizure threshold (P<0.001) in the IV PTZ model and shortened the duration of tonic hind-limb extension (THE) in the MES model (P<0.001). In comparison to mice treated with edaravone alone, adding L-NAME or 7-NI reduced seizure time latencies (P<0.001), reduced seizure threshold (P<0.001), and increased THE duration (P<0.001). Conclusion Edaravone (acute or sub-chronic) could prevent seizures by modulating NO signaling pathways.
Collapse
Affiliation(s)
- Leila Moezi
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatema Pirsalami
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mona Dastgheib
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Oftadehgan
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azar Purkhosrow
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elahe Sattarinezhad
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Abstract
This review is based on the previous one published in 2016 (Secades JJ. Citicoline: pharmacological and clinical review, 2016 update. Rev Neurol 2016; 63 (Supl 3): S1-S73), incorporating 176 new references, having all the information available in the same document to facilitate the access to the information in one document. This review is focused on the main indications of the drug, as acute stroke and its sequelae, including the cognitive impairment, and traumatic brain injury and its sequelae. There are retrieved the most important experimental and clinical data in both indications.
Collapse
Affiliation(s)
- Julio J. Secades
- Departamento Médico. Grupo Ferrer, S.A. Barcelona, EspañaDepartamento MédicoDepartamento MédicoBarcelonaEspaña
| | - Pietro Gareri
- Center for Cognitive Disorders and Dementia - Catanzaro Lido. ASP Catanzaro. Catanzaro, ItaliaCenter for Cognitive Disorders and Dementia - Catanzaro LidoCenter for Cognitive Disorders and Dementia - Catanzaro LidoCatanzaroItalia
| |
Collapse
|
5
|
Manavi MA, Mohammad Jafari R, Shafaroodi H, Ejtemaei-Mehr S, Sharifzadeh M, Dehpour AR. Anticonvulsant effects of ivermectin on pentylenetetrazole- and maximal electroshock-induced seizures in mice: the role of GABAergic system and K ATP channels. Heliyon 2022; 8:e11375. [PMID: 36387449 PMCID: PMC9647207 DOI: 10.1016/j.heliyon.2022.e11375] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 10/08/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Ivermectin (IVM) is an antiparasitic medicine that exerts its function through glutamate-gated chloride channels and GABAA receptors predominantly. There is paucity of information on anti-seizure activity of IVM. Moreover, the probable pharmacological mechanisms underlying this phenomenon have not been identified. MATERIALS AND METHODS In this study, pentylenetetrazole (PTZ)-induced clonic seizures and maximal electroshock (MES)-induced tonic-clonic seizure models, respectively in mice was utilized to inquire whether IVM could alter clonic seizure threshold (CST) and seizure susceptibility. To assess the underlying mechanism behind the anti-seizure activity of IVM, we used positive and negative allosteric modulators of GABAA (diazepam and flumazenil, respectively) as well as KATP channel opener and closer (cromakalim and glibenclamide, respectively). Data are provided as mean ± S.E.M. After the performance of the variance homogeneity test, a one-way and two-way analysis of variance was used. Fisher's exact test was performed in case of MES. P-value less than 0.05 considered statistically significant. RESULTS and Discussion: Our data showed that IVM (0.5, 1, 5, and 10 mg/kg, i.p.) increased CST. Furthermore, flumazenil 0.25 mg/kg, i.p. and glibenclamide 1 mg/kg, i.p., could inhibit the anticonvulsant effects of IVM. Supplementary, an ineffective dose of diazepam 0.02 mg/kg, i.p. or cromakalim 10 μg/kg, i.p. were able to enhance the anticonvulsant effects of IVM. Besides, we figure out that the IVM (1 and 5 mg/kg, i.p.) could delay the onset of first clonic seizure and also might decrease the frequency of clonic seizures induced by PTZ (85 mg/kg, i.p.). Finally, IVM could prevent the incidence and death in MES-induced tonic-clonic seizures. CONCLUSION Based on the obtained results, it can be concluded that IVM may exert anticonvulsant effects against PTZ- and MES-induced seizures in mice that might be mediated by GABAA receptors and KATP channels.
Collapse
Affiliation(s)
- Mohammad Amin Manavi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Shafaroodi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Ejtemaei-Mehr
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Tamer SA, Koyuncuoğlu T, Karagöz A, Akakın D, Yüksel M, Yeğen BÇ. Nesfatin-1 ameliorates oxidative brain damage and memory impairment in rats induced with a single acute epileptic seizure. Life Sci 2022; 294:120376. [DOI: 10.1016/j.lfs.2022.120376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/21/2022] [Accepted: 01/31/2022] [Indexed: 12/20/2022]
|