1
|
Kocot N, Pękala E, Koczurkiewicz-Adamczyk P, Chłoń-Rzepa G, Łapa A, Wójcik-Pszczoła K. Airway and cardiovascular remodeling in chronic obstructive pulmonary disease (COPD) as a target for transient receptor potential ankyrin 1 (TRPA1) channel modulators. Bioorg Chem 2025; 158:108301. [PMID: 40058223 DOI: 10.1016/j.bioorg.2025.108301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/06/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation, which leads to airway remodeling (AR). AR refers to various structural changes occurring in the airway wall, resulting in thickening, and narrowing of the airways. Apart from airways, and lung tissue, pulmonary vasculature also undergoes remodeling. Thus, the pressure in vascular bed is increased, leading to pulmonary hypertension and further right and left ventricle hypertrophy, as well as myocardial fibrosis. Currently, there is lack of effective treatment directly targeting airway and cardiovascular remodeling in the course of COPD. Due to a lot of research showing involvement of transient receptor potential ankyrin 1 (TRPA1) in respiratory disorders, it seems reasonable to consider this ion channel as a molecular target in treatment of remodeling consequences of COPD. The aim of this review is to summarize current knowledge of its role in this case and to identify areas requiring further research. Moreover, we provide few patented structures intended to treat chronic respiratory diseases, which may be worth investigating in the context of airway remodeling.
Collapse
Affiliation(s)
- Natalia Kocot
- Jagiellonian University, Doctoral School of Medical and Health Sciences, Łazarza 16, 31-530 Kraków, Poland; Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland.
| | - Elżbieta Pękala
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland.
| | - Paulina Koczurkiewicz-Adamczyk
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland.
| | - Grażyna Chłoń-Rzepa
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, Medyczna 9, 30-688 Kraków, Poland.
| | - Aleksandra Łapa
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland.
| | - Katarzyna Wójcik-Pszczoła
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland.
| |
Collapse
|
2
|
Steib A, Rozmer K, Szőke É, Kun J, Farkas N, Feller D, Pongrácz J, Pohóczky K, Helyes Z. The TRPA1 cation channel is upregulated by cigarette smoke in mouse and human macrophages modulating lung inflammation. Sci Rep 2025; 15:10661. [PMID: 40148437 PMCID: PMC11950515 DOI: 10.1038/s41598-025-95662-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/24/2025] [Indexed: 03/29/2025] Open
Abstract
Cigarette smoke (CS) is a well-known source of several inflammatory, cytotoxic and genotoxic compounds that cause chronic lung diseases. The transient receptor potential ankyrin 1 (TRPA1), a smoking-responsive, non-selective cation channel, is expressed by both capsaicin-sensitive peptidergic sensory nerves and non-neuronal cells of the lung, but there are few and controversial data on its expression and function on macrophages. Here, we investigated TRPA1 mRNA and protein expression in mouse and human lung tissues and human 3D spheroids, with a particular focus on its expression and potential regulatory effects on pro- and anti-inflammatory macrophage functions in response to CS. TRPA1 was stably expressed in both human and mouse alveolar macrophages, being upregulated after CS exposure and its functional activity was demonstrated in mouse macrophage culture. Moreover, besides CS, the TRPA1 genotype itself affected the expression of M1- (Il-1β, Il-23) and M2-type (Il-10, Tgfβ) macrophage cytokines. Furthermore, CS extract increased TRPA1 mRNA in human lung spheroids showing more prominent expression in macrophage-containing 3D aggregates, while CS extract influenced an elevated TGFβ expression specifically in macrophage-containing spheroids. These results suggest the fine-tuning role of TRPA1 activation in CS-induced airway inflammation, particularly in macrophages, but further studies are needed to draw precise conclusions.
Collapse
Affiliation(s)
- Anita Steib
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Hungarian Research Network, Chronic Pain Research Group (HUN-REN PTE), Pécs, Hungary
| | - Katalin Rozmer
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Hungarian Research Network, Chronic Pain Research Group (HUN-REN PTE), Pécs, Hungary
- Institute of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Hungarian Research Network, Chronic Pain Research Group (HUN-REN PTE), Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
| | - József Kun
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
- Hungarian Centre for Genomics and Bioinformatics, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Nelli Farkas
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, Hungary
| | - Diána Feller
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Judit Pongrácz
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Krisztina Pohóczky
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary.
- National Laboratory for Drug Research and Development, Budapest, Hungary.
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary.
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Hungarian Research Network, Chronic Pain Research Group (HUN-REN PTE), Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
- PharmInVivo Ltd., Pécs, Hungary
| |
Collapse
|
3
|
Moccia F, Totaro A, Guerra G, Testa G. Ca 2+ Signaling in Cardiac Fibroblasts: An Emerging Signaling Pathway Driving Fibrotic Remodeling in Cardiac Disorders. Biomedicines 2025; 13:734. [PMID: 40149710 PMCID: PMC11940070 DOI: 10.3390/biomedicines13030734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025] Open
Abstract
Cardiac fibrosis is a scarring event that occurs in the myocardium in response to multiple cardiovascular disorders, such as acute myocardial infarction (AMI), ischemic cardiomyopathy, dilated cardiomyopathy, hypertensive heart disease, inflammatory heart disease, diabetic cardiomyopathy, and aortic stenosis. Fibrotic remodeling is mainly sustained by the differentiation of fibroblasts into myofibroblasts, which synthesize and secrete most of the extracellular matrix (ECM) proteins. An increase in the intracellular Ca2+ concentration ([Ca2+]i) in cardiac fibroblasts is emerging as a critical mediator of the fibrogenic signaling cascade. Herein, we review the mechanisms that may shape intracellular Ca2+ signals involved in fibroblast transdifferentiation into myofibroblasts. We focus our attention on the functional interplay between inositol-1,4,5-trisphosphate (InsP3) receptors (InsP3Rs) and store-operated Ca2+ entry (SOCE). In accordance with this, InsP3Rs and SOCE drive the Ca2+ response elicited by Gq-protein coupled receptors (GqPCRs) that promote fibrotic remodeling. Then, we describe the additional mechanisms that sustain extracellular Ca2+ entry, including receptor-operated Ca2+ entry (ROCE), P2X receptors, Transient Receptor Potential (TRP) channels, and Piezo1 channels. In parallel, we discuss the pharmacological manipulation of the Ca2+ handling machinery as a promising approach to mitigate or reverse fibrotic remodeling in cardiac disorders.
Collapse
Affiliation(s)
- Francesco Moccia
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (A.T.); (G.G.); (G.T.)
| | | | | | | |
Collapse
|
4
|
Alibrahem W, Nguyen DHH, Kharrat Helu N, Tóth F, Nagy PT, Posta J, Prokisch J, Oláh C. Health Benefits, Applications, and Analytical Methods of Freshly Produced Allyl Isothiocyanate. Foods 2025; 14:579. [PMID: 40002023 PMCID: PMC11853810 DOI: 10.3390/foods14040579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Allyl isothiocyanate (AITC) is a low-molecular-weight natural chemical predominantly obtained from the autolysis of sinigrin, a glucosinolate found in cruciferous vegetables like mustard, horseradish, and wasabi. AITC has sparked widespread interest due to its various biological actions, which include strong antioxidant, anti-inflammatory, antibacterial, and anticancer capabilities. This compound offers promising potential in several fields, particularly in food preservation, medicine, and enhancing food quality through natural means. AITC's effectiveness against a broad spectrum of microorganisms, including foodborne pathogens and spoilage agents, makes it an attractive natural alternative to synthetic preservatives. The potential to extend the shelf life of perishable foods makes AITC an important tool for food production, meeting rising customer demand for natural additives. In addition to its antimicrobial effects, AITC demonstrates significant anti-inflammatory activity, reducing levels of pro-inflammatory cytokines and modulating key signaling pathways, which could make it valuable in managing chronic inflammatory conditions. Furthermore, emerging research highlights its potential in cancer prevention and treatment, as AITC has been demonstrated to induce apoptosis and inhibit cell increase in several cancer cell lines, offering a natural approach to chemoprevention. This review delves into the chemical structure, metabolism, and bioavailability of freshly produced AITC, providing a comprehensive overview of its beneficial properties. Challenges related to AITC's volatility, dosage optimization, and regulatory considerations are also discussed, alongside future research directions to enhance the stability and efficacy of AITC-based formulations. The findings underscore AITC's role as a versatile bioactive compound with known potential to support human health and the sustainable food industry.
Collapse
Affiliation(s)
- Walaa Alibrahem
- Doctoral School of Health Sciences, University of Debrecen, Egyetem tér 1, 4028 Debrecen, Hungary;
| | - Duyen H. H. Nguyen
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary; (D.H.H.N.); (J.P.)
| | - Nihad Kharrat Helu
- Doctoral School of Health Sciences, University of Debrecen, Egyetem tér 1, 4028 Debrecen, Hungary;
| | - Florence Tóth
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Water and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary; (F.T.); (P.T.N.)
| | - Péter Tamás Nagy
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Water and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary; (F.T.); (P.T.N.)
| | - János Posta
- Health Care Service Units, Diagnostic Units, Forensic Medicine, University of Debrecen Clinical Center, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary;
| | - József Prokisch
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary; (D.H.H.N.); (J.P.)
| | - Csaba Oláh
- Mathias Institute, University of Tokaj, Eötvös Str. 7, 3950 Sárospatak, Hungary;
- Neurosurgery Department, Borsod County University Teaching Hospital, Szentpéteri kapu 72-76, 3526 Miskolc, Hungary
| |
Collapse
|
5
|
Ferara N, Balta V, Đikić D, Odeh D, Mojsović-Ćuić A, Feher Turković L, Dilber D, Beletić A, Landeka Jurčević I, Šola I. The Effect of the Glucosinolate Sinigrin on Alterations in Molecular Biomarkers of the Myocardium in Swiss Mice. Foods 2025; 14:327. [PMID: 39856994 PMCID: PMC11765020 DOI: 10.3390/foods14020327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/27/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Glucosinolates are chemically stable compounds that exhibit biological activity in the body following hydrolysis catalyzed by the enzyme myrosinase. While existing in vitro and in vivo studies suggest that the hydrolysis products of glucosinolates predominantly exert beneficial effects in both human and animal organisms, some studies have found that the excessive consumption of glucosinolates may lead to toxic and anti-nutritional effects. Given that glucosinolates are primarily ingested in the human diet through dietary supplements and commercially available cruciferous vegetables, we investigated the in vivo effects of the glucosinolate sinigrin on molecular markers in the myocardia of healthy Swiss mice. This study aims to elucidate whether sinigrin induces positive or negative physiological effects in mammals following consumption. The alterations in myocardial parameters were assessed by measuring metabolic, inflammatory, structural, and antioxidant markers. Our findings revealed that subchronic exposure to sinigrin in the myocardia of female mice resulted in a significant increase (p ≤ 0.05) in the levels of the myokine irisin, matrix metalloproteinases (MMP-2, MMP-9), catalase (CAT), and total glutathione (tGSH), alongside a marked decrease (p ≤ 0.05) in the levels of atrial natriuretic peptide (ANP), compared to the control group consisting of both female and male mice. These results suggest that the hydrolysis products of sinigrin may exert a potentially toxic effect on the myocardial tissue of female mice and possess the capability to modulate transcription factors in vivo in a sex-dependent manner. This observation calls for further investigation into the mechanisms regulating the actions of glucosinolate hydrolysis products, their interactions with sex hormones, and the determination of permissible intake levels associated with both beneficial and adverse outcomes.
Collapse
Affiliation(s)
- Nikola Ferara
- Department of Dermatology and Venereology, Sestre Milosrdnice University Hospital Centre, Vinogradska cesta 29, 10000 Zagreb, Croatia;
| | - Vedran Balta
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Domagoj Đikić
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Dyana Odeh
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Ana Mojsović-Ćuić
- School of Applied Health Sciences, University of Zagreb, Mlinarska cesta 38, 10000 Zagreb, Croatia
| | - Lana Feher Turković
- School of Applied Health Sciences, University of Zagreb, Mlinarska cesta 38, 10000 Zagreb, Croatia
| | - Dario Dilber
- Department of Cardiology, Thalassotherapia Opatija, Maršala Tita 188, 51410 Opatija, Croatia;
| | - Anđelo Beletić
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Irena Landeka Jurčević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Ivana Šola
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Gellani I, Qian C, Ma S. Unveiling the role of TRPA1 in cardiovascular health and disease: a mini review. Front Cardiovasc Med 2024; 11:1416698. [PMID: 39323758 PMCID: PMC11422066 DOI: 10.3389/fcvm.2024.1416698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024] Open
Abstract
The transient receptor potential ankyrin 1 (TRPA1) ion channel has emerged as significant regulators of cardiovascular physiology and pathology. TRPA1 is a non-selective cation channel permeable to calcium ions. A unique feature of the channel is its function as a sensor of various temperature, chemical and mechanical stimuli, while it can also be activated by endogenous inflammatory mediators and reactive oxygen species. Over the last two decades, much progress has been made in illuminating the role of TRPA1 in the regulation of cardiovascular physiology and pathophysiology in addition to its important function in pain sensation. This review provides a comprehensive analysis of recent studies investigating the involvement of TRPA1 channels in various cardiovascular diseases, including myocardial infarction, ischemia-reperfusion injury, myocardial fibrosis, and response to environmental toxins. We discuss the diverse roles of TRPA1 channels in cardiac pathology and highlight their potential as therapeutic targets for cardiovascular disorders. Moreover, we explore the challenges and opportunities linked with targeting TRPA1 channels for treating cardiovascular diseases, alongside future research directions.
Collapse
Affiliation(s)
- Islam Gellani
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Chunqi Qian
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Shuangtao Ma
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
7
|
Xing C, Bao L, Li W, Fan H. Progress on role of ion channels of cardiac fibroblasts in fibrosis. Front Physiol 2023; 14:1138306. [PMID: 36969589 PMCID: PMC10033868 DOI: 10.3389/fphys.2023.1138306] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Cardiac fibrosis is defined as excessive deposition of extracellular matrix (ECM) in pathological conditions. Cardiac fibroblasts (CFs) activated by injury or inflammation differentiate into myofibroblasts (MFs) with secretory and contractile functions. In the fibrotic heart, MFs produce ECM which is composed mainly of collagen and is initially involved in maintaining tissue integrity. However, persistent fibrosis disrupts the coordination of excitatory contractile coupling, leading to systolic and diastolic dysfunction, and ultimately heart failure. Numerous studies have demonstrated that both voltage- and non-voltage-gated ion channels alter intracellular ion levels and cellular activity, contributing to myofibroblast proliferation, contraction, and secretory function. However, an effective treatment strategy for myocardial fibrosis has not been established. Therefore, this review describes the progress made in research related to transient receptor potential (TRP) channels, Piezo1, Ca2+ release-activated Ca2+ (CRAC) channels, voltage-gated Ca2+ channels (VGCCs), sodium channels, and potassium channels in myocardial fibroblasts with the aim of providing new ideas for treating myocardial fibrosis.
Collapse
|
8
|
Gwanyanya A, Mubagwa K. Emerging role of transient receptor potential (TRP) ion channels in cardiac fibroblast pathophysiology. Front Physiol 2022; 13:968393. [PMID: 36277180 PMCID: PMC9583832 DOI: 10.3389/fphys.2022.968393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiac fibroblasts make up a major proportion of non-excitable cells in the heart and contribute to the cardiac structural integrity and maintenance of the extracellular matrix. During myocardial injury, fibroblasts can be activated to trans-differentiate into myofibroblasts, which secrete extracellular matrix components as part of healing, but may also induce cardiac fibrosis and pathological cardiac structural and electrical remodeling. The mechanisms regulating such cellular processes still require clarification, but the identification of transient receptor potential (TRP) channels in cardiac fibroblasts could provide further insights into the fibroblast-related pathophysiology. TRP proteins belong to a diverse superfamily, with subgroups such as the canonical (TRPC), vanilloid (TRPV), melastatin (TRPM), ankyrin (TRPA), polycystin (TRPP), and mucolipin (TRPML). Several TRP proteins form non-selective channels that are permeable to cations like Na+ and Ca2+ and are activated by various chemical and physical stimuli. This review highlights the role of TRP channels in cardiac fibroblasts and the possible underlying signaling mechanisms. Changes in the expression or activity of TRPs such as TRPCs, TRPVs, TRPMs, and TRPA channels modulate cardiac fibroblasts and myofibroblasts, especially under pathological conditions. Such TRPs contribute to cardiac fibroblast proliferation and differentiation as well as to disease conditions such as cardiac fibrosis, atrial fibrillation, and fibroblast metal toxicity. Thus, TRP channels in fibroblasts represent potential drug targets in cardiac disease.
Collapse
Affiliation(s)
- Asfree Gwanyanya
- Department of Human Biology, University of Cape Town, Cape Town, South Africa
- *Correspondence: Asfree Gwanyanya,
| | - Kanigula Mubagwa
- Department of Cardiovascular Sciences, K U Leuven, Leuven, Belgium
- Department of Basic Sciences, Faculty of Medicine, Université Catholique de Bukavu, Bukavu, Democratic Republic of Congo
| |
Collapse
|
9
|
Kamal RM, Abdull Razis AF, Mohd Sukri NS, Perimal EK, Ahmad H, Patrick R, Djedaini-Pilard F, Mazzon E, Rigaud S. Beneficial Health Effects of Glucosinolates-Derived Isothiocyanates on Cardiovascular and Neurodegenerative Diseases. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030624. [PMID: 35163897 PMCID: PMC8838317 DOI: 10.3390/molecules27030624] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/17/2022]
Abstract
Neurodegenerative diseases (NDDs) and cardiovascular diseases (CVDs) are illnesses that affect the nervous system and heart, all of which are vital to the human body. To maintain health of the human body, vegetable diets serve as a preventive approach and particularly Brassica vegetables have been associated with lower risks of chronic diseases, especially NDDs and CVDs. Interestingly, glucosinolates (GLs) and isothiocyanates (ITCs) are phytochemicals that are mostly found in the Cruciferae family and they have been largely documented as antioxidants contributing to both cardio- and neuroprotective effects. The hydrolytic breakdown of GLs into ITCs such as sulforaphane (SFN), phenylethyl ITC (PEITC), moringin (MG), erucin (ER), and allyl ITC (AITC) has been recognized to exert significant effects with regards to cardio- and neuroprotection. From past in vivo and/or in vitro studies, those phytochemicals have displayed the ability to mitigate the adverse effects of reactive oxidation species (ROS), inflammation, and apoptosis, which are the primary causes of CVDs and NDDs. This review focuses on the protective effects of those GL-derived ITCs, featuring their beneficial effects and the mechanisms behind those effects in CVDs and NDDs.
Collapse
Affiliation(s)
- Ramla Muhammad Kamal
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Department of Pharmacology, Federal University Dutse, Dutse 720101, Jigawa State, Nigeria
| | - Ahmad Faizal Abdull Razis
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence:
| | - Nurul Syafuhah Mohd Sukri
- Faculty of Applied Science and Technology, Universiti Tun Hussein Onn Malaysia, Batu Pahat 86400, Johor, Malaysia;
| | - Enoch Kumar Perimal
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Hafandi Ahmad
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Rollin Patrick
- Université d’Orléans et CNRS, ICOA, UMR 7311, BP 6759, CEDEX 02, F-45067 Orléans, France;
| | - Florence Djedaini-Pilard
- LG2A UMR 7378, Université de Picardie Jules Verne, 33 rue Saint Leu—UFR des Sciences, F-80000 Amiens, France; (F.D.-P.); (S.R.)
| | - Emanuela Mazzon
- Laboratorio di Neurologia Sperimentale, IRCCS Centro Neurolesi "Bonino Pulejo", 98124 Messina, Italy;
| | - Sébastien Rigaud
- LG2A UMR 7378, Université de Picardie Jules Verne, 33 rue Saint Leu—UFR des Sciences, F-80000 Amiens, France; (F.D.-P.); (S.R.)
| |
Collapse
|
10
|
Waz S, Matouk AI. Cardioprotective effect of allyl isothiocyanate in a rat model of doxorubicin acute toxicity. Toxicol Mech Methods 2021; 32:194-203. [PMID: 34635025 DOI: 10.1080/15376516.2021.1992064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Doxorubicin (DOX) is an effective anthracycline chemotherapeutic drug. Nevertheless, the cardiotoxicity adverse effect restricts its clinical benefit. Allyl isothiocyanate (AITC) is a natural antioxidant and anti-inflammatory agent. In the present study, we investigated the effect of AITC on cardiotoxicity of DOX. Thirty-two adult male albino rats were divided into four groups; control, AITC, DOX, and AITC + DOX. AITC was administrated orally (25 mg/kg/day) for 7 days, and DOX was given as a single i.p. injection (15 mg/kg) on the third day. Mortality rate was observed during the experiment. Cardiac toxicity markers (lactate dehydrogenase (LDH), creatine kinase (CK-MB), and cardiac Troponin I (cTn-I)) were evaluated in serum samples obtained from all groups after 48 hours of DOX injection. DOX-treated group showed 40% mortality and a significant increase in cardiac enzymes. This increase was accompanied by degenerated cardiomyocytes, and inflammatory cells infiltrates. Interestingly, AITC administration alleviated myocardial oxidative stress induced by DOX as attenuated the increase in malondialdehyde (MDA), and nitric oxide (NO) while resulted in elevations of the antioxidant reduced glutathione (GSH) level as well as superoxide dismutase (SOD) activity. Furthermore, the inflammatory cytokine, TNF-α, was reduced upon administration of AITC with DOX. The cardio-protection of AITC is attributed to increase the expression of cytoprotective nuclear factor erythroid 2-related factor 2 (Nrf2). Subsequently, heme oxygenase 1 (HO-1) level was elevated by AITC to correct the oxidative stress induced by DOX in the heart. Accordingly, AITC ameliorated acute cardiotoxicity associated with DOX treatment via attenuation of oxidative stress and the induced-tissue inflammatory injury. Abbreviations: DOX: doxrubicin; Nrf2: nuclear factor erythroid 2-related factor 2; HO-1: heme oxygenase 1; AITC: ally isothiocyanate; MDA: malondialdehyde; SOD: superoxide dismutase; GSH: reduced glutathione; TNF-α: tumor necrosis factor alpha.
Collapse
Affiliation(s)
- Shaimaa Waz
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | - Asmaa I Matouk
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| |
Collapse
|