1
|
Sivanandhan M, Ragupathy S, Thangamani A, Parasuraman A. Synthesis, crystal structure, Hirshfeld surface, computational and biological studies of spiro-oxindole derivatives as MDM2-p53 inhibitors. Mol Divers 2025; 29:2157-2177. [PMID: 39210216 DOI: 10.1007/s11030-024-10974-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
The spiro-oxindole derivatives were synthesized via a 1,3-dipolar cycloaddition approach and characterized by FT-IR, 1H, 13C NMR and mass spectral techniques. The single crystal XRD of 6d further validates the formation of compounds. DFT calculations indicated the reactive nature of compound 6d. Docking studies with 5LAW disclosed the minimum binding energy of - 10.83 kcal/mol for 6d. Furthermore, safe oral bioavailability was ensured by the physicochemical, pharmacokinetic, and toxicity predictions. The anticancer analysis of synthesized compounds showed substantial activity against A549 cells, notably with an IC50 value of 8.13 ± 0.66 µM for 6d compared to standard doxorubicin. 6d was also evaluated for cytotoxicity against L929 healthy cells and A549, showing selectivity towards A549 than healthy cells. AO/EB staining method showed early apoptotic cellular death in the A549 cell line in a dose-dependent manner.
Collapse
Affiliation(s)
- Monisha Sivanandhan
- Department of Chemistry, PSGR Krishnammal College for Women, Coimbatore, 641004, Tamil Nadu, India
| | - Sutha Ragupathy
- Department of Chemistry, PSGR Krishnammal College for Women, Coimbatore, 641004, Tamil Nadu, India
| | - Arumugam Thangamani
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India
| | - Amutha Parasuraman
- Department of Chemistry, PSGR Krishnammal College for Women, Coimbatore, 641004, Tamil Nadu, India.
| |
Collapse
|
2
|
Prasad GD, Niranjan R, Arockiaraj M, Rajeshkumar V, Mahadevegowda SH. A coumarin and 1,8-napthyridine conjugated novel molecular hybrid: Synthesis, DFT insights and unveiling the selective fluorescent sensing of Hg 2+ ions with live-cell imaging application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125606. [PMID: 39706071 DOI: 10.1016/j.saa.2024.125606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/28/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Herein, we have used a simple synthetic strategy to access a novel non-sulfur fluorescent molecular probe coumarin and 1,8-napthyridine conjugated probe DNCS. The developed probe has great selectivity and sensitivity for detecting Hg2+ ions. Our photophysical properties evaluation for the synthesized probe with different metal ions (Ba2+, Al3+, Ca2+, Bi3+, Ce3+, Cd2+, Cu2+, Sr2+, Co2+, Fe2+, Cr3+, Fe3+, Mn2+, Hg2+, Zn2+, Pb2+, Ni2+, and Sn2+) unveiled the very selective and sensitive fluorescence sensing behavior with Hg2+ ions in the energy window of near UV and visible light radiation in an organic aqueous solvent mixture (EtOH and water). The limit of detection (LOD) of 9.04 x10-5 M and binding constant of 2.56 × 103 M-1 were obtained for the probe DNCS with Hg2+ ions, and 1:1 stoichiometric complexation. Our bioimaging experiments demonstrated that the developed probe exhibited fluorescent sensing behaviors towards Hg2+ ions with HCT 116 cells. Moreover, the current studies present the electronic properties of the DNCS probe computed through DFT computation studies at the B3LYP/6-311G(d,p) level of theory. We are confident that the developed fluorescent probe has the potential for the efficient fluorometric detection of Hg2+ ions and plays a significant role in environmental and human health protection.
Collapse
Affiliation(s)
- G Durga Prasad
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem 534101, Andhra Pradesh, India
| | - Raghvendra Niranjan
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem 534101, Andhra Pradesh, India
| | - Mariyaraj Arockiaraj
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda 506004, Telangana, India
| | - Venkatachalam Rajeshkumar
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda 506004, Telangana, India
| | - Surendra H Mahadevegowda
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem 534101, Andhra Pradesh, India.
| |
Collapse
|
3
|
Prasad GD, Niranjan R, Arockiaraj M, Rajeshkumar V, Mahadevegowda SH. Synthesis of Di(thiophen-2-yl) Substituted Pyrene-Pyridine Conjugated Scaffold and DFT Insights: A Selective and Sensitive Colorimetric, and Ratiometric Fluorescent Sensor for Fe(III) Ions. J Fluoresc 2025; 35:789-803. [PMID: 38175457 DOI: 10.1007/s10895-023-03554-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
In this context, we used the multicomponent Chichibabin pyridine synthesis reaction to synthesize a novel di(thiophen-2-yl) substituted and pyrene-pyridine fluorescent molecular hybrid. The computational (DFT and TD-DFT) and experimental investigations were performed to understand the photophysical properties of the synthesized new structural scaffold. The synthesized ligand displays highly selective fluorescent sensing properties towards Fe3+ ions when compared to other competitive metal ions (Al3+, Ba2+, Ca2+, Cd2+, Co2+, Cr3+, Cu2+, Fe2+, Hg2+, Na+, Ni2+, Pb2+, Sr2+, Sn2+ and Zn2+). The photophysical properties studies reveal that the synthesized hybrid molecule has a binding constant of 2.30 × 103 M-1 with limit of detection (LOD) of 4.56 × 10-5 M (absorbance mode) and 5.84 × 10-5 M (emission mode) for Fe3+ ions. We believe that the synthesized pyrene-conjugated hybrid ligand can serve as a potential fluorescent chemosensor for the selective and specific detection of Fe3+ ions.
Collapse
Affiliation(s)
- G Durga Prasad
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, 534101, Andhra Pradesh, India
| | - Raghvendra Niranjan
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, 534101, Andhra Pradesh, India
| | - Mariyaraj Arockiaraj
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda, 506004, Telangana, India
| | - Venkatachalam Rajeshkumar
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda, 506004, Telangana, India
| | - Surendra H Mahadevegowda
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, 534101, Andhra Pradesh, India.
| |
Collapse
|
4
|
Mahema S, Roshni J, Raman J, Ahmad SF, Al-Mazroua HA, Ahmed SSSJ. Molecular Regulator Driving Endometriosis Towards Endometrial Cancer: A Multi-Scale Computational Investigation to Repurpose Anti-Cancer drugs. Cell Biochem Biophys 2024; 82:3367-3381. [PMID: 39042184 DOI: 10.1007/s12013-024-01420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
Endometriosis is a gynecological disorder among reproductive-aged women. Recent epidemiological investigations suggest endometriosis increases the risk of endometrial cancer. However, the molecular entity leading to endometriosis-to-endometrial cancer is largely unknown. This study aimed to combine a variety of computational approaches to identify the key therapeutic target promoting endometriosis-to-endometrial cancer and screen potential inhibitors against target to prevent cancer development. Our systematic investigations, includes transcriptomic profiling, protein network, pharmacophore modeling, docking, binding free energy calculation, dynamics simulation, and quantum mechanics. The gene expression analysis on endometriosis and endometrial cancer was performed and showed 108 shared upregulated genes in both conditions. Further construction of interaction network with 108 genes showed intercellular adhesion molecule 1 (ICAM1) to be a crucial molecule with a high degree of connectivity that influences vital mechanisms related to cancer pathways. We then generated ligand-based pharmacophore models using established ICAM1 inhibitors. Among the models, the ADRRR_8 pharmacophore exhibited a robust area under curve (AUC = 0.83), was employed to screen 1739 anti-cancer drugs. On screening, 421 anti-cancer drugs displayed ICAM1-inhibiting pharmacophore features. Further, the docking of 421 drugs with ICAM1 showed lanreotide (-7.80 kcal/mol) with better affinity than the reference ICAM1 inhibitor (-3.59 kcal/mol). Further validation though binding free energy and dynamics simulation of the lanreotide-ICAM1 complex showed a high binding affinity of -55.90 kcal/mol and contributed stable confirmation. According to quantum chemical calculations, lanreotide's electronic properties favour ICAM1 binding with highest occupied molecular orbital was -6.91 eV and lowest unoccupied molecular orbital was -3.93 eV. Our study supports using lanreotide to treat endometriosis, which could delay or prevent endometrial cancer. These predictions need to be confirmed and examined to determine the use of lanreotide in endometriosis treatment.
Collapse
Affiliation(s)
- S Mahema
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Jency Roshni
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Janaki Raman
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Haneen A Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shiek S S J Ahmed
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
5
|
Yu X, Zhang D, Hu C, Yu Z, Li Y, Fang C, Qiu Y, Mei Z, Xu L. Combination of Diosmetin With Chrysin Against Hepatocellular Carcinoma Through Inhibiting PI3K/AKT/mTOR/NF-кB Signaling Pathway: TCGA Analysis, Molecular Docking, Molecular Dynamics, In Vitro Experiment. Chem Biol Drug Des 2024; 104:e70003. [PMID: 39448547 DOI: 10.1111/cbdd.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/29/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024]
Abstract
Hepatocellular carcinoma (HCC) is the sixth most prevalent malignant tumor. Hepatocellular carcinogenesis is closely linked to apoptosis, autophagy, and inflammation. Diosmetin and chrysin, are two flavonoid compounds, exhibit anti-inflammatory and anticancer properties. In this study, the TCGA database was utilized to identify differentially expressed genes between normal subjects and HCC patients. Molecular docking and molecular dynamics analyses were employed to assess the binding affinity of chrysin and diosmetin to key proteins in the PI3K/AKT/mTOR/NF-κB signaling pathway. Western blotting and RT-qPCR were used to measure the protein and gene expression within this pathway. The results indicated that HCC patients had elevated levels of PI3K, AKT, mTOR, and P65 proteins compared to normal subjects, which adversely affected patient survival. Molecular docking and dynamics studies demonstrated that diosmetin and chrysin are effectively bound to these four proteins. In vitro experiments revealed that the combination of diosmetin and chrysin could induce apoptosis, enhance autophagy, reduce inflammatory mediator production, and improve the tumor cell microenvironment by inhibiting the PI3K/AKT/mTOR/NF-κB signaling pathway. Notably, the synergy score for the combination of diosmetin (25 μM) and chrysin (10 μM) was 16. Thus, the diosmetin-chrysin combination shows promise as an effective therapeutic approach for hepatocellular carcinoma due to its strong synergistic effect.
Collapse
Affiliation(s)
- Xiang Yu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Di Zhang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Chengming Hu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Zejun Yu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Yang Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Cheng Fang
- College of Medicine and Health, Wuhan Polytechnic University, Wuhan, China
| | - Yinsheng Qiu
- School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Zhinan Mei
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Lingyun Xu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
6
|
Roshni J, Sivakumar M, Alzahrani FM, Halawani IF, Alzahrani KJ, Patil S, Ahmed SSSJ. Virtual screening, molecular dynamics and density functional theory on pain inhibitors against TRPV1 associating inflammatory conditions. J Biomol Struct Dyn 2024; 42:6788-6798. [PMID: 37489910 DOI: 10.1080/07391102.2023.2237595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/08/2023] [Indexed: 07/26/2023]
Abstract
Transient receptor potential vanilloid 1 protein (TRPV1) is expressed widely in skin and sensory neurons that contribute to pain/heat sensation in the human system. TRPV1 gene polymorphisms are susceptible to multiple diseases and it is considered a therapeutic target for various inflammatory conditions. Among the TRPV1 variants, rs8065080 (1911 A > G) plays a vital role in painful osteoarthritis and migraine. The presence of rs8065080 polymorphism may render drug efficacy. This study aimed to identify better antagonists against wild-type and variant TRPV1 that may help in the relief of pain/inflammation. We constructed suitable TRPV1 protein structures for wild-type and rs8065080 variant through a homology modelling approach. A total of 3363 anti-inflammatory compounds with high chemical diversity and good drug-like properties were collected and screened against the generated structures. Molecular docking showed that nobilamide B had the highest binding affinity (-5.83 kcal/mol) towards the wild-type. Whereas, isoquinoline analogue displayed highest binding potency with the variant TRPV1 (-11.65 kcal/mol). Besides those, C18H15F3N4O showed affinity towards both wild-type (-5.53 kcal/mol) and variant TRPV1 (-9.75 kcal/mol). Then, molecular dynamic simulation revealed stable conformation in wild-type and variant TRPV1 upon binding of nobilmaide B, isoquinoline analogue and C18H15F3N4O. Additionally, density functional theory (DFT) using B3LYP hybrid function showed high chemical reactiveness of nobilamie B, isoquinoline analogue and C18H15F3N4O. Overall, our systematic investigations provide, C18H15F3N4O could be a potential analgesic inhibiting both wild-type and variant TRPV1 against inflammatory conditions.
Collapse
Affiliation(s)
- Jency Roshni
- Drug discovery and Multi-omics Lab, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Mahema Sivakumar
- Drug discovery and Multi-omics Lab, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Fuad M Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Ibrahim F Halawani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, Utah, USA
| | - Shiek S S J Ahmed
- Drug discovery and Multi-omics Lab, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| |
Collapse
|
7
|
Wu L, Lin S, Hu Y, Jing S, Sun B, Chen X, Jia J, Zeng C, Pei F. Potential mechanism of Luoshi Neiyi prescription in endometriosis based on serum pharmacochemistry and network pharmacology. Front Pharmacol 2024; 15:1395160. [PMID: 39135784 PMCID: PMC11317381 DOI: 10.3389/fphar.2024.1395160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction Endometriosis (EMs) is characterized by ectopic growth of active endometrial tissue outside the uterus. The Luoshi Neiyi prescription (LSNYP) has been extensively used for treating EMs in China. However, data on the active chemical components of LSNYP are insufficient, and its pharmacological mechanism in EMs treatment remains unclear. This study aimed to explore the potential mechanism of LSNYP for EMs through network pharmacology based on the components absorbed into the blood. Methods Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry was used to analyze blood components, and a series of network pharmacology strategies were utilized to predict targets of these components and EMs. Protein-protein interaction (PPI) network analysis, component-target-disease network construction, gene ontology (GO) functional enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed. Additionally, molecular docking, molecular dynamics simulations, and in vitro and in vivo experiments were conducted to validate the HIF1A/EZH2/ANTXR2 pathway associated with hypoxic pathology in EMs. Results Thirty-four absorbed components suitable for network pharmacology analysis were identified, and core targets, such as interleukin 6, EGFR, HIF1A, and EZH2, were founded. Enrichment results indicated that treatment of EMs with LSNYP may involve the regulation of hypoxia and inflammatory-related signaling pathways and response to oxidative stress and transcription factor activity. Experimental results demonstrated that LSNYP could decrease the expression of HIF1A, ANTXR2, YAP1, CD44, and β-catenin, and increased EZH2 expression in ectopic endometrial stromal cells and endometriotic tissues. Molecular docking and molecular dynamics simulations manifested that there was stable combinatorial activity between core components and key targets of the HIF1A/EZH2/ANTXR2 pathway. Conclusion LSNYP may exert pharmacological effects on EMs via the HIF1A/EZH2/ANTXR2 pathway; hence, it is a natural herb-related therapy for EMs.
Collapse
Affiliation(s)
- Lizheng Wu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shuhong Lin
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yongjun Hu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shangwen Jing
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Bowen Sun
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoxin Chen
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jinjin Jia
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Cheng Zeng
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Fangli Pei
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Hassanuddin NA, Normaya E, Ismail H, Iqbal A, Piah MBM, Abd Hamid S, Ahmad MN. Methyl 4-pyridyl ketone thiosemicarbazone (4-PT) as an effective and safe inhibitor of mushroom tyrosinase and antibrowning agent. Int J Biol Macromol 2024; 255:128229. [PMID: 37981274 DOI: 10.1016/j.ijbiomac.2023.128229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 11/21/2023]
Abstract
Enzymatic browning is of concern as it can affect food safety and quality. In this study, an effective and safe tyrosinase inhibitor and anti-browning agent, methyl 4-pyridyl ketone thiosemicarbazone (4-PT), was synthesised and characterised using Fourier-transform infrared (FTIR) spectroscopy, CHNS elemental analysis, and proton (1H) and carbon-13 (13C) nuclear magnetic resonance (NMR) spectroscopy. The vibrational frequencies of 4-PT were studied theoretically using vibrational energy distribution analysis (VEDA). Density functional theory (DFT) was applied to elucidate its chemical properties, including the Mulliken atomic charges, molecular electrostatic potential (MEP), quantum theory of atoms in molecules (QTAIM) and reduced density gradient non-covalent interactions (RDG-NCIs). Moreover, 4-PT was compared with kojic acid in terms of its effectiveness as a tyrosinase inhibitor and anti-browning agent. The toxicity and physicochemical properties of 4-PT were predicted via ADME evaluation, which proved that 4-PT is safer than kojic acid. Experimentally, 4-PT (IC50 = 5.82 μM, browning index (10 days) = 0.292 ± 0.002) was proven to be an effective tyrosinase inhibitor and anti-browning agent compared to kojic acid (IC50 = 128.17 μM, browning index (10 days) = 0.332 ± 0.002). Furthermore, kinetic analyses indicated that the type of tyrosinase inhibition is a mixed inhibition, with Km and Vmax values of 0.85 mM and 2.78 E-09 μM/s, respectively. Finally, the mechanism of 4-PT for tyrosinase inhibition was proven by 1D, second derivative and 2D IR spectroscopy, molecular docking and molecular dynamic simulation approaches.
Collapse
Affiliation(s)
- Nur Amanina Hassanuddin
- Experimental and Theoretical Research Lab (ETRL), Department of Chemistry, Kulliyyah of Science, IIUM, Kuantan, Pahang, Malaysia
| | - Erna Normaya
- Experimental and Theoretical Research Lab (ETRL), Department of Chemistry, Kulliyyah of Science, IIUM, Kuantan, Pahang, Malaysia; Sustainable Nanotechnology and Computational Modelling (SuNCoM) Research Group, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Hakimah Ismail
- Experimental and Theoretical Research Lab (ETRL), Department of Chemistry, Kulliyyah of Science, IIUM, Kuantan, Pahang, Malaysia
| | - Anwar Iqbal
- School of Chemical Science, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Mohd Bijarimi Mat Piah
- Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Kuantan, Malaysia
| | - Shafida Abd Hamid
- Department of Chemistry, Kulliyyah of Science, IIUM, Kuantan, Pahang, Malaysia
| | - Mohammad Norazmi Ahmad
- Experimental and Theoretical Research Lab (ETRL), Department of Chemistry, Kulliyyah of Science, IIUM, Kuantan, Pahang, Malaysia; Sustainable Nanotechnology and Computational Modelling (SuNCoM) Research Group, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia.
| |
Collapse
|
9
|
Sivakumar M, Ahmad SF, Emran TB, Angulo-Bejarano PI, Sharma A, Ahmed SSSJ. Network-Derived Radioresistant Breast Cancer Target with Candidate Inhibitors from Brown Algae: A Sequential Assessment from Target Selection to Quantum Chemical Calculation. Mar Drugs 2023; 21:545. [PMID: 37888480 PMCID: PMC10608582 DOI: 10.3390/md21100545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Despite significant progress in early detection and treatment, a few aggressive breast cancers still exhibit resistance to therapy. This study aimed to identify a therapeutic target for radioresistant breast cancer (RRbc) through a protein network from breast cancer genes and to evaluate potent phytochemicals against the identified target. Our approach includes the integration of differential expression genes from expression datasets to create a protein network and to use survival analysis to identify the crucial RRbc protein in order to discover a therapeutic target. Next, the phytochemicals sourced from brown algae were screened through molecular docking, ADME (absorption, distribution, metabolism, and excretion), molecular dynamics (MD) simulation, MM-GBSA, and quantum mechanics against the identified target. As a result of our protein network investigation, the proto-oncogene c-KIT (KIT) protein was identified as a potent radioresistant breast cancer target. Further, phytochemical screening establishes that nahocol-A1 from brown algae has high binding characteristics (-8.56 kcal/mol) against the KIT protein. Then, quantum chemical analysis of nahocol-A1 provided insights into its electronic properties favorable for protein binding. Also, MD simulation comprehends the conformational stability of the KIT-nahocol-A1 complex. Overall, our findings suggest nahocol-A1 could serve as a promising therapeutic candidate for radioresistant breast cancer.
Collapse
Affiliation(s)
- Mahema Sivakumar
- Drug Discovery and Multi-Omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam 603103, Tamil Nadu, India
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Paola Isabel Angulo-Bejarano
- NatProLab-Plant Innovation Lab, Regional Department of Bioengineering, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | - Ashutosh Sharma
- NatProLab-Plant Innovation Lab, Regional Department of Bioengineering, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | - Shiek S. S. J. Ahmed
- Drug Discovery and Multi-Omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam 603103, Tamil Nadu, India
| |
Collapse
|
10
|
Roshni J, Ahmad SF, Wani A, Ahmed SSSJ. Multi-Target Effect of Aloeresin-A against Bacterial and Host Inflammatory Targets Benefits Contact Lens-Related Keratitis: A Multi-Omics and Quantum Chemical Investigation. Molecules 2023; 28:6955. [PMID: 37836798 PMCID: PMC10574460 DOI: 10.3390/molecules28196955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Contact lens-mediated microbial keratitis caused by Pseudomonas aeruginosa and Streptococcus pneumoniae provokes corneal damage and vision loss. Recently, natural phytochemicals have become complementary medicines for corneal destruction. Herein, we aimed to identify multi-targeting Aloe vera-derived phytochemicals capable of inhibiting bacterial and host targets of keratitis through ADME (absorption, distribution, metabolism, and excretion), docking, molecular dynamics (MD) simulation, MMGBSA (molecular mechanics generalized Born surface area) and density functional theory (DFT) investigations. An extensive literature search revealed ExoU, ExoS, ExoT, ExoY, and PLY as virulent bacterial targets. Simultaneously, differential gene expression (DGE) and pathway enrichment analysis-specified host transcription factor (SPI1) influences keratitis pathogenesis. Molecular docking analysis uncovered aloeresin-A as a promising inhibitor against bacterial and host targets, demonstrating strong binding energies ranging from -7.59 to -6.20 kcal/mol. Further, MMGBSA and MD simulation analysis reflect higher binding free energies and stable interactions of aloeresin-A with the targets. In addition, DFT studies reveal the chemical reactiveness of aloeresin-A through quantum chemical calculations. Hence, our findings show aloeresin-A to be a promising candidate for effectively inhibiting keratitis. However, additional research is imperative for potential integration into lens care solutions.
Collapse
Affiliation(s)
- Jency Roshni
- Drug Discovery and Multi-Omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abubakar Wani
- Department of Immunology, St. Jude Children’s Research Hospital Memphis, Memphis, TN 38105, USA
| | - Shiek S. S. J. Ahmed
- Drug Discovery and Multi-Omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| |
Collapse
|
11
|
R S, Mahalakshmi S, Kumaran S, Kadaikunnan S, Abbas G, Muthu S. Structural, electronic, intermolecular interaction, reactivity, vibrational spectroscopy, charge transfer, Hirshfeld surface analysis, pharmacological and hydropathy plot on 5-Bromo nicotinic acid - Antiviral study (Hepatitis A, B, and C). Heliyon 2023; 9:e19965. [PMID: 37809934 PMCID: PMC10559560 DOI: 10.1016/j.heliyon.2023.e19965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
The therapeutic properties of 5-Bromonicotinatic acid (5BNA) were studied for antiviral illnesses like Hepatitis A, Hepatitis B and Hepatitis C and the influence of electron-donating and electron-withdrawing properties of functional groups on the nicotinic acid was evaluated and represented in this study using the DFT approach. The molecular parameters were determined for both gases as well as for various solvent phases. The reactive areas in the compound are examined utilising Fukui analysis. The molecular interactions are accomplished by recognising the different types of bonding found in the compound using the AIM, ELF, LOL, RDG and IRI. Solvation investigations were demonstrated to have an influence on molecular orbital energy, ESP, UV-Vis and NLO analyses. Electron-hole, NBO and Hirshfeld investigations are used to investigate the transfer of charges and interactions inside the molecule. The method of vibrational spectroscopy (IR and Raman) is used to differentiate and identify the various types of vibrations displayed by the compound. The hydropathy plots for the proteins 2A4O, 6CWD and 2OC8 associated with Hepatitis A, Hepatitis B and Hepatitis C illustrate the disquiet and attraction of the amino acids towards the water.
Collapse
Affiliation(s)
- Sravanthi R
- Department of Physics, Ethiraj College for Women, Chennai, 600008, Tamil Nadu, India
- University of Madras, Chennai, 600005, Tamil Nadu, India
| | - S. Mahalakshmi
- Department of Physics, Ethiraj College for Women, Chennai, 600008, Tamil Nadu, India
| | - S. Kumaran
- Department of ECE, Saveetha Engineering College, Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ghulam Abbas
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstr 15, 76131, Karlsruhe, Germany
| | - S. Muthu
- Department of Physics, Arignar Anna Govt. Arts College, Cheyyar, 604407, Tamil Nadu, India
| |
Collapse
|
12
|
Wei K, Louis H, Emori W, Idante PS, Agwamba EC, Cheng CR, Eno EA, Unimuke TO. Antispasmodic activity of carnosic acid extracted from rosmarinus officinalis: Isolation, spectroscopic characterization, DFT studies, and in silico molecular docking investigations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132795] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Bravanjalin Subi E, Arul Dhas D, Balachandran S, Hubert Joe I. Crystal Growth, Structural, Vibrational, Effects of Hydrogen Bonding(C-H…O and C-H…N), Chemical Reactivity, Antimicrobial Activity, Inhibitory Effects and Molecular Dynamic Simulation of 4-Methoxy-N-(Nitrobenzylidene)-Aniline. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2052116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- E. Bravanjalin Subi
- Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, India
- Department of Physics, Research Centre, Nesamony Memorial Christian College, Marthandam, Tamil Nadu, India
| | - D. Arul Dhas
- Department of Physics, Research Centre, Nesamony Memorial Christian College, Marthandam, Tamil Nadu, India
| | - S. Balachandran
- Department of Chemistry, NSS College Ottapalam, Palakad, Kerala, India
| | - I. Hubert Joe
- Centre for Molecular and Biophysics Research, Department of Physics, Mar Ivanios College, Thiruvanathapuram, Kerala, India
| |
Collapse
|
14
|
Gümüş MK, Kansiz S, Tulemisova GB, Dege N, Saif E. Crystal structure and Hirshfeld surface analysis of 3-(hy-droxy-meth-yl)-3-methyl-2,6-di-phenyl-piperidin-4-one. Acta Crystallogr E Crystallogr Commun 2022; 78:29-32. [PMID: 35079418 PMCID: PMC8739193 DOI: 10.1107/s2056989021012640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/28/2021] [Indexed: 12/01/2022]
Abstract
A new synthesis of the title compound, C19H21NO2, was developed with good yield and purity using the reaction of 4-hy-droxy-3-methyl-2-butanone, benzaldehyde and ammonium acetate in glacial acetic acid as a solvent. The central piperidine ring adopts a chair conformation, and its least-squares basal plane forms dihedral angles of 85.71 (11) and 77.27 (11)° with the terminal aromatic rings. In the crystal, the mol-ecules are linked by O-H⋯O and C-H⋯O hydrogen bonds into double ribbons. The Hirshfeld surface analysis shows that the most important contributions are from H⋯H (68%), C⋯H/H⋯C (19%) and O⋯H/H⋯O (12%) inter-actions.
Collapse
Affiliation(s)
- Mustafa Kemal Gümüş
- Science-Technology Research and Application Center, Artvin Coruh University, Artvin, Turkey
- Department of Chemistry and Chemical Technologies, Faculty of Natural and Agricultural Sciences, Atyrau State University named after Kh. Dosmukhamedov, 060011, Atyrau, Kazakhstan
| | - Sevgi Kansiz
- Samsun University, Faculty of Engineering, Department of Fundamental Sciences, 55420, Samsun, Turkey
| | - Gulzhamal Bagitovna Tulemisova
- Department of Chemistry and Chemical Technologies, Faculty of Natural and Agricultural Sciences, Atyrau State University named after Kh. Dosmukhamedov, 060011, Atyrau, Kazakhstan
| | - Necmi Dege
- Ondokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Samsun, Turkey
| | - Eiad Saif
- Department of Computer and Electronic Engineering Technology, Sanaa Community College, Sanaa, Yemen
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Ondokuz Mayıs University, 55139, Samsun, Turkey
| |
Collapse
|
15
|
Enudi OC, Louis H, Edim MM, Agwupuye JA, Ekpen FO, Bisong EA, Utsu PM. Understanding the aqueous chemistry of quinoline and the diazanaphthalenes: insight from DFT study. Heliyon 2021; 7:e07531. [PMID: 34296019 PMCID: PMC8282981 DOI: 10.1016/j.heliyon.2021.e07531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/18/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022] Open
Abstract
The inter-fragment interactions at various binding sites and the overall cluster stability of quinolone (QNOL), cinnoline (CNOL), quinazoline (QNAZ), and quinoxaline (QNOX) complexes with H2O were studied using the density functional theory (DFT) approach. The adsorption and H-bond binding energies, and the energy decomposition mechanism was considered to determine the relative stabilization status of the studied clusters. Scanning tunneling microscopy (STM), natural bonding orbitals (NBO) and charge decomposition were studied to expose the electronic distribution and interaction between fragments. The feasibility of formations of the various complexes were also studied by considering their thermodynamic properties. Results from adsorption studies confirmed the actual adsorption of H2O molecules on the various binding sites studied, with QNOX clusters exhibiting the best adsorptions. Charge decomposition analysis (CDA) revealed significant charge transfer from substrate to H2O fragment in most complexes, except in QNOL, CNOL and QNAZ clusters with H2O at binding position 4, where much charges are back-donated to substrate. The O---H inter-fragment bonds was discovered to be stronger than counterpart N---H bonds in the complexes, whilst polarity indices confirmed N---H as more polar covalent than O---H bonds. Thermodynamic considerations revealed that the formation process of all studied complexes are endothermic (+ve ΔH f ) and non-spontaneous (+ve ΔG f ).
Collapse
Affiliation(s)
- Obieze C. Enudi
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Moses M. Edim
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - John A. Agwupuye
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Francis O. Ekpen
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Emmanuel A. Bisong
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Patrick M. Utsu
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| |
Collapse
|