1
|
Mestres C, Taylor M, McDougall G, Arufe S, Tran T, Nuwamanya E, Dufour D, Nakitto M, Meghar K, Rinaldo D, Ollier L, Domingo R, Moreno JL, Delgado LF, Kouassi HA, Diby NAS, Mbeguie-A-Mbeguie D, Akissoe N, Adinsi L, Rolland-Sabate A. Contrasting effects of polysaccharide components on the cooking properties of roots, tubers and bananas. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4652-4661. [PMID: 37559127 DOI: 10.1002/jsfa.12914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/18/2023] [Accepted: 08/10/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Consumer preferences for boiled or fried pieces of roots, tubers and bananas (RTBs) are mainly related to their texture. Different raw and cooked RTBs were physiochemically characterized to determine the effect of biochemical components on their cooking properties. RESULTS Firmness in boiled sweetpotato increases with sugar and amylose contents but no significant correlation was observed between other physicochemical characteristics and cooking behaviour. Hardness of boiled yam can be predicted by dry matter (DM) and galacturonic acid (GalA) levels. For cassava, no significant correlation was found between textural properties of boiled roots and DM, but amylose and Ca2+ content were correlated with firmness, negatively and positively, respectively. Water absorption of cassava root pieces boiled in calcium chloride solutions was much lower, providing indirect evidence that pectins are involved in determining cooking quality. A highly positive correlation between textural attributes and DM was observed for fried plantain, but no significant correlation was found with GalA, although frying slightly reduced GalA. CONCLUSION The effect of main components on texture after cooking differs for the various RTBs. The effect of global DM and major components (i.e. starch, amylose) is prominent for yam, plantain and sweetpotato. Pectins also play an important role on the texture of boiled yam and play a prominent role for cassava through interaction with Ca2+. © 2023 Bill and Melinda Gates Foundation. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Christian Mestres
- CIRAD, UMR QualiSud, Montpellier, France
- QualiSud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Mark Taylor
- Plant Biochemistry and Food Quality Group, James Hutton Institute, Dundee, Scotland
| | - Gordon McDougall
- Plant Biochemistry and Food Quality Group, James Hutton Institute, Dundee, Scotland
| | - Santiago Arufe
- CIRAD, UMR QualiSud, Montpellier, France
- QualiSud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Thierry Tran
- CIRAD, UMR QualiSud, Montpellier, France
- QualiSud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
- CIRAD, UMR QualiSud, CIAT, Cali, Colombia
- The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | | | - Dominique Dufour
- CIRAD, UMR QualiSud, Montpellier, France
- QualiSud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | | | - Karima Meghar
- CIRAD, UMR QualiSud, Montpellier, France
- QualiSud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | | | - Lea Ollier
- CIRAD, UMR QualiSud, Montpellier, France
- QualiSud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Romain Domingo
- CIRAD, UMR QualiSud, Montpellier, France
- QualiSud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Jhon Larry Moreno
- The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Luis Fernando Delgado
- The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | | | - N'Nan Afoué Sylvie Diby
- Université Peleforo Gon Coulibaly, Korhogo, Côte d'Ivoire
- Centre National de Recherche Agronomique, Abidjan, Côte d'Ivoire
| | - Didier Mbeguie-A-Mbeguie
- CIRAD, UMR QualiSud, Montpellier, France
- QualiSud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
- Université Nangui Abrogoua, Abidjan, Côte d'Ivoire
- CIRAD, UMR Qualisud, Abidjan, Côte d'Ivoire
| | - Noël Akissoe
- Laboratoire de Sciences des Aliments, Faculte des Sciences Agronomiques, Universite d'Abomey-Calavi (UAC-FSA), Jericho, Benin
| | - Laurent Adinsi
- Laboratoire de Sciences des Aliments, Faculte des Sciences Agronomiques, Universite d'Abomey-Calavi (UAC-FSA), Jericho, Benin
| | | |
Collapse
|
2
|
Xu M, Xu C, Kim SJ, Ji S, Ren Y, Chen Z, Li Y, Zhou B, Lu B. Investigating the evolution of the fine structure in cassava starch during growth and its correlation with gelatinization performance. Int J Biol Macromol 2024; 265:130422. [PMID: 38423429 DOI: 10.1016/j.ijbiomac.2024.130422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
The evolution of the starch fine structure during growth and its impact on the gelatinization behavior of cassava starch (CS) was investigated by isolating starch from South China 6068 (SC6068) cassava harvested from the 4th to 9th growth period. During growth, the short-range ordered structure, crystallinity as well as particle size distribution of starch were increased. Meanwhile, the starch molecular size and amylopectin (AP) proportion increased, while the proportion of amylose (AM) exhibited a decreasing tendency. The chains of short-AM (X ~ 100-1000) were mainly significantly reduced, whereas the short and medium-AP chains (X ~ 6-24) had the most increment in AP. The solubility, thermal stability, shear resistance, and retrogradation resistance of starch were enhanced after gelatinized under the influence of the results mentioned above. This study presented a deeper insight into the variation of starch fine structure during growth and its influence on gelatinization behavior, which would provide a theoretical basis for starch industrial applications.
Collapse
Affiliation(s)
- Minghao Xu
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Congyi Xu
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Sol-Ju Kim
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Shengyang Ji
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Yicheng Ren
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Ziyue Chen
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Ye Li
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Bin Zhou
- Guilin Agricultural Science Research Centre, Guilin 541006, China.
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
3
|
Guo C, Han F, Geng S, Shi Y, Ma H, Liu B. The physicochemical properties and Pickering emulsifying capacity of acorn starch. Int J Biol Macromol 2023; 239:124289. [PMID: 37011752 DOI: 10.1016/j.ijbiomac.2023.124289] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
In this work, the granule characteristics, functional properties, in-vitro digestibility, antioxidant capacity, and phenolic composition of acorn starch were investigated and compared to those of potato starch and corn starch, and its Pickering emulsifying ability was also evaluated. The results showed that the acorn starch granules were spherical and oval in shape, with a smaller particle size, and the amylose content and crystallinity degree were similar to those of corn starch. However, the acorn starch was difficult to swell, with poor aqueous solubility, though it had a strong gel strength and setback viscosity. Because acorn starch contained more free and bound polyphenols, its resistant starch content after cooking and ABTS and DPPH radical scavenging activities were significantly higher than those of potato starch and corn starch. Acorn starch also exhibited outstanding particle wettability and could stabilize Pickering emulsions. The assessed emulsion showed an outstanding effect for protecting β-carotene against ultraviolet irradiation and was positively correlated with the acorn starch addition amount. The obtained results may serve as a reference for the further development of acorn starch.
Collapse
|