1
|
Hasnat S, Rahman S, Alam MB, Suin FM, Yeasmin F, Suha T, Supty NT, Sabila S, Chowdhury A, Shahinuzzaman ADA, Mahbub MM, Islam T, Hoque MN. High throughput screening identifies potential inhibitors targeting trimethoprim resistant DfrA1 protein in Klebsiella pneumoniae and Escherichia coli. Sci Rep 2025; 15:7141. [PMID: 40021806 PMCID: PMC11871338 DOI: 10.1038/s41598-025-91410-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/20/2025] [Indexed: 03/03/2025] Open
Abstract
The DfrA1 protein provides trimethoprim resistance in bacteria, especially Klebsiella pneumoniae and Escherichia coli, by modifying dihydrofolate reductase, which reduces the binding efficacy of the antibiotic. This study identified inhibitors of the trimethoprim-resistant DfrA1 protein through high-throughput computational screening and optimization of 3,601 newly synthesized chemical compounds from the ChemDiv database, aiming to discover potential drug candidates targeting DfrA1 in K. pneumoniae and E. coli. Through this approach, we identified six promising DCs, labeled DC1 to DC6, as potential inhibitors of DfrA1. Each DC showed a strong ability to bind effectively to the DfrA1 protein and formed favorable chemical interactions at the binding sites. These interactions were comparable to those of Iclaprim, a well-known antibiotic effective against DfrA1. To confirm our findings, we explored how the promising DCs work at the molecular level, focusing on their thermodynamic properties. Additionally, molecular dynamics simulations confirmed the ability of these six DCs to effectively inhibit the DfrA1 protein. Our results showed that DC4 (an organofluorinated compound) and DC6 (a benzimidazole compound) exhibited potential efficacy against the DfrA1 protein than the control drug, particularly regarding stability, solvent-accessible surface area, solvent exposure, polarity, and binding site interactions, which influence their residence time and efficacy. Overall, findings of this study suggest that DC4 and DC6 have the potential to act as inhibitors against the DfrA1, offering promising prospects for the treatment and management of infections caused by trimethoprim-resistant K. pneumoniae and E. coli in both humans and animals. However, further in vitro validations are necessary.
Collapse
Affiliation(s)
- Soharth Hasnat
- Department of Genetic Engineering and Biotechnology, East West University, Dhaka, 1212, Bangladesh
| | - Soaibur Rahman
- Department of Genetic Engineering and Biotechnology, East West University, Dhaka, 1212, Bangladesh
| | - Meherun Binta Alam
- Department of Genetic Engineering and Biotechnology, East West University, Dhaka, 1212, Bangladesh
| | - Farha Mohi Suin
- Department of Genetic Engineering and Biotechnology, East West University, Dhaka, 1212, Bangladesh
| | - Farzana Yeasmin
- Institute of Biotechnology and Genetic Engineering, Gazipur Agricultural University (GAU), Gazipur, 1706, Bangladesh
| | - Tanjila Suha
- Department of Genetic Engineering and Biotechnology, East West University, Dhaka, 1212, Bangladesh
| | - Nahuna Tanjin Supty
- Department of Genetic Engineering and Biotechnology, East West University, Dhaka, 1212, Bangladesh
| | - Sal Sabila
- Department of Genetic Engineering and Biotechnology, East West University, Dhaka, 1212, Bangladesh
| | - Animesh Chowdhury
- Department of Genetic Engineering and Biotechnology, East West University, Dhaka, 1212, Bangladesh
| | - A D A Shahinuzzaman
- Pharmaceutical Sciences Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - M Murshida Mahbub
- Department of Genetic Engineering and Biotechnology, East West University, Dhaka, 1212, Bangladesh.
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering, Gazipur Agricultural University (GAU), Gazipur, 1706, Bangladesh.
| | - M Nazmul Hoque
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Gazipur Agricultural University (GAU), Gazipur, 1706, Bangladesh.
| |
Collapse
|
2
|
Paneru TR, Chaudhary MK, Tandon P, Joshi BD, Bezerra BP, Ayala AP. Spectroscopic (FT-IR and FT-Raman) and quantum chemical study on monomer and dimer of benznidazole from DFT and molecular docking approaches. Heliyon 2025; 11:e42104. [PMID: 39916842 PMCID: PMC11800084 DOI: 10.1016/j.heliyon.2025.e42104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/05/2025] [Accepted: 01/17/2025] [Indexed: 02/09/2025] Open
Abstract
This work presents the quantum chemical calculations of the monomer and dimer of benznidazole using density functional theory (DFT) at the B3LYP/6-311++G(d,2p) level of theory. A one-dimensional potential energy surface scan was carried out across flexible bonds to find the minimum energy structure. The structure with minimum energy was taken as a monomer and dimer is constructed based on intermolecular hydrogen bonding N-H…O. The vibrational analysis was conducted by comparing the calculated FT-IR and FT-Raman spectra of the monomer and dimer with the experimental ones. The red shift in the spectra of amide and carbonyl functional groups indicates their involvement in intermolecular hydrogen bonding in crystal packing, while the other peaks showed good agreement with the experimental result. The intra- and intermolecular interactions in the monomer and dimer were analyzed using various tools. The steric effects and van der Waals forces in the dimer were found to be more effective than the monomer. The dimer in the gaseous medium was found to have a lower Frontier molecular orbital energy (ΔEL-H) value than the monomer, suggesting that it is more reactive in a gaseous medium. The ELF value for hydrogen in monomer and dimer around the ring was found to be more which confirms that the electrons in these regions are more localized. The negative value of the overlap population density of states (OPDOS) both in monomer and dimer indicate that there are anti-bonding orbitals between the acetamide and the benzyl groups of the compound. The drug potential of benznidazole was evaluated by molecular docking with carbonic anhydrase XII, which shows the highest binding affinity of (-8.3 kcal/mol) with 6YH8, indicating that benznidazole is its potent inhibitor.
Collapse
Affiliation(s)
- Tirth Raj Paneru
- Central Department of General Science, Far Western University, Mahendranagar, 10400, Nepal
- Central Department of Physics, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Manoj Kumar Chaudhary
- Department of Physics, Tribhuvan University, Amrit Campus, Institute of Science and Technology, Kathmandu, 44600, Nepal
| | - Poonam Tandon
- Deen Dayal Upadhyaya Gorakhpur University and University of Lucknow, Lucknow, 226007, India
| | - Bhawani Datt Joshi
- Department of Physics, Tribhuvan University, Siddhanath Science Campus, Mahendranagar, 10400, Nepal
| | | | - Alejandro Pedro Ayala
- Department of Physics, Federal University of Ceará, Fortaleza, CE, 60440-900, Brazil
| |
Collapse
|
3
|
Kadhim MA, Mukhlif MG, Gayadh EW, Zangana EKM, Mohaisen MA, Matar MM, Rizk SA. Synthesis, design, biological activity, DFT study and molecular docking of new 1,2,4-triazine and 1,2,4-triazol derivatives bearing the phthalazine moiety. J Mol Struct 2025; 1322:140384. [DOI: 10.1016/j.molstruc.2024.140384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
|
4
|
Lu J, Lv S, Chen Q. Electrolyte reactivity on electrode surfaces for active species formation and Reactive Red X-3B degradation in electrochemical treatment of dyeing wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124197. [PMID: 39874692 DOI: 10.1016/j.jenvman.2025.124197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/05/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025]
Abstract
The pivotal role of electrolytes such as Na2SO4 and NaCl in electrochemical treatment of dyeing wastewater was investigated by comparing recalcitrant Reactive Red X-3B (RRX-3B) degradation rates, active species formation and intermediates generation in a double-chamber cell. It was found that similar reactive oxygen species (ROS) formed in the anodic chamber are •OH and 1O2, in the cathodic chamber is •O2- with different electrolytes, while this is not the case for ROS contribution, RRX-3B degradation kinetic and intermediates. NaCl favored the generation of 1O2, faster decolorization (-N=N- cleavage), and organic intermediates degradation in the anodic chamber. A comparatively faster hydrogenation reduction of -N=N- and higher COD removal with fewer organic categories in Na2SO4 cathodic chamber outperformed those in NaCl cathodic chamber. The RRX-3B degradation pathways were proposed in both chambers based on GC-MS investigations and Fukui function calculations. Atoms Cl, S and N in RRX-3B molecule removals were in the order of R-S > R-N > R-Cl.
Collapse
Affiliation(s)
- Jun Lu
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, 201209, PR China; School of Chemical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Shaoyan Lv
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Quanyuan Chen
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China; Shanghai Institution of Pollution Control and Ecological Security, Shanghai, 200092, PR China; State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, PR China
| |
Collapse
|
5
|
Saini N, Pandey G, Sharma A, Pandey K, Kulshrestha V, Awasthi K. Bimetallic PdPt Nanoparticles Decorated PES Membranes for Enhanced H 2 Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24318-24329. [PMID: 39511976 DOI: 10.1021/acs.langmuir.4c02669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Hydrogen separation has significant importance in diverse applications ranging from clean energy production to gas purification. Membrane technology stands out as a low-cost and efficient method to address the purpose. The development of efficient gas-sensitive materials can further bolster the membrane's performance. In this pursuit, bimetallic PdPt nanoparticles were synthesized using a wet chemical approach and were strategically decorated onto poly(ether sulfone) (PES) membranes. The fibrous morphology of the PES membranes provided an ideal platform for the decoration of nanoparticles, promising enhanced gas transport properties. Prior to the attachment of nanoparticles, the membranes were pretreated under UV light to enhance their surface properties and facilitate improved adhesion. The synthesized bimetallic nanoparticles were characterized by using transmission electron microscopy and X-ray photoelectron spectroscopy for their morphological and elemental analysis. Furthermore, the engineered membranes were characterized using various techniques, such as Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and field emission scanning electron microscopy (FESEM) with rigorous scrutiny to ensure a comprehensive understanding of their structural, chemical, and morphological properties. The membranes were examined for their separation performance using pure H2, N2, and CO2 gases, and the results revealed a 30% increment in H2 permeability and 40 and 42% increments in H2/CO2 and H2/N2 selectivity, respectively. These findings confirmed the critical role of tailored material design and synthesis strategies in advancing membrane technologies for H2 separation applications.
Collapse
Affiliation(s)
- Nishel Saini
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan 302017, India
| | - Gaurav Pandey
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan 302017, India
| | - Ankit Sharma
- Materials Research Centre, Malaviya National Institute of Technology, Jaipur 302017, India
| | - Kamakshi Pandey
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan 302017, India
- Materials Research Centre, Malaviya National Institute of Technology, Jaipur 302017, India
| | - Vaibhav Kulshrestha
- CSIR-Central Salt and Marine Chemical Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar 364002, India
| | - Kamlendra Awasthi
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan 302017, India
| |
Collapse
|
6
|
Abdelmalek D, Smaoui F, Frikha F, Ben Marzoug R, Msalbi D, Souissi A, Aifa MS. Computational identification of new TKI as potential noncovalent reversible EGFR L858R/T790M inhibitors: VHTS, molecular docking, DFT study and molecular dynamic simulation. J Biomol Struct Dyn 2024; 42:4870-4887. [PMID: 37349947 DOI: 10.1080/07391102.2023.2223663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
The mutations concerned with non-small cell lung cancer involving epidermal growth factor receptor of tyrosine kinase family have primarily targeted. In this study, we employed a scalable high-throughput virtual screening (HTVS) framework and a targeted compound library of over 50.000 Erlotinib-derived compounds as noncovalent reversible EGFRL858R/T790M inhibitors. Our HTVS work flow leverages include HTVS, SP (Standard Precision) and XP (Extra Precision) docking protocol along with its relative binding free energy calculation, cluster analysis study and ADMET properties. Then we used multiple ns-time scale molecular dynamics (MD) simulations and density functional theory (DFT) precise calculation techniques to elucidate how the bound ligand interact with the complexes conformational states involving motions both proximal and distal to the binding site. Based on glide score and protein-ligand interactions, the highest scoring molecule was selected for molecular dynamic simulation providing a complete insight into the conformational stability. A hyperfine analysis of DFT based refinement strategy highly supported their stability by strong intermolecular interactions. Together, our results demonstrate that the virtually screened top retained molecules present the best moieties introduced to Erlotinib. They exhibit interesting pharmacokinetic properties that can act as potent antitumor drug candidates than the lead compound drug and in some extent tackling the drug resistance problem which offer a springboard for further therapeutic experiments and applications.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dorra Abdelmalek
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Fahmi Smaoui
- Department of Microbiology, Habib Bourguiba University Hospital/Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - Fakher Frikha
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Riadh Ben Marzoug
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Dhouha Msalbi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Amal Souissi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Mohamed Sami Aifa
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
7
|
Holikulov U, Khodiev M, ISSAOUI N, Jumabaev A, Kumar N, Al-Dossary OM. Exploring the non-covalent interactions, vibrational and electronic properties of 2-methyl-4-hydro-1,3,4-triazol-thione-5 in different solutions. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2024; 36:103164. [DOI: 10.1016/j.jksus.2024.103164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
8
|
Azzouzi M, Azougagh O, Ouchaoui AA, El hadad SE, Mazières S, Barkany SE, Abboud M, Oussaid A. Synthesis, Characterizations, and Quantum Chemical Investigations on Imidazo[1,2- a]pyrimidine-Schiff Base Derivative: ( E)-2-Phenyl- N-(thiophen-2-ylmethylene)imidazo[1,2- a]pyrimidin-3-amine. ACS OMEGA 2024; 9:837-857. [PMID: 38222514 PMCID: PMC10785637 DOI: 10.1021/acsomega.3c06841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/27/2023] [Accepted: 11/17/2023] [Indexed: 01/16/2024]
Abstract
In this study, (E)-2-phenyl-N-(thiophen-2-ylmethylene)imidazo[1,2-a]pyrimidin-3-amine (3) is synthesized, and detailed spectral characterizations using 1H NMR, 13C NMR, mass, and Fourier transform infrared (FT-IR) spectroscopy were performed. The optimized geometry was computed using the density functional theory method at the B3LYP/6-311++G(d,p) basis set. The theoretical FT-IR and NMR (1H and 13C) analysis are agreed to validate the structural assignment made for (3). Frontier molecular orbitals, molecular electrostatic potential, Mulliken atomic charge, electron localization function, localized orbital locator, natural bond orbital, nonlinear optical, Fukui functions, and quantum theory of atoms in molecules analyses are undertaken and meticulously interpreted, providing profound insights into the molecular nature and behaviors. In addition, ADMET and drug-likeness studies were carried out and investigated. Furthermore, molecular docking and molecular dynamics simulations have been studied, indicating that this is an ideal molecule to develop as a potential vascular endothelial growth factor receptor-2 inhibitor.
Collapse
Affiliation(s)
- Mohamed Azzouzi
- Laboratory
of Molecular Chemistry, Materials and Environment (LCM2E), Department
of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, Nador 60700, Morocco
| | - Omar Azougagh
- Laboratory
of Molecular Chemistry, Materials and Environment (LCM2E), Department
of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, Nador 60700, Morocco
| | - Abderrahim Ait Ouchaoui
- Laboratory
of Medical Biotechnology (MedBiotech), Bionova Research Center, Medical
and Pharmacy School, Mohammed V University, Agdal, Rabat B.P 8007, Morocco
| | - Salah eddine El hadad
- Laboratory
of Medical Biotechnology (MedBiotech), Bionova Research Center, Medical
and Pharmacy School, Mohammed V University, Agdal, Rabat B.P 8007, Morocco
| | - Stéphane Mazières
- Laboratory
of IMRCP, University Paul Sabatier, CNRS
UMR 5623, 118 route de Narbonne, Toulouse 31062, France
| | - Soufian El Barkany
- Laboratory
of Molecular Chemistry, Materials and Environment (LCM2E), Department
of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, Nador 60700, Morocco
| | - Mohamed Abboud
- Catalysis
Research Group (CRG), Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Adyl Oussaid
- Laboratory
of Molecular Chemistry, Materials and Environment (LCM2E), Department
of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, Nador 60700, Morocco
| |
Collapse
|
9
|
Bhanukiran K, Singh SK, Singh R, Kumar A, Hemalatha S. Discovery of Multitarget-Directed Ligands from Piperidine Alkaloid Piperine as a Cap Group for the Management of Alzheimer's Disease. ACS Chem Neurosci 2023; 14:2743-2760. [PMID: 37433759 DOI: 10.1021/acschemneuro.3c00269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] Open
Abstract
The naturally inspired multitarget-directed ligands (PC01-PC10 and PD01-PD26) were synthesized from piperine for the management of Alzheimer's disease (AD). The compound PD07 showed significant inhibitory activity on ChEs, BACE1, and Aβ1-42 aggregation in in vitro studies. Further, compound PD07 effectively displaced the propidium iodide at the AChE PAS site. The compound PD07 exhibited significant lipophilicity in PAMPA studies. Additionally, PD07 demonstrated neuroprotective properties in the Aβ1-42 induced SH-SY5Y cell line. Furthermore, DFT calculations were performed using B3LYP/6-311G(d,p) basis sets to explore the PD07 physical and chemical properties. The compound PD07 showed a similar binding interaction profile at active sites of AChE, BuChE, and BACE1 proteins as compared to reference ligands (donepezil, tacrine, and BSD) in molecular docking and dynamic simulation studies. In acute oral toxicity studies, compound PD07 exhibited no toxicity symptoms up to 300 mg/kg, po. The compound PD07 (10 mg/kg, po) improved memory and cognition in scopolamine-induced amnesia rats. Further, PD07 increased ACh levels in the brain by inhibiting the AChE activity. The results from in vitro, in silico, and in vivo studies suggested that compound PD07 is a potent multitarget-directed lead from piperine to overcome Alzheimer's disease.
Collapse
Affiliation(s)
- Kancharla Bhanukiran
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Sushil Kumar Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Ravi Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Ashok Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Siva Hemalatha
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
10
|
Celik S. DFT investigations and molecular docking as potent inhibitors of SARS-CoV-2 main protease of 4-phenylpyrimidine. J Mol Struct 2023; 1277:134895. [PMID: 36619799 PMCID: PMC9803264 DOI: 10.1016/j.molstruc.2022.134895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 12/31/2022]
Abstract
In this work, quantum chemical descriptors and a vibrational analysis of 4-Phenylpyrimidine (4-PPy) were also investigated. Through conformational analysis, the most stable conformer can be determined. The geometry of the molecular structure was optimized by using the density functional theory (DFT) at the B3LYP/6-311++G(d,p) level. The theoretically obtained FT-IR and FT-Raman spectral data agree with the experimental results. UV-Vis was done in the gas phase along with different solvents by the TD-DFT method and the PCM solvent model. Molecular electrostatic potential, natural bond orbital analysis, nonlinear optical properties, and global chemical reactivity parameters were described through the DFT method. Besides, the chemical implications of a molecule were explained using an electron localization function and a local orbital locator. We attempted to detect the antiviral activity of the 4-PPy compound by predicting molecular docking into coronavirus 2 (SARS-n-CoV-2) protein structures (6LU7, 6M03, and 6W63), because COVID-19 is known to have serious adverse effects in all areas of human life worldwide, and possible drugs need to be investigated for this. The results of the docking simulation demonstrate good affinities for binding to the receptors.
Collapse
Affiliation(s)
- Sibel Celik
- Vocational School of Health Services, Ahi Evran University, Kırşehir 40200, Turkey
| |
Collapse
|
11
|
Lefi N, Kazachenko AS, Raja M, Issaoui N, Kazachenko AS. Molecular Structure, Spectral Analysis, Molecular Docking and Physicochemical Studies of 3-Bromo-2-hydroxypyridine Monomer and Dimer as Bromodomain Inhibitors. Molecules 2023; 28:2669. [PMID: 36985641 PMCID: PMC10054851 DOI: 10.3390/molecules28062669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
In this paper, both methods (DFT and HF) were used in a theoretical investigation of 3-bromo-2-Hydroxypyridine (3-Br-2HyP) molecules where the molecular structures of the title compound have been optimized. Molecular electrostatic potential (MEP) was computed using the B3LYP/6-311++G(d,p) level of theory. The time-dependent density functional theory (TD-DFT) approach was used to simulate the HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) on the one hand to achieve the frontier orbital gap and on the other hand to calculate the UV-visible spectrum of the compound in gas phase and for different solvents. In addition, electronic localization function and Fukui functions were carried out. Intermolecular interactions were discussed by the topological AIM (atoms in molecules) approach. The thermodynamic functions have been reported with the help of spectroscopic data using statistical methods revealing the correlations between these functions and temperature. To describe the non-covalent interactions, the reduced density gradient (RDG) analysis is performed. To study the biological activity of the compound of the molecule, molecular docking studies were executed on the active sites of BRD2 inhibitors and to explore the hydrogen bond interaction, minimum binding energies with targeted receptors such as PDB ID: 5IBN, 3U5K, 6CD5 were calculated.
Collapse
Affiliation(s)
- Nizar Lefi
- Department of Physics, College of Sciences and Arts in Uglat Asugour, Qassim University, Buraydah 52571, Saudi Arabia
- Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, University of Monastir, Monastir 5079, Tunisia
| | - Aleksandr S. Kazachenko
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50, Bld. 24, 660036 Krasnoyarsk, Russia
- Department of Organic and Analytical Chemistry, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia
- Department of Biological Chemistry with Courses in Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University, St. Partizan Zheleznyak, Bld. 1, 660022 Krasnoyarsk, Russia
| | - Murugesan Raja
- Department of Physics, Govt. Thirumagal Mills College, Gudiyatham, Vellore 632602, India
| | - Noureddine Issaoui
- Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, University of Monastir, Monastir 5079, Tunisia
| | - Anna S. Kazachenko
- Department of Organic and Analytical Chemistry, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia
| |
Collapse
|
12
|
Synthesis, spectroscopic, and molecular interaction study of lead(II) complex of DL-alanine using experimental techniques and quantum chemical calculations. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
13
|
Putro PA, Maddu A, Hardhienata H, Isnaeni I, Ahmad F, Dipojono HK. Revealing the incorporation of an NH 2 group into the edge of carbon dots for H 2O 2 sensing via the C-N⋯H hydrogen bond interaction. Phys Chem Chem Phys 2023; 25:2606-2617. [PMID: 36602293 DOI: 10.1039/d2cp04097b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We investigated hydrogen peroxide (H2O2) sensing on NH2-functionalized carbon dots (Cdots) for three different -NH2 positions, and the N atom was found to be the active site using a quantum computational approach. B3LYP and 6-31G(d,p) were used for density functional theory (DFT) ground state calculations, whereas CAM-B3LYP and the same basis set were used in time-dependent density functional theory (TD-DFT) excited state calculations. Structural optimization showed that the H2O2 is chemisorbed on 1-sim via a C-N⋯H hydrogen bond interaction with an adsorption energy of -10.61 kcal mol-1. Mulliken atomic charge distributions and electrostatic potential (ESP) analysis were both used to determine reactivity of the molecules at the atomic level. For in-depth analysis of the ground states, we utilized Frontier molecular orbital (FMO) theory, quantum theory of atoms in molecules (QTAIM), and non-covalent interaction (NCI) index analysis. In addition, we also present UV-vis absorption spectra and charge transfer lengths to understand the mechanism of H2O2 sensing in excited states. Based on the molecular and electronic properties of the NH2-Cdots, it was shown that 1-sim is a potential candidate for use as an electrochemical sensor for H2O2 sensing. Whereas 3-sim is believed to be a potential candidate for use as an optical sensor of H2O2 based on the UV-vis characteristics via photoinduced charge transfer.
Collapse
Affiliation(s)
- Permono Adi Putro
- Department of Physics, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, 16680, Indonesia. .,Department of Physics, Faculty of Science, Universitas Mandiri, Subang, 41211, Indonesia
| | - Akhiruddin Maddu
- Department of Physics, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, 16680, Indonesia.
| | - Hendradi Hardhienata
- Department of Physics, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, 16680, Indonesia.
| | - Isnaeni Isnaeni
- Research Center for Photonics, National Research and Innovation Agency, Banten, 15314, Indonesia
| | - Faozan Ahmad
- Department of Physics, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, 16680, Indonesia.
| | - Hermawan Kresno Dipojono
- Department of Engineering Physics, Faculty of Industrial Technology, Bandung Institute of Technology, Bandung, 40132, Indonesia.,Research Center for Nanoscience and Nanotechnology, Bandung Institute of Technology, Bandung, 40132, Indonesia
| |
Collapse
|
14
|
Vimala M, Stella Mary S, Irfan A, Muthu S. Solvent role in molecular structure, thermodynamic quantities, reactions and electronic transitions (TDDFT) on 2-[piperidin-1-yl] phenol. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
15
|
Bicak B, Kecel Gunduz S, Budama Kilinc Y, Imhof P, Gok B, Akman G, Ozel AE. Structural, spectroscopic, in silico, in vitro and DNA binding evaluations of tyrosyl-lysyl-threonine. J Biomol Struct Dyn 2022; 40:12148-12164. [PMID: 34463215 DOI: 10.1080/07391102.2021.1968499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The main objective of the present study is to investigate the molecular structure and DNA binding interaction of the tyrosyl-lysyl-threonine (YKT) tripeptide, which has anticancer, antioxidant and analgesic properties, using various in silico (MD, QM, molecular docking), spectroscopic (UV, FT-IR, FTIR-ATR, Raman, gel electrophoresis) and in vitro (MCF-7 and HeLa cancer cell lines and BEAS-2B cell line) methods. The optimized geometry, vibrational wavenumbers, molecular electrostatic potential (MEP), natural bond orbital (NBO) and HOMO-LUMO (highest occupied molecular orbital- lowest unoccupied molecular orbital) calculations were carried out with Density Functional Theory (DFT) using B3LYP/6-311++G(d,p) basis set to indicate conformational, vibrational and intramolecular charge transfer characteristics. The assignment of all fundamental theoretical vibration wavenumbers was performed using potential energy distribution analysis (PED). DNA is a significant pharmacological target of drugs in several diseases such as cancer. For this reason, molecular docking calculation was used to elucidate the binding and interaction between YKT tripeptide and DNA at the atomic level. Also, the dynamic behaviors of YKT and DNA was examined using MD simulations. Besides, the interaction of YKT with DNA was experimentally examined by UV titration method and agarose gel electrophoresis method. Experimental results showed that YKT was intercalatively and electrostatically bound to CT-DNA (Calf thymus DNA) and cleavage pBR322 DNA in the presence of H2O2. The pharmacokinetic profile of YKT was also obtained. Cytotoxic effect of YKT was evaluated on MCF-7, HeLa and BEAS-2B cell lines. Hence, these studies about YKT tripeptide may pave the way for the development of various cancer drugs. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bilge Bicak
- Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkey.,Department of Physics, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Serda Kecel Gunduz
- Department of Physics, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Yasemin Budama Kilinc
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Petra Imhof
- Computer Chemistry Center, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Bahar Gok
- Graduate School of Natural and Applied Science, Yildiz Technical University, Istanbul, Turkey
| | - Gizem Akman
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Ayşen E Ozel
- Department of Physics, Faculty of Science, Istanbul University, Istanbul, Turkey
| |
Collapse
|
16
|
Gassoumi B, Dlala NA, Echabaane M, Karayel A, Özkınalı S, Castro M, Melendez F, Ghalla H, Nouar L, Madi F, Chaabane RB. Stability, spectroscopic, electrochemistry and QTAIM analysis of Cu-Zn n-1O n clusters for glucose sensing application: A study on theoretical and experimental insights. Heliyon 2022; 8:e12387. [PMID: 36582723 PMCID: PMC9793285 DOI: 10.1016/j.heliyon.2022.e12387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/17/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Clusters of (ZnO)n (n = 2-4) have been shown to play a central role in the detection of glucose entity based on the existence of photo-induced electrons (PE), which facilitates the interaction between (ZnO)n clusters and glucose entity guests. The electrochemistry experiment has confirmed the detection of glucose by the title clusters. The optimization, energetic parameters, and vibrational frequency calculations have indicated that the Cu-Znn-1On-glucose are more stable than the (ZnO)n-glucose complexes. It has been demonstrated that the Cu doping enhanced the chemical behavior of the clusters and formed a high intramolecular charge transfer (ICT) in the system. The glucose sensing by all the forms of Cu-Znn-1On clusters showed that the Cu-Zn3O4, Cu-Wurtzite, and Cu-Rocksalt clusters are the most suitable for adsorbing the glucose guest. The HOMO/LUMO iso-surfaces of the complexes showed that the electron concentrations are localized in the d orbitals and mainly in the form of the d10 orbitals around Zn atoms. The molecular electrostatic potential (MEP) has clearly indicated that a high charge transfer occurs between the copper and the oxygen atoms, which facilitate the adsorption of glucose. The reactivity parameters also indicated that the Wurtzite-glucose complex has a high electrophilicity index (ω), which means a good acceptor behavior to interact with glucose. Additionally, the bond between the (ZnO)n clusters and the glucose polar element has been studied in detail by using QTAIM theory. Finally, the theoretical and experimental studies prove that the Cu-Znn-1On clusters are very suitable and competent compounds for detecting glucose.
Collapse
Affiliation(s)
- B. Gassoumi
- Laboratory of Advanced Materials and Interfaces (LIMA), University of Monastir, Faculty of Science of Monastir, Avenue of Environment, 5000 Monastir, Tunisia
- Corresponding author.
| | - N. Aouled Dlala
- Quantum and Statistical Physics Laboratory, Faculty of Sciences, University of Monastir, 5079 Monastir, Tunisia
| | - M. Echabaane
- Laboratory of Advanced Materials and Interfaces (LIMA), University of Monastir, Faculty of Science of Monastir, Avenue of Environment, 5000 Monastir, Tunisia
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology CRMN of Technopark of Sousse, B.P. 334, Sahloul, 4034 Sousse, Tunisia
| | - A. Karayel
- Department of Physics, Faculty of Arts and Sciences, Hitit University, Çorum, Turkey
- Corresponding author.
| | - S. Özkınalı
- Department of Chemistry, Faculty of Arts and Sciences, Hitit University, Çorum, Turkey
| | - M.E. Castro
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 18 sur y Av. San, Claudio, Col. San Manuel Puebla C. P. 72570, Mexico
| | - F.J. Melendez
- Lab. de Química Teórica, Centro de Investigación, Depto. de Fisicoquímica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edif. FCQ10, 22 Sur y San Claudio, Ciudad Universitaria, Col. San Manuel, C.P 72570, Puebla, Mexico
| | - H. Ghalla
- Quantum and Statistical Physics Laboratory, Faculty of Sciences, University of Monastir, 5079 Monastir, Tunisia
| | - L. Nouar
- Laboratory of Computational Chemistry and Nanostructures, Department of Material Sciences, Faculty of Mathematical, Informatics and Material Sciences, University of 8 May 1945, Guelma, Algeria
| | - F. Madi
- Laboratory of Computational Chemistry and Nanostructures, Department of Material Sciences, Faculty of Mathematical, Informatics and Material Sciences, University of 8 May 1945, Guelma, Algeria
| | - R. Ben. Chaabane
- Laboratory of Advanced Materials and Interfaces (LIMA), University of Monastir, Faculty of Science of Monastir, Avenue of Environment, 5000 Monastir, Tunisia
- Corresponding author.
| |
Collapse
|
17
|
Geethapriya J, Shanthidevi A, Arivazhagan M, Elangovan N, Sowrirajan S, Manivel S, Thomas R. Synthesis, characterization, computational, excited state properties, wave function and molecular docking studies of (E)-1-(perfluorophenyl)-N-(p-tolyl) methanimine. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Synthesis, Computational, Electronic spectra, and molecular docking studies of 4-((diphenylmethylene)amino)-N-(pyrimidin-2-yl)benzenesulfonamide. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
19
|
Kanagavalli A, Jayachitra R, Thilagavathi G, Padmavathy M, Elangovan N, Sowrirajan S, Thomas R. Synthesis, structural, spectral, computational, docking and biological activities of Schiff base (E)-4-bromo-2-hydroxybenzylidene) amino)-N-(pyrimidin-2-yl) benzenesulfonamide from 5-bromosalicylaldehyde and sulfadiazine. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
20
|
Kanagavalli A, Thilagavathi G, Jayachitra R, Elangovan N, Sowrirajan S, Shadakshara Murthy KR, Thomas R. Synthesis, Electronic Structure, UV–Vis, Wave Function, and Molecular Docking Studies of Schiff Base (Z)-N-(Thiazol-2-yl)-4-((Thiophene-2-ylmethylene)Amino)Benzenesulfonamide. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2150657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- A. Kanagavalli
- Department of Physics, Government Arts College, Bharathidasan University, Tiruchirappalli, India
| | - G. Thilagavathi
- Department of Physics, Nehru Memorial College, Bharathidasan University, Tiruchirappalli, India
| | - R. Jayachitra
- Department of Physics, Urumu Dhanalakshmi College, Bharathidasan University, Tiruchirappalli, India
| | - N. Elangovan
- Department of Chemistry, St Berchmans College (Autonomous), Mahatma Gandhi University, Changanassery, India
- Department of Mechanical Engineering, University Centre for Research and Development, Chandigarh University, Mohali, India
| | - S. Sowrirajan
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | | | - Renjith Thomas
- Department of Mechanical Engineering, University Centre for Research and Development, Chandigarh University, Mohali, India
| |
Collapse
|
21
|
Sanakarganesan data T, Elangovan data N, Chandrasekar S, Ganesan E, Balachandran data V, Sowrirajan data S, Balasubramani K, Thomas R. Synthesis, Hirshfeld surface analysis, Computational, Wave function properties, Anticancer and Cytotoxicity activity of di[(p-chlorobenzyl) (dibromo)] (4,7-dimethyl-1,10-phenanthroline)tin (IV) complex. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Synthesis, computational, and molecular docking studies, photophysical properties of (Z)-N-(pyrimidin-2-yl)-4-(thiophen-2-ylmethylene)amino) benzenesulfonamide. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Jayachitra R, Padmavathy M, Kanagavalli A, Thilagavathi G, Elangovan N, S.Sowrirajan, Thomas R. Synthesis, computational, experimental antimicrobial activities and theoretical molecular docking studies of (E)-4-((4-hydroxy-3-methoxy-5-nitrobenzylidene) amino)-N-(thiazole-2-yl) benzenesulfonamide. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Bhaskar C, Elangovan N, Sowrirajan S, Chandrasekar S, Ali OAA, Mahmoud SF, Thomas R. Synthesis, XRD, Hirshfeld surface analysis, DFT studies, cytotoxicity and anticancer activity of di(m-chlorobenzyl) (dichloro) (4, 7-diphenyl-1,10-phenanthroline) tin (IV) complex. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Hou X, Gong X, Mao L, Zhao J, Yang J. Discovery of Novel 1,2,3-triazole Derivatives as IDO1 Inhibitors. Pharmaceuticals (Basel) 2022; 15:1316. [PMID: 36355488 PMCID: PMC9695734 DOI: 10.3390/ph15111316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 10/29/2023] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) has received much attention as an immunomodulatory enzyme in the field of cancer immunotherapy. While several IDO1 inhibitors have entered clinical trials, there are currently no IDO1 inhibitor drugs on the market. To explore potential IDO1 inhibitors, we designed a series of compounds with urea and 1,2,3-triazole structures. Organic synthesis and IDO1 enzymatic activity experiments verified the molecular-level activities of the designed compounds, and the IC50 value of compound 3a was 0.75 μM. Molecular docking and quantum mechanical studies further explained the binding mode and reaction potential of compound 3a with IDO1. Our research has resulted in a series of novel IDO1 inhibitors, which is beneficial to the development of drugs targeting IDO1 in numerous cancer diseases.
Collapse
Affiliation(s)
- Xixi Hou
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Xiaoqing Gong
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Longfei Mao
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Jie Zhao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Jianxue Yang
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
- School of Nursing, Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang 471003, China
| |
Collapse
|
26
|
Synthesis, structural, computational, electronic spectra, wave function properties and molecular docking studies of (Z)-4-(((5-methylfuran-2-yl)methylene)amino)-N-(thiazol-2-yl)benzenesulfonamide. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Synthesis, spectral, structural features, electronic properties, biological activities, computational, wave function properties, and molecular docking studies of (E)-4-(((pentafluorophenyl) methylene) amino)-N-(pyrimidin2-yl)benzenesulfonamide. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Muthukumar R, Karnan M, Elangovan N, Karunanidhi M, Sankarapandian V, Thomas R. Synthesis, spectral, computational, wavefunction and molecular docking studies of 4-((thiophene-2-ylmethylene)amino)benzenesulfonamide from sulfanilamide and thiophene-2-carbalaldehyde. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
29
|
Intermolecular interaction study of Ag-amino acid biomolecular complex using vibrational spectroscopic techniques and density functional theory method. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Latha A, Elangovan N, Manoj K, Maheswari V, Balachandran V, Balasubramani K, Sowrirajan S, Chandrasekar S, Thomas R. Synthesis, single crystal (XRD), spectral characterization, computational (DFT), quantum chemical modelling and anticancer activity of di(p-bromobenzyl) (dibromo) (1, 10-phenanthroline) tin (IV) complex. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
31
|
Rajesh R, Muthu S, Sheela N. Investigations of 6-Fluoro-4-Oxo-3,4-Dihydro-2H-Chromene-2-Carboxylic Acid by Quantum Computational, Spectroscopic, TD-DFT with Various Solvents and Molecular Docking Studies. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2124284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- R. Rajesh
- Department of Physics, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College (Autonomous), Chennai, India
| | - S. Muthu
- Department of Physics, Arignar Anna Govt. Arts College, Cheyyar, India
| | - N.R. Sheela
- Department of Applied Physics, Sri Venkateswara College of Engineering (Autonomous), Chennai, India
| |
Collapse
|
32
|
Fatima A, Singh M, Abualnaja KM, Althubeiti K, Muthu S, Siddiqui N, Javed S. Experimental Spectroscopic, Structural (Monomer and Dimer), Molecular Docking, Molecular Dynamics Simulation and Hirshfeld Surface Analysis of 2-Amino-6-Methylpyridine. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2080726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Aysha Fatima
- School of Studies in Chemistry, Jiwaji University, Gwalior, India
- Department of Chemistry, Institute of H. Science, Dr. Bhimrao Ambedkar University, Agra, India
| | - Meenakshi Singh
- Department of Chemistry, Institute of H. Science, Dr. Bhimrao Ambedkar University, Agra, India
| | - Khamael M. Abualnaja
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Khaled Althubeiti
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - S. Muthu
- Department of Physics, Arignar Anna Government Arts College, Cheyyar, India
| | - Nazia Siddiqui
- Department of Chemistry, Dayalbagh Educational Institute, Agra, India
| | - Saleem Javed
- Department of Chemistry, Institute of H. Science, Dr. Bhimrao Ambedkar University, Agra, India
| |
Collapse
|
33
|
Muthukumar R, Karnan M, Elangovan N, Karunanidhi M, Thomas R. Synthesis, spectral analysis, antibacterial activity, quantum chemical studies and supporting molecular docking of Schiff base (E)-4-((4-bromobenzylidene) amino)benzenesulfonamide. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Geethapriya J, Shanthidevi A, Arivazhagan M, Elangovan N, Thomas R. Synthesis, structural, DFT, quantum chemical modeling and molecular docking studies of (E)-4-(((5-methylfuran-2-yl)methylene)amino) benzenesulfonamide from 5-methyl-2-furaldehyde and sulfanilamide. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Chetry N, Gomti Devi T, Karlo T. Synthesis and characterization of metal complex amino acid using spectroscopic methods and theoretical calculation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131670] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Shi C, Liu M, Zhao H, Lv Z, Liang L, Zhang B. A Novel Insight into Screening for Antioxidant Peptides from Hazelnut Protein: Based on the Properties of Amino Acid Residues. Antioxidants (Basel) 2022; 11:antiox11010127. [PMID: 35052631 PMCID: PMC8772696 DOI: 10.3390/antiox11010127] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/25/2021] [Accepted: 12/26/2021] [Indexed: 12/13/2022] Open
Abstract
This study used the properties of amino acid residues to screen antioxidant peptides from hazelnut protein. It was confirmed that the type and position of amino acid residues, grand average of hydropathy, and molecular weight of a peptide could be comprehensively applied to obtain desirable antioxidants after analyzing the information of synthesized dipeptides and BIOPEP database. As a result, six peptides, FSEY, QIESW, SEGFEW, IDLGTTY, GEGFFEM, and NLNQCQRYM were identified from hazelnut protein hydrolysates with higher antioxidant capacity than reduced Glutathione (GSH) against linoleic acid oxidation. The peptides having Tyr residue at C-terminal were found to prohibit the oxidation of linoleic acid better than others. Among them, peptide FSEY inhibited the rancidity of hazelnut oil very well in an oil-in-water emulsion. Additionally, quantum chemical parameters proved Tyr-residue to act as the active site of FSEY are responsible for its antioxidation. This is the first presentation of a novel approach to excavating desired antioxidant peptides against lipid oxidation from hazelnut protein via the properties of amino acid residues.
Collapse
Affiliation(s)
- Chenshan Shi
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (C.S.); (M.L.); (H.Z.); (Z.L.)
| | - Miaomiao Liu
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (C.S.); (M.L.); (H.Z.); (Z.L.)
| | - Hongfei Zhao
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (C.S.); (M.L.); (H.Z.); (Z.L.)
| | - Zhaolin Lv
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (C.S.); (M.L.); (H.Z.); (Z.L.)
| | - Lisong Liang
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100091, China
- National Innovation Alliance of Hazelnut Industry, Beijing 100091, China
- Correspondence: (L.L.); (B.Z.); Tel.: +86-010-6288-9634 (L.L.); +86-010-6233-8221 (B.Z.)
| | - Bolin Zhang
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (C.S.); (M.L.); (H.Z.); (Z.L.)
- Correspondence: (L.L.); (B.Z.); Tel.: +86-010-6288-9634 (L.L.); +86-010-6233-8221 (B.Z.)
| |
Collapse
|
37
|
Suganya S, Saravanan K, Jaganathan R, Kumaradhas P. Salt formation, hydrogen-bonding patterns and supramolecular architectures of acridine with salicylic and hippuric acid molecules. Acta Crystallogr C 2021; 77:790-799. [PMID: 34864722 DOI: 10.1107/s2053229621011189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/25/2021] [Indexed: 11/10/2022] Open
Abstract
The intermolecular interactions and salt formation of acridine with 4-aminosalicylic acid, 5-chlorosalicylic acid and hippuric acid were investigated. The salts obtained were acridin-1-ium 4-aminosalicylate (4-amino-2-hydroxybenzoate), C13H10N+·C7H6NO3- (I), acridin-1-ium 5-chlorosalicylate (5-chloro-2-hydroxybenzoate), C13H10N+·C7H4ClO3- (II), and acridin-1-ium hippurate (2-benzamidoacetate) monohydrate, C13H10N+·C9H8NO3-·H2O (III). Acridine is involved in strong intermolecular interactions with the hydroxy group of the three acids, enabling it to form supramolecular assemblies. Hirshfeld surfaces, fingerprint plots and enrichment ratios were generated and investigated, and the intermolecular interactions were analyzed, revealing their quantitative contributions in the crystal packing of salts I, II and III. A quantum theory of atoms in molecules (QTAIM) analysis shows the charge-density distribution of the intermolecular interactions. The isosurfaces of the noncovalent interactions were studied, which allows visualization of where the hydrogen-bonding and dispersion interactions contribute within the crystal.
Collapse
Affiliation(s)
- Suresh Suganya
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem 636 011, India
| | | | - Ramakrishnan Jaganathan
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem 636 011, India
| | - Poomani Kumaradhas
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem 636 011, India
| |
Collapse
|
38
|
Soykan U, Sert Y, Yıldırım G. DFT, Molecular Docking and Drug-likeness Analysis: Acrylate molecule bearing perfluorinated pendant unit. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
39
|
Govindammal M, Prasath M, Kamaraj S, Muthu S, Selvapandiyan M. Exploring the molecular structure, vibrational spectroscopic, quantum chemical calculation and molecular docking studies of curcumin: A potential PI3K/AKT uptake inhibitor. Heliyon 2021; 7:e06646. [PMID: 33898809 PMCID: PMC8056428 DOI: 10.1016/j.heliyon.2021.e06646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/16/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
The IUPAC name of curcumin is (1E, 6E)-1,7-Bis(4-hydroxy-3methoxyphenyl) hepta-1,6-e-3,5-dione (7B3M5D) and is characterized by spectroscopic profiling with FT-IR and FT-Raman spectra obtained both experimentally and theoretically. PED analysis was done for the confirmation of minimum energy obtained in the title compound. Optimized geometrical parameters are compared with experimental values obtained for 7B3M5D by utilizing B3LYP functional employing 6–311++G (d,p) level of theory. The HOMO-LUMO, MEP, and Fukui function analysis has been used to elucidate the information regarding charge transfer within the molecule. The stabilization energy and charge delocalization of the 7B3M5D were performed by NBO analysis. This article assesses that the title compound act as a potential inhibitor of the PI3K/AKT inhibitor through in silico studies, like molecular docking, molecular dynamics (MD), ADMET prediction and also this molecule obeys Lipinski's rule of five. 7B3M5D was docked effectively in the active site of PI3K/AKT inhibitor.
Collapse
Affiliation(s)
- M Govindammal
- Department of Physics, Periyar University PG Extension Centre, Dharmapuri, 636701, India
| | - M Prasath
- Department of Physics, Periyar University PG Extension Centre, Dharmapuri, 636701, India
| | - S Kamaraj
- Department of Biotechnology, Periyar University PG Extension Centre, Dharmapuri, India
| | - S Muthu
- Department of Physics, Arignar Anna Govt. Arts College, Cheyyar, 604407, Tamilnadu, India
| | - M Selvapandiyan
- Department of Physics, Periyar University PG Extension Centre, Dharmapuri, 636701, India
| |
Collapse
|
40
|
Spectroscopic (FT-IR, FT-Raman) investigations, quantum chemical calculations, ADMET and molecular docking studies of phloretin with B-RAF inhibitor. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01576-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Experimental approach, theoretical investigation and molecular docking of 2- chloro-5-fluoro phenol antibacterial compound. Heliyon 2020; 6:e05464. [PMID: 33251354 PMCID: PMC7679262 DOI: 10.1016/j.heliyon.2020.e05464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 11/22/2022] Open
Abstract
The molecular structural dimerization of biologically potent 2-chloro-5-fluoro phenol (2C5FP) is optimized. A combined experimental and theoretical characteristics of vibrational spectral determinations (NMR, FT-IR and Raman) on 2-chloro-5-fluoro phenol (2C5FP) were used at DFT-B3LYP/6–31++G (d,p) level of computation. A close coherence is achieved when experimentally observed wave numbers are compared with calculated wave numbers by refinement of the scale factors. Calculated values of global chemical descriptors of the present molecule reveal significant molecular stability and chemical reactivity. Non-Linear optical (NLO) property of the present molecule is investigated by determining the second order non linear parameter of first hyperpolarizability β. Moreover, hydrogen bond and thermodynamic parameters at various temperatures are determined and discussed. Investigated compound 2C5FP possesses a better antibacterial activity against Echerichia coli, Streptococcus aureus, Pseudomonas aureus,and Staphylococcus aureus, respectively. The title molecule is subjected to molecular docking studies with two different proteins, namely Staphylococcus aureus Tyrosyl-tRNA synthetase (PDB ID: 1JIL) and human dihydroorotate dehydrogenase (hDHODH) (PDB ID: 6CJF). The results of molecular docking analysis support the antibacterial activity and demonstrate a strong interaction with the DHODH inhibitor.
Collapse
|