1
|
Kiyak C, Ijezie OA, Ackah JA, Armstrong M, Cowen J, Cetinkaya D, Burianová H, Akudjedu TN. Topographical Distribution of Neuroanatomical Abnormalities Following COVID-19 Invasion : A Systematic Literature Review. Clin Neuroradiol 2024; 34:13-31. [PMID: 37697012 PMCID: PMC10881816 DOI: 10.1007/s00062-023-01344-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/14/2023] [Indexed: 09/13/2023]
Abstract
PURPOSE This systematic review is aimed at synthesising the literature base to date on the frequency and topographical distribution of neuroanatomical changes seen on imaging following COVID-19 invasion with a focus on both the acute and chronic phases of the disease. METHODS In this study, 8 databases were systematically searched to identify relevant articles published from December 2019 to March 2022 and supplemented with a manual reference search. Data were extracted from the included studies and narrative synthesis was employed to integrate the findings. RESULTS A total of 110 studies met the inclusion criteria and comprised 119,307 participants (including 31,073 acute and 143 long COVID-19 patients manifesting neurological alterations) and controls. Considerable variability in both the localisation and nature of neuroanatomical abnormalities are noted along the continuum with a wide range of neuropathologies relating to the cerebrovascular/neurovascular system, (sub)cortical structures (including deep grey and white matter structures), brainstem, and predominant regional and/or global alterations in the cerebellum with varying degrees of spinal involvement. CONCLUSION Structural regional alterations on neuroimaging are frequently demonstrated in both the acute and chronic phases of SARS-CoV‑2 infection, particularly prevalent across subcortical, prefrontal/frontal and cortico-limbic brain areas as well as the cerebrovascular/neurovascular system. These findings contribute to our understanding of the acute and chronic effects of the virus on the nervous system and has the potential to provide information on acute and long-term treatment and neurorehabilitation decisions.
Collapse
Affiliation(s)
- Ceyda Kiyak
- Faculty of Science and Technology, Bournemouth University, Bournemouth, UK
- School of Psychology, University of East Anglia, Norwich, UK
| | | | - Joseph A Ackah
- Institute of Medical Imaging and Visualisation, Faculty of Health and Social Sciences, Bournemouth University, 8 8GP, Bournemouth, UK
| | - Matthew Armstrong
- Department of Rehabilitation & Sports Sciences, Faculty of Health and Social Sciences, Bournemouth University, Bournemouth, UK
| | - Jake Cowen
- Department of Radiology, Queen Alexandra Hospital, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| | - Deniz Cetinkaya
- Faculty of Science and Technology, Bournemouth University, Bournemouth, UK
| | - Hana Burianová
- Faculty of Science and Technology, Bournemouth University, Bournemouth, UK
| | - Theophilus N Akudjedu
- Institute of Medical Imaging and Visualisation, Faculty of Health and Social Sciences, Bournemouth University, 8 8GP, Bournemouth, UK.
| |
Collapse
|
2
|
Afsahi AM, Norbash AM, Syed SF, Sedaghat M, Afsahi G, Shahidi R, Tajabadi Z, Bagherzadeh-Fard M, Karami S, Yarahmadi P, Shirdel S, Asgarzadeh A, Baradaran M, Khalaj F, Sadeghsalehi H, Fotouhi M, Habibi MA, Jang H, Alavi A, Sedaghat S. Brain MRI findings in neurologically symptomatic COVID-19 patients: a systematic review and meta-analysis. J Neurol 2023; 270:5131-5154. [PMID: 37535100 DOI: 10.1007/s00415-023-11914-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) has been associated with nervous system involvement, with more than one-third of COVID-19 patients experiencing neurological manifestations. Utilizing a systematic review, this study aims to summarize brain MRI findings in COVID-19 patients presenting with neurological symptoms. METHODS Systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) checklist. The electronic databases of PubMed/MEDLINE, Embase, Scopus, and Web of Science were systematically searched for literature addressing brain MRI findings in COVID-19 patients with neurological symptoms. RESULTS 25 publications containing a total number of 3118 COVID-19 patients with neurological symptoms who underwent MRI were included. The most common MRI findings and the respective pooled incidences in decreasing order were acute/subacute infarct (22%), olfactory bulb abnormalities (22%), white matter abnormalities (20%), cerebral microbleeds (17%), grey matter abnormalities (12%), leptomeningeal enhancement (10%), ADEM (Acute Disseminated Encephalomyelitis) or ADEM-like lesions (10%), non-traumatic ICH (10%), cranial neuropathy (8%), cortical gray matter signal changes compatible with encephalitis (8%), basal ganglia abnormalities (5%), PRES (Posterior Reversible Encephalopathy Syndrome) (3%), hypoxic-ischemic lesions (4%), venous thrombosis (2%), and cytotoxic lesions of the corpus callosum (2%). CONCLUSION The present study revealed that a considerable proportion of patients with COVID-19 might harbor neurological abnormalities detectable by MRI. Among various findings, the most common MRI alterations are acute/subacute infarction, olfactory bulb abnormalities, white matter abnormalities, and cerebral microbleeds.
Collapse
Affiliation(s)
| | | | - Shahla F Syed
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Maya Sedaghat
- Department for Radiology and Neuroradiology, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Ghazaleh Afsahi
- Department of Biotechnology Research, Blue California Ingredients, Rancho Santa Margarita, CA, USA
| | - Ramin Shahidi
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Zohreh Tajabadi
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shaghayegh Karami
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Pourya Yarahmadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shabnam Shirdel
- Department of Psychology, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | - Ali Asgarzadeh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mansoureh Baradaran
- Department of Radiology, Imam Ali Hospital, North Khorasan University of Medical Science, Bojnurd, Iran
| | - Fattaneh Khalaj
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Sadeghsalehi
- Department of Artificial Intelligence in Medical Sciences, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Fotouhi
- Quantitative MR Imaging and Spectroscopy Group (QMISG), Research Centre for Molecular and Cellular Imaging (RCMCI), Advanced Medical Technologies and Equipment Institute (AMTEI), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | | | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, CA, USA
| | - Abass Alavi
- Department of Diagnostic Radiology and Nuclear Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sam Sedaghat
- Department of Radiology, University of California, San Diego, CA, USA
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
3
|
Kwiatkowska A, Granicka LH. Anti-Viral Surfaces in the Fight against the Spread of Coronaviruses. MEMBRANES 2023; 13:464. [PMID: 37233525 PMCID: PMC10223398 DOI: 10.3390/membranes13050464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
This review is conducted against the background of nanotechnology, which provides us with a chance to effectively combat the spread of coronaviruses, and which primarily concerns polyelectrolytes and their usability for obtaining protective function against viruses and as carriers for anti-viral agents, vaccine adjuvants, and, in particular, direct anti-viral activity. This review covers nanomembranes in the form of nano-coatings or nanoparticles built of natural or synthetic polyelectrolytes--either alone or else as nanocomposites for creating an interface with viruses. There are not a wide variety of polyelectrolytes with direct activity against SARS-CoV-2, but materials that are effective in virucidal evaluations against HIV, SARS-CoV, and MERS-CoV are taken into account as potentially active against SARS-CoV-2. Developing new approaches to materials as interfaces with viruses will continue to be relevant in the future.
Collapse
Affiliation(s)
| | - Ludomira H. Granicka
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4 St., 02-109 Warsaw, Poland;
| |
Collapse
|
4
|
Huang Y, Ling Q, Manyande A, Wu D, Xiang B. Brain Imaging Changes in Patients Recovered From COVID-19: A Narrative Review. Front Neurosci 2022; 16:855868. [PMID: 35527821 PMCID: PMC9072792 DOI: 10.3389/fnins.2022.855868] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused several outbreaks of highly contagious respiratory diseases worldwide. The respiratory symptoms of Coronavirus Disease-19 (COVID-19) have been closely monitored and studied, while the central nervous system (CNS) and peripheral system (PNS) lesions induced by COVID-19 have not received much attention. Currently, patients with COVID-19-associated encephalopathy present with dizziness, headache, anxiety and depression, stroke, epileptic seizures, the Guillain-Barre syndrome (GBS), and demyelinating disease. The exact pathologic basis for these neurological symptoms is currently not known. Rapid mutation of the SARS-CoV-2 genome leads to the appearance of SARS-CoV-2 variants of concern (VOCs), which have higher infectivity and virulence. Therefore, this narrative review will focus on the imaging assessment of COVID-19 and its VOC. There has been an increase in technologies, such as [18F]fluorodeoxyglucose positron emission tomography (18F-FDG-PET) and functional magnetic resonance imaging (fMRI), that have been used to observe changes in brain microstructure over time in patients with COVID-19 recovery. Medical imaging and pathological approaches aimed at exploring the associations between COVID-19 and its VOC, with cranial nerve and abnormal nerve discharge will shed light on the rehabilitation process of brain microstructural changes related to SARS-CoV-2, and aid future research in our understanding of the treatment and prognosis of COVID-19 encephalopathy.
Collapse
Affiliation(s)
- Yan Huang
- Department of Interventional Therapy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qiong Ling
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, London, United Kingdom
| | - Duozhi Wu
- Department of Anesthesiology, Hainan general Hospital, Haikou, China
- *Correspondence: Duozhi Wu,
| | - Boqi Xiang
- School of Public Health, Rutgers University, New Brunswick, NJ, United States
- Boqi Xiang,
| |
Collapse
|