1
|
Liang J, Du X, Wang M, Zheng H, Sun Y, Lin Y. Association Between Hypoxia-Inducible Factor-1α and Neurological Diseases: A Bidirectional Two-Sample Mendelian Randomization Analysis. Brain Behav 2025; 15:e70398. [PMID: 40022282 PMCID: PMC11870835 DOI: 10.1002/brb3.70398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/19/2025] [Accepted: 02/17/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Previous studies have suggested that hypoxia-inducible factor 1-α (HIF-1α) exerted multiple effects on different central nervous system disorders. However, it is still uncertain whether plasma HIF-1α can be a causal indicator for the relevant diseases. This study aimed to test the causality relationship between plasma HIF-1α and neurological diseases, including cerebrovascular diseases, migraines, and neurodegenerative diseases with a Mendelian randomization (MR) method. METHODS Single-nucleotide polymorphisms (SNPs) genetically representing plasma HIF-1α were screened as instrumental variables (IVs). Summary-level data for neurological disorder from genome-wide association studies (GWAS) were identified as outcomes. The causal effects between the IVs and outcomes were determined via the major analysis of inverse-variance-weighted (IVW) method. The reverse causal direction was also performed to investigate the possibility of reverse causation. RESULTS The findings revealed that plasma HIF-1α was identified to be genetically associated with cardioembolic stroke (CES) (OR = 0.885; 95% confidence interval [CI] = 0.796-0.985, p = 0.026), migraine (OR = 0.941, 95% CI = 0.888-0.998, p = 0.041), and drug-induced migraine without aura (MOA) (OR = 0.586, 95% CI = 0.375-0.916, p = 0.019). There was no association identified in plasma HIF-1α with subarachnoid hemorrhage (SAH), other stroke and migraine subtype, and neurodegenerative disorders. The reverse-MR analysis revealed that the above-stated neurological diseases did not have a causal effect on plasma HIF-1α levels. Sensitivity and validation analyses support that the above results are stable. CONCLUSIONS Our research indicated that plasma HIF-1α may have a causal effect on the risk of CES, migraine and drug-induced MOA, providing new insights for those disease prevention and therapeutic approaches.
Collapse
Affiliation(s)
- Jing Liang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouFujianChina
| | - Xiaoyan Du
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouFujianChina
| | - Mengfei Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouFujianChina
| | - Hongqin Zheng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouFujianChina
| | - Yang Sun
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouFujianChina
| | - Yi Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouFujianChina
| |
Collapse
|
2
|
Khanra S, Singh S, Singh TG. Mechanistic exploration of ubiquitination-mediated pathways in cerebral ischemic injury. Mol Biol Rep 2024; 52:22. [PMID: 39607439 DOI: 10.1007/s11033-024-10123-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
The ubiquitin-proteasome system (UPS) plays a pivotal role in regulating protein homeostasis and cellular processes, including protein degradation, trafficking, DNA repair, and cell signaling. During cerebral ischemia, ischemic conditions profoundly disrupt UPS activity, leading to proteasomal dysfunction and the accumulation of abnormal proteins. This imbalance contributes to neuronal injury and cell death observed in ischemic stroke. The UPS is intricately linked to various signaling pathways crucial for neuronal survival, inflammation, and cellular stress response, such as NF-κB, TRIM, TRIP, JAK-STAT, PI3K/Akt, and ERK1/2. Alterations in the ubiquitination process can significantly impact the activation and regulation of these pathways, exacerbating ischemic brain injury. Therapeutic approaches targeting the UPS in cerebral ischemia aim to rebalance protein levels, reduce proteotoxic stress, and mitigate neuronal injury. Strategies include proteasome inhibition, targeting specific ubiquitin ligases and deubiquitinating enzymes, and modulating ubiquitination-mediated regulation of key signaling pathways implicated in ischemia-induced pathophysiology. Therefore, the present review discusses the molecular mechanisms underlying UPS dysfunction in ischemic stroke is crucial for developing effective therapeutic interventions. Modulating ubiquitination-mediated pathways through therapeutic interventions targeting specific UPS components holds significant promise for mitigating ischemic brain injury and promoting neuroprotection and functional recovery in patients with cerebral ischemia.
Collapse
Affiliation(s)
- Supriya Khanra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| |
Collapse
|
3
|
Kumari N, Prakash R, Siddiqui AJ, Waseem A, Khan MA, Raza SS. Endothelin-1-Induced Persistent Ischemia in a Chicken Embryo Model. Bio Protoc 2024; 14:e5060. [PMID: 39282233 PMCID: PMC11393046 DOI: 10.21769/bioprotoc.5061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 09/18/2024] Open
Abstract
Current ischemic models strive to replicate ischemia-mediated injury. However, they face challenges such as inadequate reproducibility, difficulties in translating rodent findings to humans, and ethical, financial, and practical constraints that limit the accuracy of extensive research. This study introduces a novel approach to inducing persistent ischemia in 3-day-old chicken embryos using endothelin-1. The protocol targets the right vitelline arteries, validated with Doppler blood flow imaging and molecular biology experiments. This innovative approach facilitates the exploration of oxidative stress, inflammatory responses, cellular death, and potential drug screening suitability utilizing a 3-day-old chicken embryo. Key features • This model enables the evaluation and investigation of the pathology related to persistent ischemia • This model allows for the assessment of parameters like oxidative stress, inflammation, and cellular death • This model enables quantification of molecular changes at the nucleic acid and protein levels • This model allows for the efficient screening of drugs and their targets Graphical overview.
Collapse
Affiliation(s)
- Neha Kumari
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Ravi Prakash
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Abu J Siddiqui
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Arshi Waseem
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Mohsin A Khan
- Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Syed S Raza
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
- Department of Stem Cell Biology and Regenerative Medicine, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
4
|
Chen G, Wang X, Jin Z, Hu G, Yu Q, Jiang H. HIF-1α knockdown attenuates inflammation and oxidative stress in ischemic stroke male rats via CXCR4/NF-κB pathway. Brain Behav 2024; 14:e70039. [PMID: 39295108 PMCID: PMC11410888 DOI: 10.1002/brb3.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/01/2024] [Accepted: 08/03/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Hypoxia inducible factor-1α (HIF-1α) is a sensitive indicator of oxygen homeostasis, of which the expression elevates following hypoxia/ischemia. This study reveals the specific mechanisms underlying the effects of HIF-1α on ischemic stroke (IS). METHODS IS model was established using middle cerebral artery occlusion (MCAO)-modeled male rats and oxygen glucose deprivation/reoxygenation (OGD/R)-treated mice hippocampal cells HT22, followed by the silencing of HIF-1α and the overexpression of C-X-C motif chemokine receptor 4 (CXCR4) and nuclear factor-kappa B (NF-κB). Following the surgery, Garcia's grading scale was applied for neurological evaluation. Cerebral infarcts and injuries were visualized using 2,3,5-triphenyltetrazolium chloride and hematoxylin-eosin staining. The levels of tumor necrosis factor-α, Interleukin (IL)-6, IL-1β, malondialdehyde, and 8-hydroxy-2'-deoxyguanosine, were calculated via ELISA. MTT assay and lactate dehydrogenase (LDH) assay kit were adopted to determine the viability and cytotoxicity of OGD/R-modeled cells. Reactive oxygen species (ROS) generation was evaluated using a 2'-7'dichlorofluorescin diacetate (DCFH-DA) probe. The levels of HIF-1α, CXCR4, and NF-κB p65 were quantified via Western blot and immunofluorescence, respectively. RESULTS HIF-1α knockdown improved Garcia's score, attenuated the cerebral infarct, inflammation, and ROS generation, and alleviated the levels of inflammatory cytokines and CXCR4/NF-κB p65 in MCAO-modeled rats. Such effects were reversed following the overexpression of CXCR4 and NF-κB. Also, in OGD/R-treated HT22 cells, HIF-1α silencing diminished the cytotoxicity and ROS production and reduced the expressions of CXCR4/NF-κB p65, while promoting viability. However, CXCR4/NF-κB p65 overexpression did the opposite. CONCLUSION HIF-1α knockdown alleviates inflammation and oxidative stress in IS through the CXCR4/NF-κB pathway.
Collapse
Affiliation(s)
- Gao Chen
- School of MedicineQuzhou College of TechnologyQuzhouZhejiangChina
| | - Xi Wang
- Department of UrologyThe Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's HospitalQuzhouZhejiangChina
| | - Zhan Jin
- School of MedicineQuzhou College of TechnologyQuzhouZhejiangChina
| | - Gao‐Bo Hu
- School of MedicineQuzhou College of TechnologyQuzhouZhejiangChina
| | - Qi‐Hui Yu
- School of MedicineQuzhou College of TechnologyQuzhouZhejiangChina
| | - Hai‐Yan Jiang
- Department of GynecologyQuzhou Maternal and Child Health Care HospitalQuzhouZhejiangChina
| |
Collapse
|
5
|
Li G, Zhao Y, Ma W, Gao Y, Zhao C. Systems-level computational modeling in ischemic stroke: from cells to patients. Front Physiol 2024; 15:1394740. [PMID: 39015225 PMCID: PMC11250596 DOI: 10.3389/fphys.2024.1394740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024] Open
Abstract
Ischemic stroke, a significant threat to human life and health, refers to a class of conditions where brain tissue damage is induced following decreased cerebral blood flow. The incidence of ischemic stroke has been steadily increasing globally, and its disease mechanisms are highly complex and involve a multitude of biological mechanisms at various scales from genes all the way to the human body system that can affect the stroke onset, progression, treatment, and prognosis. To complement conventional experimental research methods, computational systems biology modeling can integrate and describe the pathogenic mechanisms of ischemic stroke across multiple biological scales and help identify emergent modulatory principles that drive disease progression and recovery. In addition, by running virtual experiments and trials in computers, these models can efficiently predict and evaluate outcomes of different treatment methods and thereby assist clinical decision-making. In this review, we summarize the current research and application of systems-level computational modeling in the field of ischemic stroke from the multiscale mechanism-based, physics-based and omics-based perspectives and discuss how modeling-driven research frameworks can deliver insights for future stroke research and drug development.
Collapse
Affiliation(s)
- Geli Li
- Gusu School, Nanjing Medical University, Suzhou, China
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yanyong Zhao
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Wen Ma
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yuan Gao
- QSPMed Technologies, Nanjing, China
| | - Chen Zhao
- School of Pharmacy, Nanjing Medical University, Nanjing, China
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Choi YK. Detrimental Roles of Hypoxia-Inducible Factor-1α in Severe Hypoxic Brain Diseases. Int J Mol Sci 2024; 25:4465. [PMID: 38674050 PMCID: PMC11050730 DOI: 10.3390/ijms25084465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Hypoxia stabilizes hypoxia-inducible factors (HIFs), facilitating adaptation to hypoxic conditions. Appropriate hypoxia is pivotal for neurovascular regeneration and immune cell mobilization. However, in central nervous system (CNS) injury, prolonged and severe hypoxia harms the brain by triggering neurovascular inflammation, oxidative stress, glial activation, vascular damage, mitochondrial dysfunction, and cell death. Diminished hypoxia in the brain improves cognitive function in individuals with CNS injuries. This review discusses the current evidence regarding the contribution of severe hypoxia to CNS injuries, with an emphasis on HIF-1α-mediated pathways. During severe hypoxia in the CNS, HIF-1α facilitates inflammasome formation, mitochondrial dysfunction, and cell death. This review presents the molecular mechanisms by which HIF-1α is involved in the pathogenesis of CNS injuries, such as stroke, traumatic brain injury, and Alzheimer's disease. Deciphering the molecular mechanisms of HIF-1α will contribute to the development of therapeutic strategies for severe hypoxic brain diseases.
Collapse
Affiliation(s)
- Yoon Kyung Choi
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
7
|
Amalia L, Saputra GN. Serum erythropoietin in acute ischemic stroke: preliminary findings. Sci Rep 2024; 14:2661. [PMID: 38302546 PMCID: PMC10834471 DOI: 10.1038/s41598-024-53180-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Abstract
Ischemic stroke is the most common stroke, caused by occlusion of cerebral vessels and leading causes of disability. Erythropoietin (EPO) has non-hematopoietic effects as a neuroprotectant after ischemic event. This study aimed to learn the serum level of EPO in acute ischemic stroke. This cross-sectional study of ischemic stroke patients with onset < 24 h and consecutive sampling was used to collect the data from medical records review, physical examinations, head CT, 24-h EPO, 24-h and seventh-day NIHSS. A total of 47 patients consisting of 59.6% women, with a median age of 53 years old (21-70). The median 24 h EPO level was 808.6 pg/mL (134.2-2988.9). The relationship between 24 h-EPO and 24-h NIHSS were not significant (r = 0.101; p = 0.250), nor to 7th day NIHSS (r = - 0.0174; p = 0.121) and to delta NIHSS (r = 0.186; p = 0.106). The relationship of blood collection time (hour) and EPO was significant (r = - 0.260; p = 0.039). There was a statistically significant difference between serum EPO levels in ischemic stroke patients with lacunar stroke compared to non-lacunar stroke (288.5 vs. 855.4 ng/mL; p = 0.021). There was a relationship between the time of collection of blood and the level of EPO and also there was difference EPO level in lacunar stroke subtype compared with non-lacunar. The relationship between EPO and NIHSS lost significance after analysis. There is a need for a future study comparing each stroke risk factor and the same blood collection time.
Collapse
Affiliation(s)
- Lisda Amalia
- Department of Neurology, Faculty of Medicine, Hasan Sadikin Hospital, Universitas Padjadjaran, Jl. Eykman 38, Bandung, 40161, Indonesia.
| | - Gilang Nispu Saputra
- Department of Neurology, Faculty of Medicine, Hasan Sadikin Hospital, Universitas Padjadjaran, Jl. Eykman 38, Bandung, 40161, Indonesia
| |
Collapse
|
8
|
Liao W, Wang M, Wu Y, Du J, Li Y, Su A, Zhong L, Xie Z, Gong M, Liang J, Wang P, Liu Z, Wang L. The mechanisms of Huangqi Guizhi Wuwu decoction in treating ischaemic stroke based on network pharmacology and experiment verification. PHARMACEUTICAL BIOLOGY 2023; 61:1014-1029. [PMID: 37410583 DOI: 10.1080/13880209.2023.2230477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/31/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023]
Abstract
CONTEXT Huangqi Guizhi Wuwu Decoction (HGWD) is effective in treating ischaemic stroke (IS). However, its mechanism of action is still unclear. OBJECTIVE Network pharmacology integrated with in vivo experiments were used to clarify the underlying mechanisms of HGWD for treating IS. MATERIALS AND METHODS TCMSP, GeneCards, OMIM and STRING were used to retrieve and construct visual protein interaction networks for the key targets. The AutoDock tool was used for molecular docking between key targets and active compounds. The neuroprotective effect of HGWD were verified in a middle cerebral artery occlusion (MCAO) model rat. The Sprague-Dawley (SD) rats were divided into sham, model, low-dose (5 g/kg, i.g.), high-dose (20 g/kg, i.g.), and nimodipine (20 mg/kg, i.g.) groups once daily for 7 days. The neurological scores, brain infarct volumes, lipid peroxidation, inflammatory cytokines, Nissl bodies, apoptotic neurons, and signalling pathways were all investigated and evaluated in vivo. RESULTS Network pharmacology identified 117 HGWD targets related to IS and 36 candidate compounds. GO and KEGG analyses showed that HGWD anti-IS effects were mainly associated with PI3K-Akt and HIF-1 signalling pathways. HGWD effectively reduced the cerebral infarct volumes (19.19%), the number of apoptotic neurons (16.78%), and the release of inflammatory cytokines, etc. in MCAO rats. Furthermore, HGWD decreased the levels of HIF-1A, VEGFA, Bax, cleaved caspase-3, p-MAPK1, and p-c-Jun while increasing the expression of p-PI3K, p-AKT1, and Bcl-2. DISCUSSION AND CONCLUSION This study initially elucidated the mechanism of HGWD anti-IS, which contributed to the further promotion and secondary development of HGWD in clinical practice.
Collapse
Affiliation(s)
- Weiguo Liao
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Minchun Wang
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ying Wu
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jinyan Du
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yaxin Li
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Anyu Su
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lanying Zhong
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zi Xie
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Mingyu Gong
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Junhui Liang
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Pengcheng Wang
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zai Liu
- Pharmacy Department, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, Guangdong, China
| | - Lisheng Wang
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Beker MC, Caglayan AB, Altunay S, Ozbay E, Ates N, Kelestemur T, Caglayan B, Kilic U, Doeppner TR, Hermann DM, Kilic E. Phosphodiesterase 10A Is a Critical Target for Neuroprotection in a Mouse Model of Ischemic Stroke. Mol Neurobiol 2021; 59:574-589. [PMID: 34735672 DOI: 10.1007/s12035-021-02621-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022]
Abstract
Phosphodiesterase 10A (PDE10A) hydrolyzes adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP). It is highly expressed in the striatum. Recent evidence implied that PDE10A may be involved in the inflammatory processes following injury, such as ischemic stroke. Its role in ischemic injury was unknown. Herein, we exposed mice to 90 or 30-min middle cerebral artery occlusion, followed by the delivery of the highly selective PDE10A inhibitor TAK-063 (0.3 mg/kg or 3 mg/kg) immediately after reperfusion. Animals were sacrificed after 24 or 72 h, respectively. Both TAK-063 doses enhanced neurological function, reduced infarct volume, increased neuronal survival, reduced brain edema, and increased blood-brain barrier integrity, alongside cerebral microcirculation improvements. Post-ischemic neuroprotection was associated with increased phosphorylation (i.e., activation) of pro-survival Akt, Erk-1/2, GSK-3α/β and anti-apoptotic Bcl-xL abundance, decreased phosphorylation of pro-survival mTOR, and HIF-1α, MMP-9 and pro-apoptotic Bax abundance. Interestingly, PDE10A inhibition reduced inflammatory cytokines/chemokines, including IFN-γ and TNF-α, analyzed by planar surface immunoassay. In addition, liquid chromatography-tandem mass spectrometry revealed 40 proteins were significantly altered by TAK-063. Our study established PDE10A as a target for ischemic stroke therapy.
Collapse
Affiliation(s)
- Mustafa C Beker
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey. .,Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.
| | - Ahmet B Caglayan
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.,Department of Physiology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Serdar Altunay
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Elif Ozbay
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Nilay Ates
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Taha Kelestemur
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Berrak Caglayan
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Genetics, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ulkan Kilic
- Department of Medical Biology, International School of Medicine, University of Health Sciences Turkey, Istanbul, Turkey
| | - Thorsten R Doeppner
- Department of Neurology, University Medicine Göttingen, University of Göttingen, Göttingen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ertugrul Kilic
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
10
|
Ren HW, Gu B, Zhang YZ, Guo T, Wang Q, Shen YQ, Wang J. MicroRNA-424 alleviates neurocyte injury by targeting PDCD4 in a cellular model of cerebral ischemic stroke. Exp Ther Med 2021; 22:1453. [PMID: 34721695 PMCID: PMC8549098 DOI: 10.3892/etm.2021.10888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 08/26/2021] [Indexed: 11/26/2022] Open
Abstract
Cerebral ischemic stroke is the primary cause of stroke-associated mortality and disability, and current therapeutic options are limited and ineffective. The present study aimed to investigate the potential of apoptotic therapy and the role of microRNA (miR)-424 in cerebral ischemic stroke. PC12 cells, a cloned cell line from rat adrenal pheochromocytoma, were treated with CoCl2 to construct a cellular ischemia model. mRNA and protein levels of programmed cell death protein 4 (PDCD4), Bcl-2, Bax, caspase-3, PI3K and AKT were evaluated using reverse transcription-quantitative PCR and western blot analyses, respectively. Cell Counting Kit-8 assays were performed to examine cell viability in the ischemia model. Flow cytometry was conducted to evaluate the apoptosis of ischemic cells. Furthermore, a luciferase assay was performed to verify the target gene of miR-424. It was revealed that the expression level of miR-424 was downregulated in the ischemia model, while the expression of PDCD4 was upregulated. Moreover, the expression of miR-424 was increased after treatment with miR-424 mimics. The mRNA and protein expression of PDCD4 was upregulated after transfection with pcDNA3.1-PDCD4. PDCD4 was predicted and demonstrated to be a target of miR-424. Notably, overexpression of miR-424 increased cell viability and inhibited apoptosis in the ischemia model, which was reversed by co-treatment with pcDNA3.1-PDCD4. Furthermore, overexpression of miR-424 regulated the expression of PDCD4, Bax, Bcl-2, phosphorylated-PI3K/AKT and caspase-3, which was restored after co-transfection with pcDNA3.1-PDCD4. Collectively, the results indicated that miR-424 regulated the progression of cerebral ischemic stroke in a cellular model by targeting PDCD4.
Collapse
Affiliation(s)
- Hou-Wei Ren
- Department of Emergency, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, P.R. China
| | - Bin Gu
- Department of Emergency, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, P.R. China
| | - Yue-Zhan Zhang
- Department of Emergency, The Fourth Affiliated Hospital of Zhejiang University, School of Medicine, Yiwu, Zhejiang 322000, P.R. China
| | - Ting Guo
- Department of Emergency, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, P.R. China
| | - Qian Wang
- Department of Emergency, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, P.R. China
| | - Yue-Qin Shen
- Department of Emergency, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, P.R. China
| | - Jun Wang
- Department of Emergency, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|
11
|
Lucero García Rojas EY, Villanueva C, Bond RA. Hypoxia Inducible Factors as Central Players in the Pathogenesis and Pathophysiology of Cardiovascular Diseases. Front Cardiovasc Med 2021; 8:709509. [PMID: 34447792 PMCID: PMC8382733 DOI: 10.3389/fcvm.2021.709509] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/09/2021] [Indexed: 01/01/2023] Open
Abstract
Cardiovascular (CV) diseases are the major cause of death in industrialized countries. The main function of the CV system is to deliver nutrients and oxygen to all tissues. During most CV pathologies, oxygen and nutrient delivery is decreased or completely halted. Several mechanisms, including increased oxygen transport and delivery, as well as increased blood flow are triggered to compensate for the hypoxic state. If the compensatory mechanisms fail to sufficiently correct the hypoxia, irreversible damage can occur. Thus, hypoxia plays a central role in the pathogenesis and pathophysiology of CV diseases. Hypoxia inducible factors (HIFs) orchestrate the gene transcription for hundreds of proteins involved in erythropoiesis, glucose transport, angiogenesis, glycolytic metabolism, reactive oxygen species (ROS) handling, cell proliferation and survival, among others. The overall regulation of the expression of HIF-dependent genes depends on the severity, duration, and location of hypoxia. In the present review, common CV diseases were selected to illustrate that HIFs, and proteins derived directly or indirectly from their stabilization and activation, are related to the development and perpetuation of hypoxia in these pathologies. We further classify CV diseases into acute and chronic hypoxic states to better understand the temporal relevance of HIFs in the pathogenesis, disease progression and clinical outcomes of these diseases. We conclude that HIFs and their derived factors are fundamental in the genesis and progression of CV diseases. Understanding these mechanisms will lead to more effective treatment strategies leading to reduced morbidity and mortality.
Collapse
Affiliation(s)
| | - Cleva Villanueva
- Instituto Politecnico Nacional, Escuela Superior de Medicina, Mexico City, Mexico
| | - Richard A Bond
- Department of Pharmacology and Pharmaceutical Sciences, University of Houston, Houston, TX, United States
| |
Collapse
|
12
|
Circulating lncRNAs HIF1A-AS2 and LINLK-A: Role and Relation to Hypoxia-Inducible Factor-1α in Cerebral Stroke Patients. Mol Neurobiol 2021; 58:4564-4574. [PMID: 34091825 DOI: 10.1007/s12035-021-02440-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been recently recognized as key players of gene expression in cerebral pathogenesis. Thus, their potential use in stroke diagnosis, prognosis, and therapy is actively pursued. Due to the complexity of the disease, identifying stroke-specific lncRNAs remains a challenge. This study investigated the expression of lncRNAs HIF1A-AS2 and LINK-A, and their target gene hypoxia-inducible factor-1 (HIF-1) in Egyptian stroke patients. It also aimed to determine the molecular mechanism implicated in the disease. A total of 75 stroke patients were divided into three clinical subgroups, besides 25 healthy controls of age-matched and sex-matched. Remarkable upregulation of lncRNA HIF1A-AS2 and HIF1-α along with a downregulation of lncRNA LINK-A was noticed in all stroke groups relative to controls. Serum levels of phosphatidylinositol 3-kinase (PI3K), phosphorylated-Akt (p-Akt), vascular endothelial growth factor (VEGF), and angiopoietin-1 (ANG1) as well as their receptors, malondialdehyde (MDA), and total antioxidant capacity (TAC) were significantly increased, whereas brain-derived neurotrophic factor (BDNF) levels were significantly decreased particularly in hemorrhagic stroke versus ischemic groups. Eventually, these findings support the role of lncRNAs HIF1A-AS2 and LINK-A as well as HIF1-α in activation of angiogenesis, neovascularization, and better prognosis of stroke, especially the hemorrhagic type.
Collapse
|
13
|
Vincenzi F, Pasquini S, Setti S, Salati S, Cadossi R, Borea PA, Varani K. Pulsed Electromagnetic Fields Stimulate HIF-1α-Independent VEGF Release in 1321N1 Human Astrocytes Protecting Neuron-Like SH-SY5Y Cells from Oxygen-Glucose Deprivation. Int J Mol Sci 2020; 21:ijms21218053. [PMID: 33126773 PMCID: PMC7663527 DOI: 10.3390/ijms21218053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 01/23/2023] Open
Abstract
Pulsed electromagnetic fields (PEMFs) are emerging as an innovative, non-invasive therapeutic option in different pathological conditions of the central nervous system, including cerebral ischemia. This study aimed to investigate the mechanism of action of PEMFs in an in vitro model of human astrocytes, which play a key role in the events that occur following ischemia. 1321N1 cells were exposed to PEMFs or hypoxic conditions and the release of relevant neurotrophic and angiogenic factors, such as VEGF, EPO, and TGF-β1, was evaluated by means of ELISA or AlphaLISA assays. The involvement of the transcription factor HIF-1α was studied by using the specific inhibitor chetomin and its expression was measured by flow cytometry. PEMF exposure induced a time-dependent, HIF-1α-independent release of VEGF from 1321N1 cells. Astrocyte conditioned medium derived from PEMF-exposed astrocytes significantly reduced the oxygen-glucose deprivation-induced cell proliferation and viability decrease in the neuron-like cells SH-SY5Y. These findings contribute to our understanding of PEMFs action in neuropathological conditions and further corroborate their therapeutic potential in cerebral ischemia.
Collapse
Affiliation(s)
- Fabrizio Vincenzi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pharmacology, University of Ferrara, 44121 Ferrara, Italy; (S.P.); (K.V.)
- Correspondence: ; Tel.: +39-0532-455214
| | - Silvia Pasquini
- Department of Morphology, Surgery and Experimental Medicine, Section of Pharmacology, University of Ferrara, 44121 Ferrara, Italy; (S.P.); (K.V.)
| | - Stefania Setti
- Igea Biophysics Laboratory, 41012 Carpi, Italy; (S.S.); (S.S.); (R.C.)
| | - Simona Salati
- Igea Biophysics Laboratory, 41012 Carpi, Italy; (S.S.); (S.S.); (R.C.)
| | - Ruggero Cadossi
- Igea Biophysics Laboratory, 41012 Carpi, Italy; (S.S.); (S.S.); (R.C.)
| | | | - Katia Varani
- Department of Morphology, Surgery and Experimental Medicine, Section of Pharmacology, University of Ferrara, 44121 Ferrara, Italy; (S.P.); (K.V.)
| |
Collapse
|