1
|
Assad N, Naeem-Ul-Hassan M, Ajaz Hussain M, Abbas A, Sher M, Muhammad G, Assad Y, Farid-Ul-Haq M. Diffused sunlight assisted green synthesis of silver nanoparticles using Cotoneaster nummularia polar extract for antimicrobial and wound healing applications. Nat Prod Res 2025; 39:2203-2217. [PMID: 38146228 DOI: 10.1080/14786419.2023.2295936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023]
Abstract
The current study reports the synthesis of silver nanoparticles (Ag NPs) using a polar extract of Cotoneaster nummularia leaves. Various analytical techniques, like UV-Vis spectrophotometry, FT-IR spectroscopy, XRD, SEM, and EDX were employed for characterisation. These techniques confirmed the stability of Ag NPs in solution and endorsed the interaction between different groups and Ag, crystal phase, surface morphology, and size of Ag NPs. UV-Vis spectrophotometer displayed SPR absorption bands ranging from 380 to 470 nm, characteristic of Ag NPs, within 1.0 h exposure to sunlight. XRD and SEM discovered the face-centered cubic crystals of Ag NPs with a 122.8 ± 1.1 nm average diameter. The bands at 525 cm-1 in FT-IR spectrum supported the development of Ag NPs. The Ag NPs showed antimicrobial potential against three pathogenic bacterial strains and two fungal strains. The wound healing results, as studied by tissue re-development and wound closure in rabbits were comparable to standard Sufre tulle® dressing.
Collapse
Affiliation(s)
- Nasir Assad
- Institute of Chemistry, University of Sargodha, Sargodha, Pakistan
| | | | - Muhammad Ajaz Hussain
- Centre for Organic Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Azhar Abbas
- Institute of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Sher
- Institute of Chemistry, University of Sargodha, Sargodha, Pakistan
| | | | - Yasir Assad
- Department of Zoology, Hazara University, Mansehra, Pakistan
| | | |
Collapse
|
2
|
Bozoglu A, Eksin E, Erdem A. Electrochemical biosensing of Acinetobacter baumannii gene using chitosan-gold composite modified electrode. J Biotechnol 2024; 395:64-70. [PMID: 39293498 DOI: 10.1016/j.jbiotec.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
In this study, a novel electrochemical biosensor was developed for the sensitive and selective detection of the Acinetobacter baumannii gene sequence. The biosensor was created by immobilizing a capture probe specific to the A. baumannii gene on the surface of chitosan-gold modified pencil graphite electrodes. Following solid-state hybridization on the Chit-Au/PGE surface, the target DNA sequence of the A. baumannii was detected by measuring the guanine signal using square wave voltammetry (SWV). All experimental parameters impacting sensor response are examined in order to improve hybridization efficacy, and the electrochemical biosensor's performance. The limit of detection (LOD) for the A. baumannii gene sequence was calculated and found to be 1.93 nM. Three different non-complementary DNA sequences were used to evaluate the assay selectivity, but no interference effect was obtained. Additionally, the potential applicability of the biosensor to real samples was tested in artificial serum media. The suggested electrochemical test procedure is simple, approachable, and quick, making it a convenient approach for the screening of DNA sequence.
Collapse
Affiliation(s)
- Aysen Bozoglu
- The Institute of Natural and Applied Sciences, Biotechnology Department, Ege University, Bornova, Izmir 35100, Turkey; Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir 35100, Turkey
| | - Ece Eksin
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir 35100, Turkey; Biomedical Device Technology Program, Vocational School of Health Services, Izmir Democracy University, Izmir 35140, Turkey
| | - Arzum Erdem
- The Institute of Natural and Applied Sciences, Biotechnology Department, Ege University, Bornova, Izmir 35100, Turkey; Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir 35100, Turkey.
| |
Collapse
|
3
|
Bruno A, Tripodi F, Armanni A, Barbieri L, Colombo A, Fumagalli S, Moukham H, Tomaino G, Kukushkina E, Lorenzi R, Marchesi L, Monguzzi A, Paleari A, Ronchi A, Secchi V, Sironi L, Colombo M. Advancements in nanosensors for detecting pathogens in healthcare environments. ENVIRONMENTAL SCIENCE: NANO 2024; 11:4449-4474. [DOI: 10.1039/d4en00381k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
ESKAPEE pathogens: where we can find them in hospital environments and how to detect them through nanotechnologies devices.
Collapse
Affiliation(s)
- Antonia Bruno
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Alice Armanni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Linda Barbieri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Alessandro Colombo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Sara Fumagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Hind Moukham
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Giulia Tomaino
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | - Roberto Lorenzi
- Department of Materials Science, University of Milano-Bicocca, Milan, Italy
| | - Letizia Marchesi
- Department of Physics, University of Milano-Bicocca, Milan, Italy
| | - Angelo Monguzzi
- Department of Materials Science, University of Milano-Bicocca, Milan, Italy
- Nanomedicine Center NANOMIB, University of Milano-Bicocca, Milan, Italy
| | - Alberto Paleari
- Department of Materials Science, University of Milano-Bicocca, Milan, Italy
| | - Alessandra Ronchi
- Department of Materials Science, University of Milano-Bicocca, Milan, Italy
| | - Valeria Secchi
- Department of Materials Science, University of Milano-Bicocca, Milan, Italy
| | - Laura Sironi
- Department of Physics, University of Milano-Bicocca, Milan, Italy
- Nanomedicine Center NANOMIB, University of Milano-Bicocca, Milan, Italy
| | - Miriam Colombo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
- Nanomedicine Center NANOMIB, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
4
|
Abedi R, Raoof JB, Mohseni M, Bagheri Hashkavayi A. Development of a label-free impedimetric aptasensor for the detection of Acinetobacter baumannii bacteria. Anal Biochem 2023; 679:115288. [PMID: 37619902 DOI: 10.1016/j.ab.2023.115288] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Acinetobacter baumannii (A. baumannii) is responsible for various nosocomial infections, which is known as a clinically crucial opportunistic pathogen. Therefore, rapid detection of this pathogen is critical to prevent the spread of infection and appropriate treatment. Biological detection probes, such as aptamers and synthetic receptors can be used as diagnostic layers to detect bacteria. In this work, an electrochemical aptasensor was developed for the ultrasensitive detection of A. baumannii by electrochemical impedance spectroscopy (EIS). The aptamer was immobilized on the surface of a CSPE modified with the nanocomposite Fe3O4@SiO2@Glyoxal (Gly) for selective and label-free detection of A. baumannii. The charge transfers resistance (Rct) between redox couple [Fe(CN)63-/4-] and the surface of aptasensor in the Nyquist plot of EIS study was used as electroanalytical signal for detection and determination of A. baumannii. The obtained results showed that the constructed aptasensor could specifically detect A. baumannii in the concentration range from 1.0 × 103-1.0 × 108 Colony-forming unit (CFU)/mL and with a detection limit of 150 CFU/mL (S/N = 3). In addition to its sensitivity, the biosensor exhibits high selectivity over some other pathogens. Therefore, a simple, inexpensive, rapid, label-free, selective, and sensitive electrochemical aptasensor was developed to detect A. baumannii.
Collapse
Affiliation(s)
- Rokhsareh Abedi
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Jahan Bakhsh Raoof
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| | - Mojtaba Mohseni
- Department of Microbiology, Faculty of Science, University of Mazandaran, Iran
| | - Ayemeh Bagheri Hashkavayi
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, United States
| |
Collapse
|
5
|
Karimiravesh R, Mohabati Mobarez A, Behmanesh M, Nikkhah M, Talebi Bezmin Abadi A, Esmaeilli S. Design of an optical nanobiosensor for detection of Legionella pneumophila in water samples. IRANIAN JOURNAL OF MICROBIOLOGY 2022; 14:802-812. [PMID: 36721447 PMCID: PMC9867621 DOI: 10.18502/ijm.v14i6.11254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background and Objectives Legionella spp. is a causative agent of Legionnaires' disease that creates public health problems. Isolation of these bacteria from water sources is essential to identify outbreak origins and prevent disease. Diagnostic biosensors for water quality control to protect consumers from water-borne infections can predict many outbreaks. Gold nanoparticles conjugated probes are a new generation of diagnostic tools. In this study, an optical nano biosensor was designed and characterized to detect Legionella pneumophila in water samples rapidly. Materials and Methods Thiolated probes designed for the mip gene were attached to gold nanoparticles and then water samples containing Legionella pneumophila were examined. Results The limit of detection for PCR and biosensor was 104 and 103 copy numbers/μl, respectively. Biosensor sensitivity and PCR were reported to be 90% (18 out of 20) and 85% (17 out of 20), respectively. Specificity 100% has been reported for both methods. Conclusion According to the obtained results, this method has the potential to diagnose L. pneumophila with high sensitivity and specificity. This system can be employed as a practical tool for rapid, accurate, high-sensitivity, and acceptable detection of Legionella pneumophila in contaminated water, which is cost-effective in terms of cost and time.
Collapse
Affiliation(s)
- Raheleh Karimiravesh
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ashraf Mohabati Mobarez
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran,Corresponding author: Ashraf Mohabati Mobarez, Ph.D, Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. Tel: +98-21-82883862 Fax: +98-21-82884555
| | - Mehrdad Behmanesh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amin Talebi Bezmin Abadi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saber Esmaeilli
- National Reference Laboratory for Plague, Tularemia and Q fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, Kabudar Ahang, Hamadan, Iran,Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
Eksin E. An electrochemical assay for sensitive detection of Acinetobacter baumannii gene. Talanta 2022; 249:123696. [PMID: 35749906 DOI: 10.1016/j.talanta.2022.123696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022]
Abstract
A new genosensor, which allows sensitive and selective detection of Acinetobacter baumannii gene sequence was developed herein. In this assay, capture probe of Acinetobacter baumannii was immobilized on the surface of chitosan modified single-use pencil graphite electrodes (c-PGEs) to obtain Acinetobacter baumannii genosensor. Then, Acinetobacter baumannii target DNA sequence was recognized after solid-state hybridization on c-PGE genosensor by measuring guanine signal via differential pulse voltammetry (DPV). In order to improve hybridization efficiency, experimental parameters affecting all assay steps are studied and the analytical performance of the genosensor was tested. The low limit of detection (LOD) for Acinetobacter baumannii target DNA sequence was obtained as 1.86 nM with developed genosensor. The selectivity of the proposed assay was then tested in the presence of 1-base mismatch, or two different type of non-complementary sequences and no interference effect was observed. The proposed electrochemical assay protocol is easy, convenient, and rapid which can be a decent alternative to existing methods.
Collapse
Affiliation(s)
- Ece Eksin
- Biomedical Device Technology Program, Vocational School of Health Services, Izmir Democracy University, Izmir 35140, Turkey; Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, Izmir 35100, Turkey.
| |
Collapse
|
7
|
Laliwala A, Svechkarev D, Sadykov MR, Endres J, Bayles KW, Mohs AM. Simpler Procedure and Improved Performance for Pathogenic Bacteria Analysis with a Paper-Based Ratiometric Fluorescent Sensor Array. Anal Chem 2022; 94:2615-2624. [PMID: 35073053 PMCID: PMC10091516 DOI: 10.1021/acs.analchem.1c05021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacterial infections are the leading cause of morbidity and mortality in the world, particularly due to a delay in treatment and misidentification of the bacterial species causing the infection. Therefore, rapid and accurate identification of these pathogens has been of prime importance. The conventional diagnostic techniques include microbiological, biochemical, and genetic analyses, which are time-consuming, require large sample volumes, expensive equipment, reagents, and trained personnel. In response, we have now developed a paper-based ratiometric fluorescent sensor array. Environment-sensitive fluorescent dyes (3-hydroxyflavone derivatives) pre-adsorbed on paper microzone plates fabricated using photolithography, upon interaction with bacterial cell envelopes, generate unique fluorescence response patterns. The stability and reproducibility of the sensor array response were thoroughly investigated, and the analysis procedure was refined for optimal performance. Using neural networks for response pattern analysis, the sensor was able to identify 16 bacterial species and recognize their Gram status with an accuracy rate greater than 90%. The paper-based sensor was stable for up to 6 months after fabrication and required 30 times lower dye and sample volumes as compared to the analogous solution-based sensor. Therefore, this approach opens avenues to a state-of-the-art diagnostic tool that can be potentially translated into clinical applications in low-resource environments.
Collapse
Affiliation(s)
- Aayushi Laliwala
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198-6858, United States
| | - Denis Svechkarev
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198-6858, United States
| | - Marat R. Sadykov
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Jennifer Endres
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Kenneth W. Bayles
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Aaron M. Mohs
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198-6858, United States
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6858, United States
| |
Collapse
|
8
|
Mobed A, Hasanzadeh M. Sensitive recognition of Shiga toxin using biosensor technology: An efficient platform towards bioanalysis of pathogenic bacterial. Microchem J 2022; 172:106900. [DOI: 10.1016/j.microc.2021.106900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Adampourezare M, Saadati A, Hasanzadeh M, Dehghan G, Feizi MAH. Reliable recognition of DNA methylation using bioanalysis of hybridization on the surface of Ag/GQD nanocomposite stabilized on poly (β-cyclodextrin): A new platform for DNA damage studies using genosensor technology. J Mol Recognit 2021; 35:e2945. [PMID: 34904757 DOI: 10.1002/jmr.2945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/27/2022]
Abstract
Due to the role of DNA methylation in causing cancer in the present study, an innovative and inexpensive method was designed for the sensitive detection of DNA methylation. The silver-graphene quantum dots (Ag/GQDs) nano ink with high electrical conductivity was used as a substrate for genosensor fabrication toward identification of DNA hybridization. Also, poly (β-cyclodextrin) (p[β-CD]) has been used as a biointerface for the stabilization of Ag/GQD nano ink. The thiolated pDNA strand (5'-SH-TCCGCTTCCCGACCCGCACTCCGC-3') (as bioreceptor element) was fixed on the substrate and hybridized with methylated (5'-GC(M)GGAGTGC(M)GGGTC(M)GGGAAGC(M)GGA-3') and unmethylated (5'-GCGGAGTGCGGGTCGGGAAGCGGA-3') cDNAs, as target sequences were studied using electroanalysis methods. Under optimal conditions and using electrochemical techniques, the linear range was 1 am to 1 pm with LLOQ of 1aM. Finally, the designed DNA genosensor was used for detection of DNA methylation in human plasma samples and can be used to detect methylation in patient samples. It is expected that the designed DNA-based biodevice will be used to early stage diagnosis of cancer using monitoring of DNA methylation. Also, this type of genosensor can be used for epigenetic studies in the near future.
Collapse
Affiliation(s)
- Mina Adampourezare
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Saadati
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
10
|
Adampourezare M, Dehghan G, Hasanzadeh M, Feizi MAH. Identification of DNA methylation by novel optical genosensing: A new platform in epigenetic study using biomedical analysis. J Mol Recognit 2021; 34:e2938. [PMID: 34612542 DOI: 10.1002/jmr.2938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022]
Abstract
Due to the important role of methylation in cancer, the use of sensitive analytical methods for early diagnosis and efficient clinical pharmacotherapy is highly demanded. In this study, an innovative label-free method has been developed for the recognition of methylated DNA in the promoter area of adenomatous polyposis coli gene (APC gene). Also, differentiation of unmethylated DNA (GCGGAGTGCGGGTCGGGAAGCGGA) from methylated cDNA (GC(M)GGAGTGC(M)GGGTC(M)GGGAAGC(M)GGA) was performed using optical synthesized probe (thionine-based polymer). Hybridization of pDNA (TCCGCTTCCCGACCCGCACTCCGC) with various types of cDNA sequences was studied by UV-visible and fluorescence spectroscopy. Also, some of the mismatch sequences {(GC(M)GGAGTAC(M)GGGTC(M)GGGAAGC(M)GGA) and (GCGGAGTACGGGTCGGGAAGCGGA)} were applied as negative control. For this purpose, The synthesized optical probe was characterized by transmission electron microscopy, atomic force microscopy, dynamic light scattering, zeta potential, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, UV-Vis, and fluorescence spectroscopy. Under optimal conditions, the analytical performance of engineered DNA-based assay was studied and exhibited excellent dynamic range (1 zM to 3 pM) with low limit of quantitation (LLOQ) of 1 zM. The designed DNA-based assay showed a high capability of discriminating methylation, unmethylated and mismatched sequences. The engineered genosensor is simple and inexpensive and can detect DNA methylation with high sensitivity. Therefore, the designed geno-assay could detect DNA methylation significantly and discriminate from unmethylated DNA. It is expected that the proposed geno-assay could be used for the detection of DNA methylation, genetic mutations, epigenetic alterations, and early stage diagnosis of various cancer toward efficient clinical pharmacotherapy.
Collapse
Affiliation(s)
- Mina Adampourezare
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Ali Hosseinpoure Feizi
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.,Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Mohammadzadeh A, Pashazadeh-Panahi P, Hasanzadeh M. Visual monitoring and optical recognition of digoxin by functionalized AuNPs and triangular AgNPs as efficient optical nano-probes. J Mol Recognit 2021; 34:e2917. [PMID: 34106492 DOI: 10.1002/jmr.2917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 11/09/2022]
Abstract
In this study, we presented elective, sensitive, and rapid UV-Vis spectrophotometry and calorimetric assay for the recognition of digoxin. Therefore, cysteamine-gold nanoparticles (Cys A-AuNPs) in the presence of cysteine acid amine and Silver nanoparticles in the presence of tetramethyl benzidine and hydrogen peroxide (AgNPs-TMB [3,3',5,5'-tetramethylbenzidine]-H2 O2 ) were synthesized and utilized as the desired probe. Finally, color variation of probes was observed in the absence and presence of digoxin. Obtained results indicate that the color of Cys A-AuNPs changed from dark pink to light in the absence and the presence of digoxin, respectively. Also, the color of AgNPs-TMB-H2 O2 changed from dark blue to light blue, in the absence and the presence of digoxin, respectively. Moreover, UV-Vis spectroscopies results indicate digoxin with a low limit of quantification of 0.125 ppm in human plasma samples which linear range was 0.125 to 11 ppm.
Collapse
Affiliation(s)
- Arezoo Mohammadzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Paria Pashazadeh-Panahi
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Adel B, Jafari M, Hasanzadeh M. Utilization of rGO-PEI-supported AgNPs for sensitive recognition of deltamethrin in human plasma samples: A new platform for the biomedical analysis of pesticides in human biofluids. J Mol Recognit 2021; 34:e2900. [PMID: 33949010 DOI: 10.1002/jmr.2900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/10/2021] [Accepted: 04/15/2021] [Indexed: 11/12/2022]
Abstract
In this study, the rGO-PEI-AgNPs sensor was designed as a new effective platform to sensitive monitoring of deltamethrin in human plasma samples. For this purpose, reduced graphene oxide (rGO)-supported polyethylenimine (PEI) was used as a suitable substrate for dispersion of silver nanoparticles (AgNPs) as amplification and catalytic element. Therefore, a novel interface (rGO-PEI-AgNPs) was prepared by the fully electrochemical method on the surface of glassy carbon electrodes. The engineered nano-sensor showed a wide dynamic range of 10 nM to 1 mM and low limit of quantification (LLOQ) as 10 nM in human plasma sample, which revealed excellent analytical performance for the recognition of deltamethrin with high sensitivity and reproducibility through differential pulse voltammetry and square wave voltammetry techniques. The results confirm that rGO-PEI-AgNPs as a novel biocompatible interface can provide appropriate, reliable, affordable, rapid, and user-friendly diagnostic tools in the detection of deltamethrin in human real samples.
Collapse
Affiliation(s)
- Bashir Adel
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Jafari
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|