1
|
Kumar Singh N, Srivastava AK, Sreekrishnan TR, Shivakumar S. Production of medical-grade biopolymer in air lift bioreactors. Prep Biochem Biotechnol 2025:1-8. [PMID: 40277398 DOI: 10.1080/10826068.2025.2496246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Microbes are known to produce biopolymers for societal applications. Economical production of biopolymer (PHB) is desperately required to significantly replace or reduce usage of non-degradable polypropylene produced by disappearing petroleum resources. Besides it is also equally important to ensure abundant availability of low cost medical grade biopolymers which can be used for several medical applications in society. It has been invariably observed that mechanical agitation in the bioreactors features major power consumption in the operation of bioreactors therefore usage of air lift bioreactors are likely to reduce power consumption by mechanical agitation significantly thereby leading to economic biopolymer production. Present investigation evaluates the possible role of pneumatic bioreactors (e.g., Bubble Column, Outer Aeration Inner Settling, Inner Aeration Outer Settling) as alternates to mechanically agitated bioreactors for the economic production of medical grade biopolymers P(3HB) by Bacillus thuringiensis IAM12077 using glycerol and glucose as major substrates. It was observed that Bacillus thuringiensis IAM12077 cultivations featured Biopolymer P(3HB) accumulations of 22.48%, 37.07%, 27.73%, in BC, OAIS, IAOS air lift bioreactors. Relatively higher product yield, volumetric productivity and P(3HB) accumulation was observed in Outer Aeration Inner Settling (OAIS) air lift bioreactor configuration as opposed to other pneumatic bioreactors.
Collapse
Affiliation(s)
- Navodit Kumar Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Ashok Kumar Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - T R Sreekrishnan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Srividya Shivakumar
- School of Allied Healthcare and Sciences, Jain deemed-to-be University, Bangalore, Professor Microbiology & Director
| |
Collapse
|
2
|
Weldon M, Euler C. Physiology-informed use of Cupriavidus necator in biomanufacturing: a review of advances and challenges. Microb Cell Fact 2025; 24:30. [PMID: 39844200 PMCID: PMC11755831 DOI: 10.1186/s12934-025-02643-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/04/2025] [Indexed: 01/30/2025] Open
Abstract
Biomanufacturing offers a potentially sustainable alternative to deriving chemicals from fossil fuels. However, traditional biomanufacturing, which uses sugars as feedstocks, competes with food production and yields unfavourable land use changes, so more sustainable options are necessary. Cupriavidus necator is a chemolithoautotrophic bacterium capable of consuming carbon dioxide and hydrogen as sole carbon and energy sources, or formate as the source of both. This autotrophic metabolism potentially makes chemical production using C. necator sustainable and attractive for biomanufacturing. Additionally, C. necator natively fixes carbon in the form of poly-3-hydroxybutyrate, which can be processed to make biodegradable plastic. Recent progress in development of modelling and synthetic biology tools have made C. necator much more usable as a biomanufacturing chassis. However, these tools and applications are often limited by a lack of consideration for the unique physiology and metabolic features of C. necator. As such, further work is required to better understand the intricate mechanisms that allow it to prioritise generalization over specialization. In this review, progress toward physiology-informed engineering of C. necator across several dimensions is critically discussed, and recommendations for moving toward a physiological approach are presented. Arguments for metabolic specialization, more focus on autotrophic fermentation, C. necator-specific synthetic biology tools, and modelling that goes beyond constraints are presented based on analysis of existing literature.
Collapse
Affiliation(s)
- Michael Weldon
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Christian Euler
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada.
| |
Collapse
|
3
|
Casey D, Diaz-Garcia L, Yu M, Tee KL, Wong TS. From Knallgas Bacterium to Promising Biomanufacturing Host: The Evolution of Cupriavidus necator. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024. [PMID: 39363001 DOI: 10.1007/10_2024_269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The expanding field of synthetic biology requires diversification of microbial chassis to expedite the transition from a fossil fuel-dependent economy to a sustainable bioeconomy. Relying exclusively on established model organisms such as Escherichia coli and Saccharomyces cerevisiae may not suffice to drive the profound advancements needed in biotechnology. In this context, Cupriavidus necator, an extraordinarily versatile microorganism, has emerged as a potential catalyst for transformative breakthroughs in industrial biomanufacturing. This comprehensive book chapter offers an in-depth review of the remarkable technological progress achieved by C. necator in the past decade, with a specific focus on the fields of molecular biology tools, metabolic engineering, and innovative fermentation strategies. Through this exploration, we aim to shed light on the pivotal role of C. necator in shaping the future of sustainable bioprocessing and bioproduct development.
Collapse
Affiliation(s)
- Daniel Casey
- School of Chemical, Materials and Biological Engineering, The University of Sheffield, Sheffield, UK
| | - Laura Diaz-Garcia
- School of Chemical, Materials and Biological Engineering, The University of Sheffield, Sheffield, UK
| | - Mincen Yu
- School of Chemical, Materials and Biological Engineering, The University of Sheffield, Sheffield, UK
| | - Kang Lan Tee
- School of Chemical, Materials and Biological Engineering, The University of Sheffield, Sheffield, UK
- Evolutor Ltd, The Innovation Centre, Sheffield, UK
| | - Tuck Seng Wong
- School of Chemical, Materials and Biological Engineering, The University of Sheffield, Sheffield, UK.
- Evolutor Ltd, The Innovation Centre, Sheffield, UK.
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science & Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani, Thailand.
- School of Pharmacy, Bandung Institute of Technology, Bandung, West Java, Indonesia.
| |
Collapse
|
4
|
Khamberk S, Thammasittirong SNR, Thammasittirong A. Valorization of Sugarcane Bagasse for Co-Production of Poly(3-hydroxybutyrate) and Bacteriocin Using Bacillus cereus Strain S356. Polymers (Basel) 2024; 16:2015. [PMID: 39065332 PMCID: PMC11281070 DOI: 10.3390/polym16142015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Poly(3-hydroxybutyrate) (P(3HB)) is an attractive biodegradable plastic alternative to petroleum-based plastic. However, the cost of microbial-based bioplastic production mainly lies in the cultivation medium. In this study, we screened the isolates capable of synthesizing P(3HB) using sugarcane bagasse (SCB) waste as a carbon source from 79 Bacillus isolates that had previously shown P(3HB) production using a commercial medium. The results revealed that isolate S356, identified as Bacillus cereus using 16S rDNA and gyrB gene analysis, had the highest P(3HB) accumulation. The highest P(3HB) yield (5.16 g/L, 85.3% of dry cell weight) was achieved by cultivating B. cereus S356 in an optimal medium with 1.5% total reducing sugar with SCB hydrolysate as the carbon source and 0.25% yeast extract as the nitrogen source. Transmission electron microscopy analysis showed the accumulation of approximately 3-5 P(3HB) granules in each B. cereus S356 cell. Proton nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy analyses confirmed that the polymer extracted from B. cereus S356 was P(3HB). Notably, during cultivation for P(3HB) plastic production, B. cereus S356 also secreted bacteriocin, which had high antibacterial activity against the same species (Bacillus cereus). Overall, this work demonstrated the possibility of co-producing eco-friendly biodegradable plastic P(3HB) and bacteriocin from renewable resources using the potential of B. cereus S356.
Collapse
Affiliation(s)
- Sunisa Khamberk
- Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University, Nakhon Pathom 73140, Thailand (S.N.-R.T.)
| | - Sutticha Na-Ranong Thammasittirong
- Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University, Nakhon Pathom 73140, Thailand (S.N.-R.T.)
- Microbial Biotechnology Unit, Faculty of Liberal Arts and Science, Kasetsart University, Nakhon Pathom 73140, Thailand
| | - Anon Thammasittirong
- Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University, Nakhon Pathom 73140, Thailand (S.N.-R.T.)
- Microbial Biotechnology Unit, Faculty of Liberal Arts and Science, Kasetsart University, Nakhon Pathom 73140, Thailand
| |
Collapse
|
5
|
Diankristanti PA, Lin YC, Yi YC, Ng IS. Polyhydroxyalkanoates bioproduction from bench to industry: Thirty years of development towards sustainability. BIORESOURCE TECHNOLOGY 2024; 393:130149. [PMID: 38049017 DOI: 10.1016/j.biortech.2023.130149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
The pursuit of carbon neutrality goals has sparked considerable interest in expanding bioplastics production from microbial cell factories. One prominent class of bioplastics, polyhydroxyalkanoates (PHA), is generated by specific microorganisms, serving as carbon and energy storage materials. To begin with, a native PHA producer, Cupriavidus necator (formerly Ralstonia eutropha) is extensively studied, covering essential topics such as carbon source selection, cultivation techniques, and accumulation enhancement strategies. Recently, various hosts including archaea, bacteria, cyanobacteria, yeast, and plants have been explored, stretching the limit of microbial PHA production. This review provides a comprehensive overview of current advancements in PHA bioproduction, spanning from the native to diversified cell factories. Recovery and purification techniques are discussed, and the current status of industrial applications is assessed as a critical milestone for startups. Ultimately, it concludes by addressing contemporary challenges and future prospects, offering insights into the path towards reduced carbon emissions and sustainable development goals.
Collapse
Affiliation(s)
| | - Yu-Chieh Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Chen Yi
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, USA
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
6
|
Guzmán-Lagunes F, Martínez-dlCruz L, Wongsirichot P, Winterburn J, Montiel C. Production of polyhydroxybutyrate by coupled saccharification-fermentation of inulin. Bioprocess Biosyst Eng 2024; 47:119-129. [PMID: 38006410 PMCID: PMC10776465 DOI: 10.1007/s00449-023-02953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023]
Abstract
Inulin is a fructose-based polysaccharide that can be found in several plant species, from grass and onions to chicory roots; thus, it has the potential to be an excellent renewable source of fructose for several industrial applications. Among them, inulin hydrolysis can be coupled to a fermentation operation to produce polyhydroxybutyrate (PHB) using Cupriavidus necator H16. This work reports the PHB production process involving chicory root inulin hydrolysis using inulinase Novozym 960 followed by a C. necator fermentation. It was found that the maximum saccharification (95% wt.) was reached at 269 U/ginulin after 90 min. The hydrolysates obtained were then inoculated with C. necator, leading to a biomass concentration of 4 g/L with 30% (w/w) polymer accumulation. Although PHB production was low, during the first hours, the cell growth and polymer accumulation detected did not coincide with a fructose concentration decrease, suggesting a simultaneous saccharification and fermentation process, potentially alleviating the product inhibition inherent to the inulinase-fructose system. The characterization of the obtained PHB showed a polymer with more homogeneous values of Mw, and better thermal stability than PHB produced using pure fructose as a fermentation substrate. The results obtained demonstrate a viable alternative carbon substrate for PHB production, opening the possibility for inulin-rich renewable feedstock valorization.
Collapse
Affiliation(s)
- Fernando Guzmán-Lagunes
- Food Sciences and Biotechnology Department, Faculty of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lorena Martínez-dlCruz
- Department of Physical Chemistry, Faculty of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Phavit Wongsirichot
- Department of Chemical Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - James Winterburn
- Department of Chemical Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - Carmina Montiel
- Food Sciences and Biotechnology Department, Faculty of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
7
|
Senila L, Gál E, Kovacs E, Cadar O, Dan M, Senila M, Roman C. Poly(3-hydroxybutyrate) Production from Lignocellulosic Wastes Using Bacillus megaterium ATCC 14581. Polymers (Basel) 2023; 15:4488. [PMID: 38231921 PMCID: PMC10708134 DOI: 10.3390/polym15234488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
This study aimed to analyze the production of poly(3-hydroxybutyrate) (PHB) from lignocellulosic biomass through a series of steps, including microwave irradiation, ammonia delignification, enzymatic hydrolysis, and fermentation, using the Bacillus megaterium ATCC 14581 strain. The lignocellulosic biomass was first pretreated using microwave irradiation at different temperatures (180, 200, and 220 °C) for 10, 20, and 30 min. The optimal pretreatment conditions were determined using the central composite design (CCD) and the response surface methodology (RSM). In the second step, the pretreated biomass was subjected to ammonia delignification, followed by enzymatic hydrolysis. The yield obtained for the pretreated and enzymatically hydrolyzed biomass was lower (70.2%) compared to the pretreated, delignified, and enzymatically hydrolyzed biomass (91.4%). These hydrolysates were used as carbon substrates for the synthesis of PHB using Bacillus megaterium ATCC 14581 in batch cultures. Various analytical methods were employed, namely nuclear magnetic resonance (1H-NMR and13C-NMR), electrospray ionization mass spectrometry (EI-MS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA), to identify and characterize the extracted PHB. The XRD analysis confirmed the partially crystalline nature of PHB.
Collapse
Affiliation(s)
- Lacrimioara Senila
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development of Optoelectronics Bucharest INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania; (E.K.); (O.C.); (M.S.); (C.R.)
| | - Emese Gál
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania;
| | - Eniko Kovacs
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development of Optoelectronics Bucharest INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania; (E.K.); (O.C.); (M.S.); (C.R.)
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine, 3–5 Manastur Street, 400372 Cluj-Napoca, Romania
| | - Oana Cadar
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development of Optoelectronics Bucharest INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania; (E.K.); (O.C.); (M.S.); (C.R.)
| | - Monica Dan
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67–103 Donath Street, 400293 Cluj-Napoca, Romania;
| | - Marin Senila
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development of Optoelectronics Bucharest INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania; (E.K.); (O.C.); (M.S.); (C.R.)
| | - Cecilia Roman
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development of Optoelectronics Bucharest INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania; (E.K.); (O.C.); (M.S.); (C.R.)
| |
Collapse
|
8
|
Adamu Ugya Y, Chen H, Sheng Y, Ajibade FO, Wang Q. A review of microalgae biofilm as an eco-friendly approach to bioplastics, promoting environmental sustainability. ENVIRONMENTAL RESEARCH 2023; 236:116833. [PMID: 37543134 DOI: 10.1016/j.envres.2023.116833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/17/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
In this comprehensive review, we delve into the challenges hindering the large-scale production of microalgae-based bioplastics, primarily focusing on economic feasibility and bioplastic quality. To address these issues, we explore the potential of microalgae biofilm cultivation as a sustainable and highly viable approach for bioplastic production. We present a proposed method for producing bioplastics using microalgae biofilm and evaluate its environmental impact using various tools such as life cycle analysis (LCA), ecological footprint analysis, resource flow analysis, and resource accounting. While pilot-scale and large-scale LCA data are limited, we utilize alternative indicators such as energy efficiency, carbon footprint, materials management, and community acceptance to predict the environmental implications of commercializing microalgae biofilm-based bioplastics. The findings of this study indicate that utilizing microalgae biofilm for bioplastic production offers significant environmental sustainability benefits. The system exhibits low energy requirements and a minimal carbon footprint. Moreover, it has the potential to address the issue of wastewater by utilizing it as a carbon source, thereby mitigating associated problems. However, it is important to acknowledge certain limitations associated with the method proposed in this review. Further research is needed to explore and engineer precise techniques for manipulating microalgae biofilm structure to optimize the accumulation of desired metabolites. This could involve employing chemical triggers, metabolic engineering, and genetic engineering to achieve the intended goals. In conclusion, this review highlights the potential of microalgae biofilm as a viable and sustainable solution for bioplastic production. While acknowledging the advantages, it also emphasizes the need for continued synthetic studies to enhance the efficiency and reliability of this approach. By addressing the identified drawbacks and maximizing the utilization of advanced techniques, we can further harness the potential of microalgae biofilm in contributing to a more environmentally friendly and economically feasible bioplastic industry.
Collapse
Affiliation(s)
- Yunusa Adamu Ugya
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China; Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China; Department of Environmental Management, Kaduna State University, Kaduna State, Nigeria
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China; Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Yangyang Sheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Fidelis Odedishemi Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology Akure, PMB 704, Nigeria
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China; Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China.
| |
Collapse
|
9
|
Grzesiak J, Gawor J, Rogala MM, Kouřilová X, Obruča S. Genetic engineering of low-temperature polyhydroxyalkanoate production by Acidovorax sp. A1169, a psychrophile isolated from a subglacial outflow. Extremophiles 2023; 27:25. [PMID: 37709928 PMCID: PMC10501959 DOI: 10.1007/s00792-023-01311-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023]
Abstract
In recent years, extremophilic microorganisms have been employed as producers of the microbial bioplastics polyhydroxyalkanoates (PHA), which are of great biotechnological value. Nevertheless, cold-loving or psychrophilic (cryophilic) bacteria have been neglected in this regard. Here, we present an investigation of the Arctic glacier-derived PHA producer Acidovorax sp. A1169. Biolog GEN III Microplates were used as a screening tool to identify the most suitable carbon substrate concerning PHA synthesis. The strain produced homopolymer poly(3-hydroxybutyrate) (PHB) most efficiently (2 g/L) at a temperature of 15 °C when supplied with fructose or mannitol as carbon sources with a substantial decrease of PHB biosynthesis at 17.5 °C. The PHB yield did not increase considerably or even decreased when carbon source concentration exceeded 10 g/L hinting that the strain is oligotrophic in nature. The strain was also capable of introducing 3-hydroxyvalerate (3HV) into the polymer structure, which is known to improve PHA thermoplastic properties. This is the first investigation providing insight into a PHA biosynthesis process by means of a true psychrophile, offering guidelines on polar-region bacteria cultivation, production of PHA and also on the methodology for genetic engineering of psychrophiles.
Collapse
Affiliation(s)
- Jakub Grzesiak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland.
| | - Jan Gawor
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Małgorzata Marta Rogala
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Xenie Kouřilová
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic
| | - Stanislav Obruča
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic
| |
Collapse
|
10
|
Trakunjae C, Boondaeng A, Apiwatanapiwat W, Janchai P, Neoh SZ, Sudesh K, Vaithanomsat P. Statistical optimization of P(3HB-co-3HHx) copolymers production by Cupriavidus necator PHB -4/pBBR_CnPro-phaC Rp and its properties characterization. Sci Rep 2023; 13:9005. [PMID: 37268758 DOI: 10.1038/s41598-023-36180-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/29/2023] [Indexed: 06/04/2023] Open
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] is a bacterial copolymer in the polyhydroxyalkanoates (PHAs) family, a next-generation bioplastic. Our research team recently engineered a newly P(3HB-co-3HHx)-producing bacterial strain, Cupriavidus necator PHB-4/pBBR_CnPro-phaCRp. This strain can produce P(3HB-co-2 mol% 3HHx) using crude palm kernel oil (CPKO) as a sole carbon substrate. However, the improvement of P(3HB-co-3HHx) copolymer production by this strain has not been studied so far. Thus, this study aims to enhance the production of P(3HB-co-3HHx) copolymers containing higher 3HHx monomer compositions using response surface methodology (RSM). Three significant factors for P(3HB-co-3HHx) copolymers production, i.e., CPKO concentration, sodium hexanoate concentration, and cultivation time, were studied in the flask scale. As a result, a maximum of 3.6 ± 0.4 g/L of P(3HB-co-3HHx) with 4 mol% 3HHx compositions was obtained using the RSM optimized condition. Likewise, the higher 3HHx monomer composition (5 mol%) was obtained when scaling up the fermentation in a 10L-stirrer bioreactor. Furthermore, the produced polymer's properties were similar to marketable P(3HB-co-3HHx), making this polymer suitable for a wide range of applications.
Collapse
Affiliation(s)
- Chanaporn Trakunjae
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok, 10900, Thailand
| | - Antika Boondaeng
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok, 10900, Thailand
| | - Waraporn Apiwatanapiwat
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok, 10900, Thailand
| | - Phornphimon Janchai
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok, 10900, Thailand
| | - Soon Zher Neoh
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia USM, 11800, Penang, Malaysia
| | - Kumar Sudesh
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia USM, 11800, Penang, Malaysia
| | - Pilanee Vaithanomsat
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
11
|
Vu DH, Mahboubi A, Root A, Heinmaa I, Taherzadeh MJ, Åkesson D. Application of Immersed Membrane Bioreactor for Semi-Continuous Production of Polyhydroxyalkanoates from Organic Waste-Based Volatile Fatty Acids. MEMBRANES 2023; 13:569. [PMID: 37367773 DOI: 10.3390/membranes13060569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Volatile fatty acids (VFAs) appear to be an economical carbon feedstock for the cost-effective production of polyhydroxyalkanoates (PHAs). The use of VFAs, however, could impose a drawback of substrate inhibition at high concentrations, resulting in low microbial PHA productivity in batch cultivations. In this regard, retaining high cell density using immersed membrane bioreactor (iMBR) in a (semi-) continuous process could enhance production yields. In this study, an iMBR with a flat-sheet membrane was applied for semi-continuous cultivation and recovery of Cupriavidus necator in a bench-scale bioreactor using VFAs as the sole carbon source. The cultivation was prolonged up to 128 h under an interval feed of 5 g/L VFAs at a dilution rate of 0.15 (d-1), yielding a maximum biomass and PHA production of 6.6 and 2.8 g/L, respectively. Potato liquor and apple pomace-based VFAs with a total concentration of 8.8 g/L were also successfully used in the iMBR, rendering the highest PHA content of 1.3 g/L after 128 h of cultivation. The PHAs obtained from both synthetic and real VFA effluents were affirmed to be poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with a crystallinity degree of 23.8 and 9.6%, respectively. The application of iMBR could open an opportunity for semi-continuous production of PHA, increasing the feasibility of upscaling PHA production using waste-based VFAs.
Collapse
Affiliation(s)
- Danh H Vu
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - Andrew Root
- MagSol, Tuhkanummenkuja 2, 00970 Helsinki, Finland
| | - Ivo Heinmaa
- National Institute of Chemical Physics and Biophysics, 12618 Tallinn, Estonia
| | | | - Dan Åkesson
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| |
Collapse
|
12
|
Anjana, Rawat S, Goswami S. In-silico analysis of a halophilic bacterial isolate-Bacillus pseudomycoides SAS-B1 and its polyhydroxybutyrate production through fed-batch approach under differential salt conditions. Int J Biol Macromol 2023; 229:372-387. [PMID: 36563813 DOI: 10.1016/j.ijbiomac.2022.12.190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/08/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Polyhydroxybutyrate (PHB) is a natural biopolymer and a viable substitute for petroleum-derived polymers that possess immense potential for diverse applications. In the present study, PHB was produced by a halophilic bacteria identified as Bacillus pseudomycoides SAS-B1 by 16S rRNA gene sequencing. The bacterial genome was evaluated through complete genome sequencing, which elucidated a 5,338,308 bp genome with 34.88 % of G + C content and 5660 genes. Other genome attributes were analyzed such as functional profiling, gene ontology, and metabolic pathways. Genes involved in PHB biochemical pathway were identified such as phaA, phaB, and phaC. Furthermore, sodium-dependent transporters and other ATP-binding genes were identified in the genome that may be involved in sodium uptake during saline conditions. The PHB production by B. pseudomycoides SAS-B1 was examined under differential salt conditions. The PHB yield was increased from 3.14 ± 0.02 g/L to 6.12 ± 0.04 g/L when salinity was increased upto 20 g/L with intermittent feeding of glucose and corn steep liquor. FTIR, NMR, and GC-MS studies elucidated the presence of desired functional groups, molecular structure, and monomeric compositions of PHB respectively. Further, TGA revealed the thermal stability of the recovered PHB upto (220-230) °C and has a crystallinity index of upto 33 ± 0.5 % as confirmed by XRD analysis.
Collapse
Affiliation(s)
- Anjana
- Division of Chemical Engineering, Centre of Innovative and Applied Bioprocessing, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Shristhi Rawat
- Division of Chemical Engineering, Centre of Innovative and Applied Bioprocessing, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Saswata Goswami
- Division of Chemical Engineering, Centre of Innovative and Applied Bioprocessing, Knowledge City, Sector-81, Mohali, Punjab 140306, India.
| |
Collapse
|
13
|
Minimizing the Lag Phase of Cupriavidus necator Growth under Autotrophic, Heterotrophic, and Mixotrophic Conditions. Appl Environ Microbiol 2023; 89:e0200722. [PMID: 36719244 PMCID: PMC9972949 DOI: 10.1128/aem.02007-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cupriavidus necator has the unique metabolic capability to grow under heterotrophic, autotrophic, and mixotrophic conditions. In the current work, we examined the effect of growth conditions on the metabolic responses of C. necator. In our lab-scale experiments, autotrophic growth was rapid, with a short lag phase as the exponential growth stage was initiated in 6 to 12 h. The lag phase extended significantly (>22 h) at elevated O2 and CO2 partial pressures, while the duration of the lag phase was independent of the H2 or N2 partial pressure. Under heterotrophic conditions with acetate as the organic substrate, the lag phase length was short (<12 h), but it increased with increasing acetate concentrations. When glucose and glycerol were provided as the organic substrate, the lag phase was consistently long (>12 h) regardless of the examined substrate concentrations (up to 10.0 g/L). In the transition experiments, C. necator cells showed rapid transitions from autotrophic to heterotrophic growth in less than 12 h and vice versa. Our experimental results indicate that C. necator can rapidly grow with both autotrophic and heterotrophic substrates, while the lag time substantially increases with nonacetate organic substrates (e.g., glucose or glycerol), high acetate concentrations, and high O2 and CO2 partial pressures. IMPORTANCE The current work investigated the inhibition of organic and gaseous substrates on the microbial adaption of Cupriavidus necator under several metabolic conditions commonly employed for commercial polyhydroxyalkanoate production. We also proposed a two-stage cultivation system to minimize the lag time required to change over between the heterotrophic, autotrophic, and mixotrophic pathways.
Collapse
|
14
|
Hathi ZJ, Haque MA, Priya A, Qin ZH, Huang S, Lam CH, Ladakis D, Pateraki C, Mettu S, Koutinas A, Du C, Lin CSK. Fermentative bioconversion of food waste into biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) using Cupriavidus necator. ENVIRONMENTAL RESEARCH 2022; 215:114323. [PMID: 36115419 DOI: 10.1016/j.envres.2022.114323] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/20/2022] [Accepted: 09/07/2022] [Indexed: 05/27/2023]
Abstract
Dependency on plastic commodities has led to a recurrent increase in their global production every year. Conventionally, plastic products are derived from fossil fuels, leading to severe environmental concerns. The recent coronavirus disease 2019 pandemic has triggered an increase in medical waste. Conversely, it has disrupted the supply chain of personal protective equipment (PPE). Valorisation of food waste was performed to cultivate C. necator for fermentative production of biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). The increase in biomass, PHBV yield and molar 3-hydroxy valerate (3HV) content was estimated after feeding volatile fatty acids. The fed-batch fermentation strategy reported in this study produced 15.65 ± 0.14 g/L of biomass with 5.32 g/L of PHBV with 50% molar 3HV content. This is a crucial finding, as molar concentration of 3HV can be modulated to suit the specification of biopolymer (film or fabric). The strategy applied in this study addresses the issue of global food waste burden and subsequently generates biopolymer PHBV, turning waste to wealth.
Collapse
Affiliation(s)
- Zubeen J Hathi
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Md Ariful Haque
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Anshu Priya
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Zi-Hao Qin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Shuquan Huang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Chun Ho Lam
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Dimitris Ladakis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Chrysanthi Pateraki
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Srinivas Mettu
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Apostolis Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Chenyu Du
- School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, United Kingdom
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong.
| |
Collapse
|
15
|
Thorough Investigation of the Effects of Cultivation Factors on Polyhydroalkanoates (PHAs) Production by Cupriavidus necator from Food Waste-Derived Volatile Fatty Acids. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Volatile fatty acids (VFAs) have become promising candidates for replacing the conventional expensive carbon sources used to produce polyhydroxyalkanoates (PHAs). Considering the inhibitory effect of VFAs at high concentrations and the influence of VFA mixture composition on bacterial growth and PHA production, a thorough investigation of different cultivation parameters such as VFA concentrations and composition (synthetic and waste-derived VFAs) media, pH, aeration, C/N ratio, and type of nitrogen sources was conducted. Besides common VFAs of acetic, butyric and propionic acids, Cupriavidus necator showed good capability for assimilating longer-chained carboxylate compounds of valeric, isovaleric, isobutyric and caproic acids in feasible concentrations of 2.5–5 g/L. A combination of pH control at 7.0, C/N of 6, and aeration of 1 vvm was found to be the optimal condition for the bacterial growth, yielding a maximum PHA accumulation and PHA yield on biomass of 1.5 g/L and 56%, respectively, regardless of the nitrogen sources. The accumulated PHA was found to be poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with the percentage of hydroxybutyrate in the range 91–96%. Any limitation in the cultivation factors was found to enhance the PHA yield, the promotion of which was a consequence of the reduction in biomass production.
Collapse
|
16
|
Rizki WOS, Ratnaningsih E, Hertadi R. Production of poly-(R)-3-hydroxybutyrate from halophilic bacterium Salinivibrio sp. utilizing palm oil mill effluent as a carbon source. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Optimization of Growth Conditions to Enhance PHA Production by Cupriavidus necator. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The accumulation of polyhydroxyalkanoates (PHAs) by microorganisms usually occurs in response to environmental stress conditions. Therefore, it is advantageous to choose two-step cultivation. The first phase is aimed at maximizing biomass production, and only in the second phase, after setting the suitable conditions, PHA production starts. The aim of this work was to optimize the composition of the minimal propagation medium used for biomass production of Cupriavidus necator DSM 545 using the response surface methodology (RSM). Based on the results from the search for optimization limits, the glucose concentration, the ammonium sulfate concentration and the phosphate buffer molarity were chosen as independent variables. The optimal values were found as follows: the glucose concentration 10.8 g/L; the ammonium sulfate concentration 0.95 g/L; and the phosphate buffer molarity 60.2 mmol/L. The predicted biomass concentration was 4.54 g/L, and the verified value was at 4.84 g/L. Although this work was primarily focused on determining the optimal composition of the propagation medium, we also evaluated the optimal composition of the production medium and found that the optimal glucose concentration was 6.7 g/L; the ammonium sulfate concentration 0.60 g/L; and the phosphate buffer molarity 20 mmol/L. The predicted PHB yield was 54.7% (w/w) of dry biomass, and the verified value was 49.1%.
Collapse
|
18
|
Olavarria K, Pijman YO, Cabrera R, van Loosdrecht MCM, Wahl SA. Engineering an acetoacetyl-CoA reductase from Cupriavidus necator toward NADH preference under physiological conditions. Sci Rep 2022; 12:3757. [PMID: 35260659 PMCID: PMC8904767 DOI: 10.1038/s41598-022-07663-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/21/2022] [Indexed: 11/09/2022] Open
Abstract
The coupling of PHB generation with NADH reoxidation is required to generate PHB as a fermentation product. A fundamental trait to accomplish this feature is to express a functional NADH-preferring acetoacetyl-CoA reductase, engaged in PHB accumulation. One way to obtain such a reductase is by engineering the cofactor preference of the acetoacetyl-CoA reductase encoded by the phaB1 gene from Cupriavidus necator (AARCn1). Aiming to have a deeper understanding of the structural determinants of the cofactor preference in AARCn1, and to obtain an NADH-preferring acetoacetyl-CoA reductase derived from this protein, some engineered enzymes were expressed, purified and kinetically characterized, together with the parental AARCn1. One of these engineered enzymes, Chimera 5, experimentally showed a selectivity ratio ((kcat/KM)NADH/(kcat/KM)NADPH) ≈ 18, which is 160 times higher than the selectivity ratio experimentally observed in the parental AARCn1. A thermodynamic-kinetic approach was employed to estimate the cofactor preference and flux capacity of Chimera 5 under physiological conditions. According to this approach, Chimera 5 could prefer NADH over NADPH between 25 and 150 times. Being a derivative of AARCn1, Chimera 5 should be readily functional in Escherichia coli and C. necator. Moreover, with the expected expression level, its activity should be enough to sustain PHB accumulation fluxes similar to the fluxes previously observed in these biotechnologically relevant cell factories.
Collapse
Affiliation(s)
- Karel Olavarria
- Departement Biotechnologie, Faculteit Technische Natuurwetenschappen, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands. .,Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6700 EH, Wageningen, The Netherlands.
| | - Yared O Pijman
- Departement Biotechnologie, Faculteit Technische Natuurwetenschappen, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Ricardo Cabrera
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Región Metropolitana, Chile
| | - Mark C M van Loosdrecht
- Departement Biotechnologie, Faculteit Technische Natuurwetenschappen, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - S Aljoscha Wahl
- Departement Biotechnologie, Faculteit Technische Natuurwetenschappen, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| |
Collapse
|
19
|
Microbial cell factories for the production of polyhydroxyalkanoates. Essays Biochem 2021; 65:337-353. [PMID: 34132340 DOI: 10.1042/ebc20200142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022]
Abstract
Pollution caused by persistent petro-plastics is the most pressing problem currently, with 8 million tons of plastic waste dumped annually in the oceans. Plastic waste management is not systematized in many countries, because it is laborious and expensive with secondary pollution hazards. Bioplastics, synthesized by microorganisms, are viable alternatives to petrochemical-based thermoplastics due to their biodegradable nature. Polyhydroxyalkanoates (PHAs) are a structurally and functionally diverse group of storage polymers synthesized by many microorganisms, including bacteria and Archaea. Some of the most important PHA accumulating bacteria include Cupriavidus necator, Burkholderia sacchari, Pseudomonas sp., Bacillus sp., recombinant Escherichia coli, and certain halophilic extremophiles. PHAs are synthesized by specialized PHA polymerases with assorted monomers derived from the cellular metabolite pool. In the natural cycle of cellular growth, PHAs are depolymerized by the native host for carbon and energy. The presence of these microbial PHA depolymerases in natural niches is responsible for the degradation of bioplastics. Polyhydroxybutyrate (PHB) is the most common PHA with desirable thermoplastic-like properties. PHAs have widespread applications in various industries including biomedicine, fine chemicals production, drug delivery, packaging, and agriculture. This review provides the updated knowledge on the metabolic pathways for PHAs synthesis in bacteria, and the major microbial hosts for PHAs production. Yeasts are presented as a potential candidate for industrial PHAs production, with their high amenability to genetic engineering and the availability of industrial-scale technology. The major bottlenecks in the commercialization of PHAs as an alternative for plastics and future perspectives are also critically discussed.
Collapse
|
20
|
Arias-Roblero M, Mora-Villalobos V, Velazquez-Carrillo C. Evaluation of Fed-Batch Fermentation for Production of Polyhydroxybutyrate With a Banana Pulp Juice Substrate From an Agro Industrial By-Product. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.681596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pollution resulting from the persistence of plastics in the environment has driven the development of substitutes for these materials through fermentation processes using agro-industrial wastes. Polyhydroxybutyrate (PHB) is a rapidly biodegradable material with chemical and mechanical properties comparable to those of some petroleum-derived plastics. PHB accumulates intracellularly as an energy reserve in a wide variety of microorganisms exposed to nutritionally imbalanced media. The objective of this study was to evaluate the use of a banana waste product as a carbon source for PHB production. PHB was extracted by acid methanolysis and detected by gas chromatography-mass spectrometry. Eleven bacterial strains with potential for PHB production were evaluated by in vitro fermentation in a culture broth containing fructose as the carbon source and limited nitrogen. A 22 central composite rotational design was applied to optimize the concentrations of banana juice and ammonium chloride needed to maximize the PHB-producing biomass concentration. The process was then carried out in a 3 L fed-batch fermentation system that included an initial stage of biomass growth. Banana juice was used as the carbon source and fructose pulses were added to maintain the test sugar concentrations of 30, 40, and 50 g/L. The control strain, Cupriavidus necator (ATCC 17699), produced 2.816 g/L of PHB, while productivity of the most promising isolate, C. necator (CR-12), was 0.495 g/L. Maximum biomass production was obtained using 5% banana juice and 2 g/L ammonium chloride. PHB production was not detected in fed-batch fermentations supplemented with 30 or 40 g/L of fructose, while the mean PHB production in fermentations with 50 g/L of fructose was 1.3 g/L.
Collapse
|