1
|
Guo K, Duan J, Jing X, Zhang X, Ding Q, Dong Z, Xia Q, Zhao P. Silk components and properties of the multilayer cocoon of the greater wax moth, Galleria mellonella. INSECT SCIENCE 2025. [PMID: 40296465 DOI: 10.1111/1744-7917.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/13/2025] [Accepted: 02/26/2025] [Indexed: 04/30/2025]
Abstract
The greater wax moth Galleria mellonella is a major pest of brood combs, and produces large quantities of strong, elastic silk in the environment. However, little research has been conducted on the silk glands (SGs), silk composition and functions of G. mellonella. In this study, we compared the morphologies of the SGs of G. mellonella and Bombyx mori and found that the nuclei of the anterior SGs differ distinctly. We also investigated the protein components and morphology of the G. mellonella cocoon in terms of its multilayer structure. Proteomic analyses identified 158 secretory proteins across the various cocoon layers. Fibroin, sericin, seroin and adhesive proteins were the most abundant proteins. The expression patterns of the major silk genes were investigated, and the results revealed the specific expression of P16 and Seroin3 genes in the anterior SG. Scanning electron microscopy and proteomic analyses of the cocoon layers showed that the sericin contents in the outermost and middle layers were significantly higher than that in the innermost layer. We extracted the soluble proteins from the different cocoon layers and evaluated their antimicrobial activities in vitro. Only the outermost cocoon layer showed antibacterial activity against Escherichia coli. Mechanical property tests showed that G. mellonella silk was stronger than B. mori silk. Our study provides important information on the composition and properties of G. mellonella cocoon silk, and serves as a basis for future research and use.
Collapse
Affiliation(s)
- Kaiyu Guo
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| | - Jingmin Duan
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| | - Xinyuan Jing
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| | - Xiaolu Zhang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| | - Qiao Ding
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| | - Zhaoming Dong
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| | - Qingyou Xia
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| | - Ping Zhao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Chourasia R, Abedin MM, Phukon LC, Sarkar P, Sharma S, Sahoo D, Singh SP, Kumar Rai A. Unearthing novel and multifunctional peptides in peptidome of fermented chhurpi cheese of Indian Himalayan region. Food Res Int 2025; 201:115651. [PMID: 39849787 DOI: 10.1016/j.foodres.2024.115651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/21/2024] [Accepted: 12/29/2024] [Indexed: 01/25/2025]
Abstract
Fermented foods of the Indian Himalaya are unexplored functional resources with high nutritional potential. Chhurpi cheese, fermented by defined native proteolytic lactic acid bacteria of Sikkim was assessed for ACE inhibitory, HOCl reducing, and MPO inhibitory, activity across varying stages of gastrointestinal (GI) digestion. The enhanced bioactivity of Lactobacillus delbrueckii WS4 chhurpi was associated with the generation of bioactive and multifunctional peptides during fermentation and GI digestion. Qualitative and quantitative in silico tools were employed for prediction of ACE inhibitory activity of novel chhurpi peptides. Selected peptides, with highest predictive ACE inhibitory potential were synthesized and in vitro validation revealed the ACE inhibitory potential of peptides HPHPHLSFM and LKPTPEGDL. LKPTPEGDL showed the most potent ACE inhibitory activity (IC50 of 25.82 ± 0.26 µmol) which slightly decreased upon GI digestion. The peptides demonstrated a non-competitive type mixed ACE inhibition modality. Furthermore, the two peptides exerted observable HOCl reducing and MPO inhibitory activity, demonstrating their antioxidative potential. HPHPHLSFM exhibited superior HOCl reduction (EC50 of 0.29 ± 0.01 mmol), while LKPTPEGDL demonstrated higher MPO (IC50 of 0.29 ± 0.01 mmol) inhibition. Molecular docking of the two peptides with MPO revealed proline and aspartate near peptidyl C-terminus to bind with enzyme catalytic residues. This study presents the first peptidome analysis of chhurpi produced through controlled fermentation and identifies novel peptides with MPO and ACE inhibitory activity. Furthermore, it marks the first synthesis and in vitro bioactivity validation of bioactive peptides from chhurpi cheese, highlighting its multifunctional potential.
Collapse
Affiliation(s)
- Rounak Chourasia
- National Agri-Food and Biomanufacturing Institute, SAS Nagar, Mohali, India; Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India
| | - Md Minhajul Abedin
- National Agri-Food and Biomanufacturing Institute, SAS Nagar, Mohali, India
| | | | - Puja Sarkar
- National Agri-Food and Biomanufacturing Institute, SAS Nagar, Mohali, India; Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India
| | - Swati Sharma
- Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India; Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab, India
| | - Dinabandhu Sahoo
- Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India; Department of Botany, University of Delhi, New Delhi, India
| | - Sudhir Pratap Singh
- Center of Innovative and Applied Bioprocessing, SAS Nagar, Mohali, India; Department of Industrial Biotechnology, Gujarat Biotechnology University, GIFT City, Shahpur, Gandhinagar, Gujarat, India.
| | - Amit Kumar Rai
- National Agri-Food and Biomanufacturing Institute, SAS Nagar, Mohali, India; Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India.
| |
Collapse
|
3
|
Generation of wild-type rat Glucocerebrosidase homology modeling: Identification of putative interactions site and mechanism for chaperone using combined in-silico and in-vitro studies. Bioorg Chem 2022; 126:105871. [DOI: 10.1016/j.bioorg.2022.105871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022]
|
4
|
Zheng W, Shen C, Wang L, Rawson S, Xie WJ, Nist-Lund C, Wu J, Shen Z, Xia S, Holt JR, Wu H, Fu TM. pH regulates potassium conductance and drives a constitutive proton current in human TMEM175. SCIENCE ADVANCES 2022; 8:eabm1568. [PMID: 35333573 PMCID: PMC8956256 DOI: 10.1126/sciadv.abm1568] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 02/03/2022] [Indexed: 06/01/2023]
Abstract
Human TMEM175, a noncanonical potassium (K+) channel in endolysosomes, contributes to their pH stability and is implicated in the pathogenesis of Parkinson's disease (PD). Structurally, the TMEM175 family exhibits an architecture distinct from canonical potassium channels, as it lacks the typical TVGYG selectivity filter. Here, we show that human TMEM175 not only exhibits pH-dependent structural changes that reduce K+ permeation at acidic pH but also displays proton permeation. TMEM175 constitutively conducts K+ at pH 7.4 but displays reduced K+ permeation at lower pH. In contrast, proton current through TMEM175 increases with decreasing pH because of the increased proton gradient. Molecular dynamics simulation, structure-based mutagenesis, and electrophysiological analysis suggest that K+ ions and protons share the same permeation pathway. The M393T variant of human TMEM175 associated with PD shows reduced function in both K+ and proton permeation. Together, our structural and electrophysiological analysis reveals a mechanism of TMEM175 regulation by pH.
Collapse
Affiliation(s)
- Wang Zheng
- Departments of Otolaryngology and Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chen Shen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Longfei Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Shaun Rawson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Wen Jun Xie
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Carl Nist-Lund
- Departments of Otolaryngology and Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jason Wu
- Departments of Otolaryngology and Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zhangfei Shen
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Shiyu Xia
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Jeffrey R. Holt
- Departments of Otolaryngology and Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Tian-Min Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Mehendale N, Mallik R, Kamat SS. Mapping Sphingolipid Metabolism Pathways during Phagosomal Maturation. ACS Chem Biol 2021; 16:2757-2765. [PMID: 34647453 DOI: 10.1021/acschembio.1c00393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phagocytosis is an important physiological process, which, in higher organisms, is a means of fighting infections and clearing cellular debris. During phagocytosis, detrimental foreign particles (e.g. pathogens and apoptotic cells) are engulfed by phagocytes (e.g. macrophages), enclosed in membrane-bound vesicles called phagosomes, and transported to the lysosome for eventual detoxification. During this well-choreographed process, the nascent phagosome (also called early phagosome, EP) undergoes a series of spatiotemporally regulated changes in its protein and lipid composition and matures into a late phagosome (LP), which subsequently fuses with the lysosomal membrane to form the phagolysosome. While several elegant proteomic studies have identified the role of unique proteins during phagosomal maturation, the corresponding lipidomic studies are sparse. Recently, we reported a comparative lipidomic analysis between EPs and LPs and showed that ceramides are enriched on the LPs. Further, we found that this ceramide accumulation on LPs was orchestrated by ceramide synthase 2, inhibition of which hampers phagosomal maturation. Following up on this study, here, using biochemical assays, we first show that the increased ceramidase activity on EPs also significantly contributes to the accumulation of ceramides on LPs. Next, leveraging lipidomics, we show that de novo ceramide synthesis does not significantly contribute to the ceramide accumulation on LPs, while concomitant to increased ceramides, glucosylceramides are substantially elevated on LPs. We validate this interesting finding using biochemical assays and show that LPs indeed have heightened glucosylceramide synthase activity. Taken together, our studies provide interesting insights and possible new roles of sphingolipid metabolism during phagosomal maturation.
Collapse
Affiliation(s)
- Neelay Mehendale
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Roop Mallik
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Powai, Mumbai 400076, India
| | - Siddhesh S. Kamat
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|