1
|
Siegbahn M, Jörgens D, Asp F, Hultcrantz M, Moreno R, Engmér Berglin C. Asymmetry in Cortical Thickness of the Heschl's Gyrus in Unilateral Ear Canal Atresia. Otol Neurotol 2024; 45:e342-e350. [PMID: 38361347 DOI: 10.1097/mao.0000000000004137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
HYPOTHESIS Unilateral congenital conductive hearing impairment in ear canal atresia leads to atrophy of the gray matter of the contralateral primary auditory cortex or changes in asymmetry pattern if left untreated in childhood. BACKGROUND Unilateral ear canal atresia with associated severe conductive hearing loss results in deteriorated sound localization and difficulties in understanding of speech in a noisy environment. Cortical atrophy in the Heschl's gyrus has been reported in acquired sensorineural hearing loss but has not been studied in unilateral conductive hearing loss. METHODS We obtained T1w and T2w FLAIR MRI data from 17 subjects with unilateral congenital ear canal atresia and 17 matched controls. Gray matter volume and thickness were measured in the Heschl's gyrus using Freesurfer. RESULTS In unilateral congenital ear canal atresia, Heschl's gyrus exhibited cortical thickness asymmetry (right thicker than left, corrected p = 0.0012, mean difference 0.25 mm), while controls had symmetric findings. Gray matter volume and total thickness did not differ from controls with normal hearing. CONCLUSION We observed cortical thickness asymmetry in congenital unilateral ear canal atresia but no evidence of contralateral cortex atrophy. Further research is needed to understand the implications of this asymmetry on central auditory processing deficits.
Collapse
Affiliation(s)
| | - Daniel Jörgens
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Filip Asp
- Division of ENT diseases, Department of Clinical Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Malou Hultcrantz
- Division of ENT diseases, Department of Clinical Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Rodrigo Moreno
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Stockholm, Sweden
| | | |
Collapse
|
2
|
Li YT, Bai K, Li GZ, Hu B, Chen JW, Shang YX, Yu Y, Chen ZH, Zhang C, Yan LF, Cui GB, Lu LJ, Wang W. Functional to structural plasticity in unilateral sudden sensorineural hearing loss: neuroimaging evidence. Neuroimage 2023; 283:120437. [PMID: 37924896 DOI: 10.1016/j.neuroimage.2023.120437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
A cortical plasticity after long-duration single side deafness (SSD) is advocated with neuroimaging evidence while little is known about the short-duration SSDs. In this case-cohort study, we recruited unilateral sudden sensorineural hearing loss (SSNHL) patients and age-, gender-matched health controls (HC), followed by comprehensive neuroimaging analyses. The primary outcome measures were temporal alterations of varied dynamic functional network connectivity (dFNC) states, neurovascular coupling (NVC) and brain region volume at different stages of SSNHL. The secondary outcome measures were pure-tone audiograms of SSNHL patients before and after treatment. A total of 38 SSNHL patients (21 [55%] male; mean [standard deviation] age, 45.05 [15.83] years) and 44 HC (28 [64%] male; mean [standard deviation] age, 43.55 [12.80] years) were enrolled. SSNHL patients were categorized into subgroups based on the time from disease onset to the initial magnetic resonance imaging scan: early- (n = 16; 1-6 days), intermediate- (n = 9; 7-13 days), and late- stage (n = 13; 14-30 days) groups. We first identified slow state transitions between varied dFNC states at early-stage SSNHL, then revealed the decreased NVC restricted to the auditory cortex at the intermediate- and late-stage SSNHL. Finally, a significantly decreased volume of the left medial superior frontal gyrus (SFGmed) was observed only in the late-stage SSNHL cohort. Furthermore, the volume of the left SFGmed is robustly correlated with both disease duration and patient prognosis. Our study offered neuroimaging evidence for the evolvement from functional to structural brain alterations of SSNHL patients with disease duration less than 1 month, which may explain, from a neuroimaging perspective, why early-stage SSNHL patients have better therapeutic responses and hearing recovery.
Collapse
Affiliation(s)
- Yu-Ting Li
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an 710038, Shaanxi, China.
| | - Ke Bai
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an 710038, Shaanxi, China.
| | - Gan-Ze Li
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an 710038, Shaanxi, China.
| | - Bo Hu
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an 710038, Shaanxi, China.
| | - Jia-Wei Chen
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China.
| | - Yu-Xuan Shang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an 710038, Shaanxi, China.
| | - Ying Yu
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an 710038, Shaanxi, China.
| | - Zhu-Hong Chen
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an 710038, Shaanxi, China.
| | - Chi Zhang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an 710038, Shaanxi, China.
| | - Lin-Feng Yan
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an 710038, Shaanxi, China.
| | - Guang-Bin Cui
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an 710038, Shaanxi, China.
| | - Lian-Jun Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China.
| | - Wen Wang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an 710038, Shaanxi, China.
| |
Collapse
|
3
|
Li J, Yu X, Zou Y, Leng Y, Yang F, Liu B, Fan W. Altered static and dynamic intrinsic brain activity in unilateral sudden sensorineural hearing loss. Front Neurosci 2023; 17:1257729. [PMID: 37719156 PMCID: PMC10500124 DOI: 10.3389/fnins.2023.1257729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/09/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction Sudden sensorineural hearing loss (SSHL) is a critical otologic emergency characterized by a rapid decline of at least 30 dB across three consecutive frequencies in the pure-tone audiogram within a 72-hour period. This audiological condition has been associated with alterations in brain cortical and subcortical structures, as well as changes in brain functional activities involving multiple networks. However, the extent of cerebral intrinsic brain activity disruption in SSHL remains poorly understood. The aimed of this study is to investigate intrinsic brain activity alterations in SSHL using static and dynamic fractional amplitude of low-frequency fluctuation (fALFF) analysis. Methods Resting-state functional magnetic resonance imaging (fMRI) data were acquired from a cohort of SSHL patients (unilateral, n = 102) and healthy controls (n = 73). Static and dynamic fALFF methods were employed to analyze the acquired fMRI data, enabling a comprehensive examination of intrinsic brain activity changes in SSHL. Results Our analysis revealed significant differences in static fALFF patterns between SSHL patients and healthy controls. SSHL patients exhibited decreased fALFF in the left fusiform gyrus, left precentral gyrus, and right inferior frontal gyrus, alongside increased fALFF in the left inferior frontal gyrus, left superior frontal gyrus, and right middle temporal gyrus. Additionally, dynamic fALFF analysis demonstrated elevated fALFF in the right superior frontal gyrus and right middle frontal gyrus among SSHL patients. Intriguingly, we observed a positive correlation between static fALFF in the left fusiform gyrus and the duration of hearing loss, shedding light on potential temporal dynamics associated with intrinsic brain activity changes. Discussion The observed disruptions in intrinsic brain activity and temporal dynamics among SSHL patients provide valuable insights into the functional reorganization and potential compensatory mechanisms linked to hearing loss. These findings underscore the importance of understanding the underlying neural alterations in SSHL, which could pave the way for the development of targeted interventions and rehabilitation strategies aimed at optimizing SSHL management.
Collapse
Affiliation(s)
- Jing Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiaocheng Yu
- Department of Thyroid and Breast Surgery, Wuhan No. 1 Hospital, Wuhan, China
| | - Yan Zou
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yangming Leng
- Department of Otorhinolaryngology Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Bo Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenliang Fan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
4
|
Tang H, Bie Z, Wang B, Yang Z, Li P, Wang X, Liu P. The characteristics of brain structural remodeling in patients with unilateral vestibular schwannoma. J Neurooncol 2023; 162:79-91. [PMID: 36808599 DOI: 10.1007/s11060-023-04247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/23/2023] [Indexed: 02/23/2023]
Abstract
PURPOSE Brain structural remodeling alters related brain function. However, few studies have assessed morphological alterations of unilateral vestibular schwannoma (VS) patients. Therefore, this study examined the characteristics of brain structural remodeling in unilateral VS patients. METHODS We recruited 39 patients with unilateral VS (19 left, 20 right) and 24 matched normal controls (NCs). We obtained brain structural imaging data using 3T T1-weighted anatomical and diffusion tensor imaging scans. Then, we evaluated both gray and white matter (WM) changes using FreeSurfer software and tract-based spatial statistics, respectively. Furthermore, we constructed a structural covariance network to assess brain structural network properties and the connectivity strength between brain regions. RESULTS Compared with NCs, VS patients showed cortical thickening in non-auditory areas (e.g., the left precuneus), especially left VS patients, along with reduced cortical thickness in the right superior temporal gyrus (auditory areas). VS patients also showed increased fractional anisotropy in extensive non-auditory-related WM (e.g., the superior longitudinal fasciculus), especially right VS patients. Both left and right VS patients showed increased small-worldness (more efficient information transfer). Left VS patients had a single reduced-connectivity subnetwork in contralateral temporal regions (right-side auditory areas), but increased connectivity between some non-auditory regions (e.g., left precuneus and left temporal pole). CONCLUSION VS patients exhibited greater morphological alterations in non-auditory than auditory areas, with structural reductions seen in related auditory areas and a compensatory increase in non-auditory areas. Left and right VS patients show differential patterns of brain structural remodeling. These findings provide a new perspective on the treatment and postoperative rehabilitation of VS.
Collapse
Affiliation(s)
- Hanlu Tang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Zhixu Bie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Bo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Zhijun Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Peng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xingchao Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Pinan Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Department of Neural Reconstruction, Beijing Neurosurgery Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Kim JH, Shim L, Bahng J, Lee HJ. Proficiency in Using Level Cue for Sound Localization Is Related to the Auditory Cortical Structure in Patients With Single-Sided Deafness. Front Neurosci 2021; 15:749824. [PMID: 34707477 PMCID: PMC8542703 DOI: 10.3389/fnins.2021.749824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Spatial hearing, which largely relies on binaural time/level cues, is a challenge for patients with asymmetric hearing. The degree of the deficit is largely variable, and better sound localization performance is frequently reported. Studies on the compensatory mechanism revealed that monaural level cues and monoaural spectral cues contribute to variable behavior in those patients who lack binaural spatial cues. However, changes in the monaural level cues have not yet been separately investigated. In this study, the use of the level cue in sound localization was measured using stimuli of 1 kHz at a fixed level in patients with single-sided deafness (SSD), the most severe form of asymmetric hearing. The mean absolute error (MAE) was calculated and related to the duration/age onset of SSD. To elucidate the biological correlate of this variable behavior, sound localization ability was compared with the cortical volume of the parcellated auditory cortex. In both SSD patients (n = 26) and normal controls with one ear acutely plugged (n = 23), localization performance was best on the intact ear side; otherwise, there was wide interindividual variability. In the SSD group, the MAE on the intact ear side was worse than that of the acutely plugged controls, and it deteriorated with longer duration/younger age at SSD onset. On the impaired ear side, MAE improved with longer duration/younger age at SSD onset. Performance asymmetry across lateral hemifields decreased in the SSD group, and the maximum decrease was observed with the most extended duration/youngest age at SSD onset. The decreased functional asymmetry in patients with right SSD was related to greater cortical volumes in the right posterior superior temporal gyrus and the left planum temporale, which are typically involved in auditory spatial processing. The study results suggest that structural plasticity in the auditory cortex is related to behavioral changes in sound localization when utilizing monaural level cues in patients with SSD.
Collapse
Affiliation(s)
- Ja Hee Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University College of Medicine, Chuncheon, South Korea.,Laboratory of Brain & Cognitive Sciences for Convergence Medicine, Hallym University College of Medicine, Anyang, South Korea
| | - Leeseul Shim
- Laboratory of Brain & Cognitive Sciences for Convergence Medicine, Hallym University College of Medicine, Anyang, South Korea
| | - Junghwa Bahng
- Department of Audiology and Speech-Language Pathology, Hallym University of Graduate Studies, Seoul, South Korea
| | - Hyo-Jeong Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University College of Medicine, Chuncheon, South Korea.,Laboratory of Brain & Cognitive Sciences for Convergence Medicine, Hallym University College of Medicine, Anyang, South Korea
| |
Collapse
|