1
|
Ezeh CC, Onyema VO, Obi CJ, Moneke AN. A systematic review of the impacts of oil spillage on residents of oil-producing communities in Nigeria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34761-34786. [PMID: 38714616 DOI: 10.1007/s11356-024-33468-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/21/2024] [Indexed: 05/10/2024]
Abstract
Oil spillage is common in oil-producing communities of Nigeria, and it impacts negatively on the residents of these communities. This study analysed available research data on oil spillage incidents in these communities to determine their main causes and impacts on the residents. This study highlights the immediate and long-term consequences of oil spills on residents of oil-host communities in Nigeria. A systematic review of published studies was carried out, and 22 studies were identified from the literature search. The main causes of oil spills were identified as sabotage (87%), leakage from corroded pipelines (62%), and equipment failure (45%). Others were mystery spills and operational failures. Unemployment, abject poverty, marginalization, and inaction of government regulatory agencies are enabling factors for sabotage and vandalism of oil pipelines. It was found that exposure to oil spills impacts directly and indirectly on residents of oil-host communities, with accompanying health, socioeconomic, and environmental implications. Oil spills in these communities impact on all facets of their life, thereby infringing on their rights to existence and survival. The major interventions were targeted at improving health services, education, infrastructure, skill acquisition, and employment. These in turn reduced the occurrence of violence, insurgency, and human trafficking in the oil-producing communities. It is recommended that government regulatory agencies should be revamped and repositioned to effectively perform their duties. Interventions should be targeted at addressing the causes of agitation by indigenes by involving them in the decision-making process. Also, appropriate remediation strategies should be adopted to clean up the oil spills.
Collapse
Affiliation(s)
- Chukwuemeka C Ezeh
- Department of Microbiology, Faculty of Biological Science, University of Nigeria, Nsukka, Enugu State, Nigeria
- Centre for Environmental Management and Control, University of Nigeria, Nsukka, Enugu State, Nigeria
- Central Science Laboratory, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Vanessa O Onyema
- Department of Microbiology, Faculty of Biological Science, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinonye J Obi
- Centre for Environmental Management and Control, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Anene N Moneke
- Department of Microbiology, Faculty of Biological Science, University of Nigeria, Nsukka, Enugu State, Nigeria.
- Centre for Environmental Management and Control, University of Nigeria, Nsukka, Enugu State, Nigeria.
| |
Collapse
|
2
|
George II, Nawawi MGM, Mohd ZJ, Farah BS. Environmental effects from petroleum product transportation spillage in Nigeria: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1719-1747. [PMID: 38055166 DOI: 10.1007/s11356-023-31117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023]
Abstract
Nigeria has struggled to meet sustainable development goals (SDGs) on environmental sustainability, transportation, and petroleum product distribution for decades, endangering human and ecological health. Petroleum product spills contaminate soil, water, and air, harming humans, aquatic life, and biodiversity. The oil and gas industry contributes to environmental sustainability and scientific and technological advancement through its supply chain activities in the transport and logistics sectors. This paper reviewed the effects of petroleum product transportation at three accident hotspots on Nigeria highway, where traffic and accident records are alarming due to the road axis connecting the southern and northern regions of the country. The preliminary data was statistically analysed to optimise the review process and reduce risk factors through ongoing data monitoring. Studies on Nigeria's petroleum product transportation spills and environmental impacts between the years 2013 and 2023 were critically analysed to generate updated information. The searches include Scopus, PubMed, and Google Scholar. Five hundred and forty peer-reviewed studies were analysed, and recommendations were established through the conclusions. The findings show that petroleum product transport causes heavy metal deposition in the environment as heavy metals damage aquatic life and build up in the food chain, posing a health risk to humans. The study revealed that petroleum product spills have far-reaching environmental repercussions and, therefore, recommended that petroleum product spills must be mitigated immediately. Furthermore, the study revealed that better spill response and stricter legislation are needed to reduce spills, while remediation is necessary to lessen the effects of spills on environmental and human health.
Collapse
Affiliation(s)
- Ikenna Ignatius George
- Department of Petroleum Engineering (FKT), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, UTM JB, 81310, Skudai, Johor, Malaysia.
- Transport Technology Center, Nigerian Institute of Transport Technology, NITT, P. M. B. 1147, Kaduna State, Zaria, Nigeria.
| | - Mohd Ghazali Mohd Nawawi
- Department of Chemical Engineering, (FKT), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, UTM JB, 81310, Skudai, Johor, Malaysia
| | - Zaidi Jafaar Mohd
- Department of Petroleum Engineering (FKT), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, UTM JB, 81310, Skudai, Johor, Malaysia
| | - Bayero Salih Farah
- Office of the Director General Chief Executive, Nigerian Institute of Transport Technology, NITT, P. M. B. 1147, Kaduna State, Zaria, Nigeria
| |
Collapse
|
3
|
Umar HA, Khanan MFA, Shiru MS, Ahmad A, Rahman MZA, Din AHM. An integrated investigation of hydrocarbon pollution in Ahoada area, Niger Delta Region, Nigeria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116848-116859. [PMID: 36633746 DOI: 10.1007/s11356-023-25144-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
This study investigates hydrocarbon pollution in the Ahoada community of the Niger Delta region of Nigeria. The study uses a geographic information system (GIS) for mapping oil spill hotspots in the region. The resistivity method was used to delineate the extent of hydrocarbon pollution to a depth of 19.7 m in the Ahoada area of the region. Three categories of soil samples, impacted soil (IMS), remediated soil (RS), and control soil (CS), were collected and analyzed for the presence of BTEX, PAH, TPH, TOC, and TOG. The concentrations of the samples from the IMS and RS were compared to that of the CS to determine the extent of pollution. The GIS mapping shows that the most polluted areas in the Niger Delta Region are Rivers, Bayelsa, and Delta states. Results of the geophysical images revealed contaminants' presence to depths beyond 20 m at some locations in the study area. The highest depth of contaminant travel was at Ukperede. Soil samples' analysis showed that the range of concentrations of TPH in IMS at Oshie was 17.27-58.36 mg/kg; RS was 11.73-50.78 mg/kg which were higher than the concentrations of 0.68 mg/kg in the CS. PAHs are more prevalent in Ukperede, ranging from 54.56 to 77.54 mg/kg. BTEX concentrations ranged from 0.02 to 0.38 mg/kg for IMP and 0.01-2.7 mg/kg for RS against a CS value of 0.01 mg/kg. The study revealed that there are characteristically high resistivity values in the samples which were corroborated by the findings from the resistivity survey. TOC was found to be higher in the IMS and RS than in the CS, demonstrating that a significant quantity of the hydrocarbon has undergone appreciable decomposition.
Collapse
Affiliation(s)
- Hafiz Aminu Umar
- Department of Environmental Sciences, Faculty of Science, Federal University Dutse, P.M.B 7156, Dutse, Nigeria.
- Department of Surveying and Geoinformatics, Baze University Abuja, Abuja, Nigeria.
| | - Mohd Faisal Abdul Khanan
- Department of Geoinformation, Faculty of Built Environment and Surveying, Universiti Teknologi, 81310, Johor Bahru, Johor, Malaysia
| | - Mohammed Sanusi Shiru
- Department of Environmental Sciences, Faculty of Science, Federal University Dutse, P.M.B 7156, Dutse, Nigeria
| | - Anuar Ahmad
- Department of Geoinformation, Faculty of Built Environment and Surveying, Universiti Teknologi, 81310, Johor Bahru, Johor, Malaysia
| | - Muhammad Zulkarnain Abdul Rahman
- Department of Geoinformation, Faculty of Built Environment and Surveying, Universiti Teknologi, 81310, Johor Bahru, Johor, Malaysia
| | - Ami Hassan Md Din
- Department of Geoinformation, Faculty of Built Environment and Surveying, Universiti Teknologi, 81310, Johor Bahru, Johor, Malaysia
| |
Collapse
|
4
|
Ja'afaru MI, Abbas T, Ajunwa OM, Olaifa K. Characterization and statistical optimization of biosurfactant production using Bacillus subtilis isolated from automotive oil-contaminated soil in Yola, Nigeria. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
5
|
Kartashov OO, Chernov AV, Alexandrov AA, Polyanichenko DS, Ierusalimov VS, Petrov SA, Butakova MA. Machine Learning and 3D Reconstruction of Materials Surface for Nondestructive Inspection. SENSORS (BASEL, SWITZERLAND) 2022; 22:6201. [PMID: 36015958 PMCID: PMC9414881 DOI: 10.3390/s22166201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
During the steel pipeline installation, special attention is paid to the butt weld control performed by fusion welding. The operation of the currently popular automated X-ray and ultrasonic testing complexes is associated with high resource and monetary costs. In this regard, this work is devoted to the development of alternative and cost-effective means of preliminary quality control of the work performed based on the visual testing method. To achieve this goal, a hardware platform based on a single board Raspberry Pi4 minicomputer and a set of available modules and expansion cards is proposed, and software whose main functionality is implemented based on the systemic application of computer vision algorithms and machine learning methods. The YOLOv5 object detection algorithm and the random forest machine learning model were used as a defect detection and classification system. The mean average precision (mAP) of the trained YOLOv5 algorithm based on extracted weld contours is 86.9%. A copy of YOLOv5 trained on the images of control objects showed a mAP result of 96.8%. Random forest identifying of the defect precursor based on the point clouds of the weld surface achieved a mAP of 87.5%.
Collapse
Affiliation(s)
- Oleg O. Kartashov
- The Smart Materials Research Institute, Southern Federal University, 178/24 Sladkova, 344090 Rostov-on-Don, Russia
| | | | | | | | | | | | | |
Collapse
|
6
|
Prospects of Integrated Photovoltaic-Fuel Cell Systems in a Hydrogen Economy: A Comprehensive Review. ENERGIES 2021. [DOI: 10.3390/en14206827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Integrated photovoltaic-fuel cell (IPVFC) systems, amongst other integrated energy generation methodologies are renewable and clean energy technologies that have received diverse research and development attentions over the last few decades due to their potential applications in a hydrogen economy. This article systematically updates the state-of-the-art of IPVFC systems and provides critical insights into the research and development gaps needed to be filled/addressed to advance these systems towards full commercialization. Design methodologies, renewable energy-based microgrid and off-grid applications, energy management strategies, optimizations and the prospects as self-sustaining power sources were covered. IPVFC systems could play an important role in the upcoming hydrogen economy since they depend on solar hydrogen which has almost zero emissions during operation. Highlighted herein are the advances as well as the technical challenges to be surmounted to realize numerous potential applications of IPVFC systems in unmanned aerial vehicles, hybrid electric vehicles, agricultural applications, telecommunications, desalination, synthesis of ammonia, boats, buildings, and distributed microgrid applications.
Collapse
|
7
|
Shiru S, Shiru MS. Towards Commercialization of Third‐Generation Biofuel Industry for Sustainable Energy Production in Nigeria. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202100015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Suleiman Shiru
- University of Ilorin Department of Chemical Engineering P.M.B. 1515 Ilorin Nigeria
| | - Mohammed Sanusi Shiru
- Seoul National University of Science and Technology Department of Civil Engineering 01811 Seoul South Korea
| |
Collapse
|