1
|
Karthick K, Abishek K, Angel Jemima E. In Silico Study, Protein Kinase Inhibition and Molecular Docking Study of Benzimidazole Derivatives. Bioinform Biol Insights 2024; 18:11779322241247635. [PMID: 38854784 PMCID: PMC11159556 DOI: 10.1177/11779322241247635] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/28/2024] [Indexed: 06/11/2024] Open
Abstract
Kinase enzymes play an important role in cellular proliferation, and inhibition of their activity is a major goal of cancer therapy. Protein kinase inhibitors as benzimidazole derivatives can be applied for prevention or treatment of cancers through inhibition of cell proliferation. To evaluate their protein kinase inhibitory effects, as well as the in silico study for active benzimidazole derivatives. Benzimidazole derivatives has presented significant therapeutic potential against several disorders and known to have numerous biological activities (such as antibacterial, antiviral and anti-inflammatory). Benzimidazole derivatives have shown significant potential in the reduction of viral load as well as in enhancing immunity. To forecast absorption, distribution, metabolism, excretion and toxicity, simply known as ADMET and the Lipinski rule of five parameters of the examined substances, the admetSAR and Swiss ADME were used. The ADMET predictions revealed that the compounds had good and safe pharmacokinetic features, making them acceptable for further development as therapeutic candidates in clinical trials. This study primarily focused on blocking 2 key targets of kinase proteins (CDK4/CycD1 and Aurora B). 2-Phenylbenzimidazole has shown the greatest inhibitory potential (with a binding energy of -8.2 kcal/mol) against protein kinase inhibitors. This study results would pave the potential lead medication for anticancer therapeutic strategies.
Collapse
Affiliation(s)
- Kamaraj Karthick
- Department of Chemistry, Rajalakshmi Institute of Technology, Chennai, Tamil Nadu, India
| | - Kamaraj Abishek
- Department of Zoology, Sadakathullah Appa College, Tirunelveli, Tamil Nadu, India
| | | |
Collapse
|
2
|
Hammoud MM, Khattab M, Abdel-Motaal M, Van der Eycken J, Alnajjar R, Abulkhair HS, Al-Karmalawy AA. Synthesis, structural characterization, DFT calculations, molecular docking, and molecular dynamics simulations of a novel ferrocene derivative to unravel its potential antitumor activity. J Biomol Struct Dyn 2022:1-18. [PMID: 35674744 DOI: 10.1080/07391102.2022.2082533] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this article, we describe a set of subsequent five-steps chemical reactions to synthesize a ferrocene derivative named 1-(5-(diphenylphosphaneyl)cyclopenta-1,3-dien-1-yl)ethyl)imino)-1,3-dihydroisobenzofuran-5-yl)methanol (compound 10). Structural characterization of 10 and its intermediate products was also performed and reported to attest to their formation. A molecular docking study was performed to propose the novel synthesized ferrocene derivative (10) as a potential antitumor candidate targeting the mitogen-activated protein (MAP) kinases interacting kinase (Mnk) 1. The computed docking score of (10) at -9.50 kcal/mol compared to the native anticancer staurosporine at -8.72 kcal/mol postulated a promising anticancer activity. Also, molecular dynamics (MD) simulations were carried out for 500 ns followed by MM-GBSA-binding free energy calculations for both the docked complexes of ferrocene and staurosporine to give more deep insights into their dynamic behavior in physiological conditions. Furthermore, DFT calculations were performed to unravel some of the physiochemical characteristics of the ferrocene derivative (10). The quantum mechanics calculations shed the light on some of the structural and electrochemical configurations of (10) which would open the horizon for further investigation. HighlightsThe synthesis of a ferrocene derivative named 1-(5-(diphenylphosphaneyl)cyclopenta-1,3-dien-1-yl)ethyl)imino)-1,3-dihydroisobenzofuran-5-yl)methanol (compound 10) was described.Structural characterizations of ferrocene derivative (10) and its intermediate products were also performed.DFT calculations, molecular docking, molecular dynamics, and MM-GBSA calculations were carried out.Computational studies revealed the antitumor potential of ferrocene derivative (10) through targeting and inhibiting mitogen-activated protein (MAP) kinases interacting kinase (Mnk) 1.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohamed M Hammoud
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.,Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Muhammad Khattab
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute National Research Centre, Dokki, Cairo, Egypt
| | - Marwa Abdel-Motaal
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt.,Department of Chemistry, College of Science, Qassim University, Buraydah, Saudi Arabia
| | - Johan Van der Eycken
- Laboratory for Organic and Bioorganic Synthesis, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Radwan Alnajjar
- Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi, Libya.,Department of Chemistry, University of Cape Town, Rondebosch, South Africa
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Ahmed Ali Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| |
Collapse
|
3
|
Moroni AB, Vega DR, Kaufman TS, Calvo NL. Form quantitation in desmotropic mixtures of albendazole bulk drug by chemometrics-assisted analysis of vibrational spectra. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120354. [PMID: 34520896 DOI: 10.1016/j.saa.2021.120354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Albendazole is a benzimidazole-type active pharmaceutical ingredient, and one of the most effective broad-spectrum anthelminthic agents. The drug has two solid-state forms (ALB I and ALB II) which are desmotropes; both of them seem to be currently marketed. However, using the wrong crystalline solid form for formulation may have an undesired impact on the physicochemical and/or bioavailability properties of the drug product. In order to develop new, simple, and less expensive alternatives toward the determination of the level of albendazole ALB I in its mixtures with ALB II, both desmotropes were prepared, and properly characterized by spectroscopic [solid-state nuclear magnetic resonance and near infrared (NIR)] and diffractometric (powder X-ray diffraction) methods. Then, the NIR and attenuated total reflectance-mid infrared (ATR-MIR) spectra of both forms were conveniently pre-treated and employed for the development and optimization of partial least squares (PLS)-potentiated quantification models (NIR/PLS and ATR-MIR/PLS). The latter were also subjected to validation (accuracy, precision, limits of detection and quantification, etc.) and further used to assess the level of the unwanted ALB II form in the bulk drug. The NIR/PLS method displayed the most satisfactory characteristics, including a limit of quantitation interval of 3.6 ± 1 %w/w; it outperformed both, the ATR-MIR/PLS counterpart (limit of quantitation interval of 14.0 ± 3.4 %w/w) and a previously published and more demanding Raman/PLS alternative.
Collapse
Affiliation(s)
- Aldana B Moroni
- Área de Análisis de Medicamentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario e Instituto de Química Rosario (IQUIR, CONICET-UNR), Suipacha 531, Rosario S2002LRK, Argentina
| | - Daniel R Vega
- Departamento Física de la Materia Condensada, Gerencia de Investigación y Aplicaciones, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina. Escuela de Ciencia y Tecnología, Universidad Nacional General San Martín, Buenos Aires, Argentina
| | - Teodoro S Kaufman
- Área de Análisis de Medicamentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario e Instituto de Química Rosario (IQUIR, CONICET-UNR), Suipacha 531, Rosario S2002LRK, Argentina.
| | - Natalia L Calvo
- Área de Análisis de Medicamentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario e Instituto de Química Rosario (IQUIR, CONICET-UNR), Suipacha 531, Rosario S2002LRK, Argentina.
| |
Collapse
|
4
|
Khattab M, Al-Karmalawy AA. Computational repurposing of benzimidazole anthelmintic drugs as potential colchicine binding site inhibitors. Future Med Chem 2021; 13:1623-1638. [PMID: 34505541 DOI: 10.4155/fmc-2020-0273] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 07/09/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Although some benzimidazole-based anthelmintic drugs are found to possess anticancer activity, their modes of binding interactions have not been reported. Methodology: In this study, we aimed to investigate the binding interactions and electronic configurations of nine benzimidazole-based anthelmintics against one of the well-known cancer targets (tubulin protein). Results: Binding affinities of docked benzimidazole drugs into colchicine-binding site were calculated where flubendazole > oxfendazole > nocodazole > mebendazole. Flubendazole was found to bind more efficiently with tubulin protein than other drugs. Quantum mechanics studies revealed that the electron density of HOMO of flubendazole and mebendazole together with their molecular electrostatic potential map are closely similar to that of nocodazole. Conclusion: Our study has ramifications for considering repurposing of flubendazole as a promising anticancer candidate.
Collapse
Affiliation(s)
- Muhammad Khattab
- Department of Chemistry of Natural & Microbial Products, Division of Pharmaceutical & Drug Industries, National Research Centre, Cairo, 12622, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| |
Collapse
|
5
|
Komarova EF, Zhukovskaya ON, Lukbanova EA, Yengibaryan MA, Pozdnyakova VV, Ushakova ND, Shatova Y, Przhedetsky Y, Vashenko LN, Kharagezov DA. Benzimidazole derivative as antitumor drug against experimentally induced lung carcinoma. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2021. [DOI: 10.24075/brsmu.2021.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most cancer drugs used in a clinical setting are insufficiently effective and insufficiently safe. This prompts the search for novel substances to fight cancer. The aim of this study was to explore the effects of dihydrobromide 2-(3,4-dihydroxyphenyl)-9-diethylaminoethylimidazo[1,2-a] benzimidazole (RU-185) on the growth and metastasis of experimentally induced transplantable Lewis lung carcinoma (LLC). Fifty-five C57/Bl6 male mice (weight 18–20 g) were subcutaneously inoculated with LLC cells. The tested substance (0.5 ml) was administered intragastrically at 50, 220, and 500 mg/kg (groups 1, 2 and 3, respectively) once a day for 10 days starting at 48 h after inoculation. The control group received normal saline. Intragastric administration of the tested substance resulted in significantly longer survival in group 2 only (162.3%) and in the significant reduction of tumor size on day 1 after treatment in all groups. After the end of treatment, tumor sizes in groups 2 and 3 were 3.4 and 1.3 times smaller, respectively, on day 7 and 2.2. and 1.3 times smaller, respectively, on day 14 than in the control group (р < 0,05). The growth delay rate was sustained in group 2 by day 14 after the end of treatment; tumor regression was observed in 20% of the animals. The number of metastases in the lungs was lower in groups 1 and 2 than in the control group (2.6 and 3.1-fold, respectively), and the metastasis inhibition was 68.1% and 80%, respectively. The tested substance RU-185 has an anticancer effect in mice: it results in longer survival, slower growth of the primary tumor and fewer lung metastases of Lewis lung carcinoma.
Collapse
Affiliation(s)
- EF Komarova
- Rostov State Medical University, Rostov-on-Don, Russia
| | - ON Zhukovskaya
- Research Institute for Physical and Organic Chemistry of Southern Federal University, Rostov-on-Don, Russia
| | - EA Lukbanova
- National Medical Research Center for Oncology, Rostov-on-Don, Russia
| | - MA Yengibaryan
- National Medical Research Center for Oncology, Rostov-on-Don, Russia
| | - VV Pozdnyakova
- National Medical Research Center for Oncology, Rostov-on-Don, Russia
| | - ND Ushakova
- National Medical Research Center for Oncology, Rostov-on-Don, Russia
| | - YuS Shatova
- National Medical Research Center for Oncology, Rostov-on-Don, Russia
| | - YuV Przhedetsky
- National Medical Research Center for Oncology, Rostov-on-Don, Russia
| | - LN Vashenko
- National Medical Research Center for Oncology, Rostov-on-Don, Russia
| | - DA Kharagezov
- National Medical Research Center for Oncology, Rostov-on-Don, Russia
| |
Collapse
|
6
|
Khattab M, Al‐Karmalawy AA. Revisiting Activity of Some Nocodazole Analogues as a Potential Anticancer Drugs Using Molecular Docking and DFT Calculations. Front Chem 2021; 9:628398. [PMID: 33842429 PMCID: PMC8024586 DOI: 10.3389/fchem.2021.628398] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/02/2021] [Indexed: 02/05/2023] Open
Abstract
Although potential anticancer activities of benzimidazole-based anthelmintic drugs have been approved by preclinical and clinical studies, modes of binding interactions have not been reported so far. Therefore, in this study, we aimed to propose binding interactions of some benzimidazole-based anthelmintics with one of the most important cancer targets (Tubulin protein). Studied drugs were selected based on their structural similarity with the cocrystallized ligand (Nocodazole) with tubulin protein. Quantum mechanics calculations were also employed for characterization of electronic configuration of studied drugs at the atomic and molecular level. Order of binding affinities of tested benzimidazole drugs toward colchicine binding site on tubulin protein is as follows: Flubendazole > Oxfendazole > Nocodazole > Mebendazole > Albendazole > Oxibendazole > Fenbendazole > Ciclobendazole > Thiabendazole > Bendazole. By analyzing binding mode and hydrogen bond length between the nine studied benzimidazole drugs and colchicine binding site, Flubendazole was found to bind more efficiently with tubulin protein than other benzimidazole derivatives. The quantum mechanics studies showed that the electron density of HOMO of Flubendazole and Mebendazole together with their MEP map are quite similar to that of Nocodazole which is also consistent with the calculated binding affinities. Our study has ramifications for considering the repurposing of Flubendazole as a promising anticancer candidate.
Collapse
Affiliation(s)
- Muhammad Khattab
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries, National Research Centre, Cairo, Egypt
| | - Ahmed A. Al‐Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| |
Collapse
|
7
|
Elmaaty AA, Alnajjar R, Hamed MIA, Khattab M, Khalifa MM, Al-Karmalawy AA. Revisiting activity of some glucocorticoids as a potential inhibitor of SARS-CoV-2 main protease: theoretical study. RSC Adv 2021; 11:10027-10042. [PMID: 35423530 PMCID: PMC8695394 DOI: 10.1039/d0ra10674g] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/17/2021] [Indexed: 02/05/2023] Open
Abstract
The global breakout of COVID-19 and raised death toll has prompted scientists to develop novel drugs capable of inhibiting SARS-CoV-2. Conducting studies on repurposing some FDA-approved glucocorticoids can be a promising prospective for finding a treatment for COVID-19. In addition, the use of anti-inflammatory drugs, such as glucocorticoids, is a pivotal step in the treatment of critical cases of COVID-19, as they can provoke an inflammatory cytokine storm, damaging lungs. In this study, 22 FDA-approved glucocorticoids were identified through in silico (molecular docking) studies as the potential inhibitors of COVID-19's main protease. From tested compounds, ciclesonide 11, dexamethasone 2, betamethasone 1, hydrocortisone 4, fludrocortisone 3, and triamcinolone 8 are suggested as the most potent glucocorticoids active against COVID-19's main protease. Moreover, molecular dynamics simulations followed by the calculations of the binding free energy using MM-GBSA were carried out for the aforementioned promising candidate-screened glucocorticoids. In addition, quantum chemical calculations revealed two electron-rich sites on ciclesonide where binding interactions with the main protease and cleavage of the prodrug to the active metabolite take place. Our results have ramifications for conducting preclinical and clinical studies on promising glucocorticoids to hasten the development of effective therapeutics against COVID-19. Another advantage is that some glucocorticoids can be prioritized over others for the treatment of inflammation accompanying COVID-19.
Collapse
Affiliation(s)
- Ayman Abo Elmaaty
- Department of Medicinal Chemistry, Faculty of Pharmacy, Port Said University Port Said 42526 Egypt
| | - Radwan Alnajjar
- Department of Chemistry, Faculty of Science, University of Benghazi Benghazi Libya
- Department of Chemistry, University of Cape Town Rondebosch 7701 South Africa
| | - Mohammed I A Hamed
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, Fayoum University Fayoum 63514 Egypt
| | - Muhammad Khattab
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries, National Research Centre Cairo 12622 Egypt
| | - Mohamed M Khalifa
- Department of Pharmaceutical Medicinal Chemistry& Drug Design, Faculty of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt New Damietta 34518 Egypt
| |
Collapse
|