1
|
Shi L, Wang X, Dai Y, Zhou W, Wu S, Shao B, Nabanoga GN, Ji C, Zhao M. Comparison of the aquatic toxicity of diquat and its metabolites to zebrafish Danio rerio. Sci Rep 2024; 14:31358. [PMID: 39733025 PMCID: PMC11682118 DOI: 10.1038/s41598-024-82905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024] Open
Abstract
Diquat (DQ) is a non-selective, fast-acting herbicide that is extensively used in aquatic systems. DQ has been registered as the substitute for paraquat due to its lower toxicity. However, the widespread presence of DQ in aquatic systems can pose an ecological burden on aquatic organisms. In addition, DQ can degrade into its metabolites, diquat-monopyridone (DQ-M) and diquat-dipyridone (DQ-D) in the environment, while the ecological risks of the metabolites remain uncertain. Herein, the aquatic ecological risks of DQ and its metabolites were compared using zebrafish as model non-target organisms. Results indicated that DQ and its metabolites did not induce significant acute toxicity to zebrafish embryos at environmentally relevant levels. However, exposure to DQ and DQ-D resulted in oxidative stress in zebrafish larvae. DQ treatment led to increased levels of reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione (GSH) in the larvae, while DQ-D increased internal MDA and GSH levels. Moreover, the activities of the antioxidative enzymes, superoxide dismutase (SOD) and catalase (CAT) were significantly suppressed by DQ and DQ-D. Besides, the expression levels of oxidative stress-related genes (Mn-SOD, CAT, and GPX) were disturbed accordingly after DQ and DQ-D treatments. These findings highlighted the importance of a more comprehensive understanding of the ecological risks of agrochemical substitutions as well as agrochemical metabolites. Such knowledge is crucial for significant improvements in agrochemical regulation and policy-making in the future.
Collapse
Affiliation(s)
- Lanxin Shi
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, People's Republic of China
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, People's Republic of China
| | - Xinru Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, People's Republic of China
| | - Yaoyao Dai
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Wendong Zhou
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, People's Republic of China
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, People's Republic of China
| | - Shenggan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Bo Shao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, People's Republic of China
| | | | - Chenyang Ji
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, People's Republic of China.
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
2
|
Dang Z. Amphibian toxicity testing for identification of thyroid disrupting chemicals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:120006. [PMID: 35998776 DOI: 10.1016/j.envpol.2022.120006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Both amphibian metamorphosis assay (AMA) and larval amphibian growth and development assay (LAGDA) can detect thyroid-mediated modality and adversity on the basis of morphological changes during the thyroid hormone-dependent metamorphosis. They are used for identification of thyroid hormone system disrupting chemicals (TDCs) for non-target organisms or the environment. The EU Guidance recommends that the AMA and the LAGDA should be used to address sufficient investigation of the thyroid-mediated modality and adversity, respectively. In the EU discussions over identification of TDCs, the necessity of using LAGDA as a follow-up of positive results of the AMA has been questioned because of the overlap between the endpoints and the exposure of both tests. This study analyzed similarities, differences, and sensitivity of these two assays in detection of TDCs. For agonists and most of antagonists of the hypothalamic-pituitary-thyroid (HPT) axis, both AMA and LAGDA can detect the thyroid-mediated modality and adversity. The LAGDA, as a follow-up of the positive results of the AMA, may not be needed because the results of AMA are considered enough for identification of TDCs. For chemicals like inhibitors of iodotyrosine deiodinase, the LAGDA is considered necessary for identification of TDCs because the thyroid-mediated adversity cannot be detected until Nieuwkoop and Faber (NF) stage 62. Incorporation of mechanistic endpoints into existing test guidelines and the use of Xenopus Eleutheroembryo Thyroid Assay (XETA), extended amphibian metamorphosis assay (EAMA) and adverse outcome pathways (AOPs) for testing and identification of TDCs are further discussed.
Collapse
Affiliation(s)
- ZhiChao Dang
- National Institute for Public Health and the Environment, A. van Leeuwenhoeklaan 9, 3720 BA Bilthoven, the Netherlands.
| |
Collapse
|
3
|
Xiao Y, Lin X, Zhou M, Ren T, Gao R, Liu Z, Shen W, Wang R, Xie X, Song Y, Hu W. Metabolomics analysis of the potential toxicological mechanisms of diquat dibromide herbicide in adult zebrafish (Danio rerio) liver. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1039-1055. [PMID: 35831485 DOI: 10.1007/s10695-022-01101-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Although diquat is a widely used water-soluble herbicide in the world, its sublethal adverse effects to fish have not been well characterised. In this study, histopathological examination and biochemical assays were applied to assess hepatotoxicity and combined with gas chromatography-mass spectrometry (GC-MS)-based metabolomics analysis to reveal overall metabolic mechanisms in the liver of zebrafish (Danio rerio) after diquat exposure at concentrations of 0.34 and 1.69 mg·L-1 for 21 days. Results indicated that 1.69 mg·L-1 diquat exposure caused cellular vacuolisation and degeneration with nuclear abnormality and led to the disturbance of antioxidative system and dysfunction in the liver. No evident pathological injury was detected, and changes in liver biochemistry were not obvious in the fish exposed to 0.34 mg·L-1 diquat. Multivariate statistical analysis revealed differences between profiles obtained by GC-MS spectrometry from control and two treatment groups. A total of 17 and 22 metabolites belonging to different classes were identified following exposure to 0.34 and 1.69 mg·L-1 diquat, respectively. The metabolic changes in the liver of zebrafish are mainly manifested as inhibition of energy metabolism, disorders of amino acid metabolism and reduction of antioxidant capacity caused by 1.69 mg·L-1 diquat exposure. The energy metabolism of zebrafish exposed to 0.34 mg·L-1 diquat was more inclined to rely on anaerobic glycolysis than that of normal zebrafish, and interference effects on lipid metabolism were observed. The metabolomics approach provided an innovative perspective to explore possible hepatic damages on fish induced by diquat as a basis for further research.
Collapse
Affiliation(s)
- Ye Xiao
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Xiang Lin
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Meilan Zhou
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Tianyu Ren
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Ruili Gao
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Zhongqun Liu
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Wenjing Shen
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Rong Wang
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Xi Xie
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Yanting Song
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Wenting Hu
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China.
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China.
| |
Collapse
|