1
|
Liu X, He M, Hu R, Chen Z. Randomized controlled trial study of intelligent rehabilitation training system for functional ankle instability. Sci Rep 2024; 14:4996. [PMID: 38424225 PMCID: PMC10904850 DOI: 10.1038/s41598-024-55555-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/25/2024] [Indexed: 03/02/2024] Open
Abstract
To investigate the intervention effect of an intelligent rehabilitation training system on patients with functional ankle instability (FAI) and to advance the research to optimise the effect of FAI rehabilitation training. Thirty-four FAI patients who participated in this trial in Guilin City from April 2023 to June 2023 were recruited as research subjects, and all subjects were randomly divided into the control group (n = 17) and the observation group (n = 17). Both groups received the conventional rehabilitation training intervention for 6 weeks, and the observation group received the additional training using the intelligent rehabilitation training system training invented by our team. Visual analogue scale (VAS), ankle active mobility, ankle muscle strength and Y-balance test (YBT) were assessed before and after treatment. Two-way repeated measures ANOVA shows that the interaction effect between time and group of VAS scores was significant (F = 35.644, P < 0.05). The interaction effect between time and group of plantar flexion mobility was significant (F = 23.948, P < 0.05), the interaction effect between time and group of dorsiflexion mobility was significant (F = 6.570, P < 0.05), the interaction effect between time and group of inversion mobility was significant (F = 8.360, P < 0.05), the interaction effect between time and group of eversion mobility was significant (F = 10.113, P < 0.05). The interaction effect between time and group of inversion muscle strength was significant (F = 18.107, P < 0.05). The interaction effect between time and group of YBT scores was significant (F = 33.324, P < 0.05). The Intelligent Rehabilitation Training System can effectively reduce pain in FAI patients, improve joint range of motion, increase inversion strength, and improve dynamic balance of the affected limb.
Collapse
Affiliation(s)
- Xiaolong Liu
- School of Life and Environmental Science, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, China
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, China
- Rehabilitation College, Guilin Life and Health Career Technical College, Guilin, 541001, Guangxi, China
| | - Mengxiao He
- School of Physical Education and Health, Guilin University, Guilin, 541006, Guangxi, China
| | - Rongbo Hu
- Credo Robotics GmbH, Bajuwarenstrasse 47, 94315, Straubing, Germany
- Department of System Design Engineering, Keio University, Yokohama, Kanagawa, 223-8522, Japan
| | - Zhencheng Chen
- School of Life and Environmental Science, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, China.
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin, 541004, Guangxi, China.
- Guangxi Engineering Technology Research Center of Human Physiological Information Noninvasive Detection, Guilin, 541004, Guangxi, China.
| |
Collapse
|
2
|
Cesari V, Melfi F, Gemignani A, Menicucci D. Sensory substitution increases robotic surgical performance and sets the ground for a mediating role of the sense of embodiment: a systematic review. Heliyon 2023; 9:e21665. [PMID: 38027699 PMCID: PMC10656242 DOI: 10.1016/j.heliyon.2023.e21665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 09/17/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Sensory Substitution (SS) allows the elaboration of information via non preferential sensory modalities. This phenomenon occurs in robotic-assisted surgery (RAS), in which haptic feedback is lacking. It has been suggested that SS could sustain surgeons' proficiency by means of visual clues for inferring tactile information, that also promotes the feeling of haptic phantom sensations. A critical role in reaching a good performance in procedural tasks is also sustained by the Sense of Embodiment (SE), that is, the capacity to integrate objects into subjective bodily self-representation. As SE is enhanced by haptic sensations, we hypothesize a role of SS in promoting SE in RAS. Accordingly, the goal of this systematic review is to summarize the evidence pertaining the study of SS in RAS in order to highlight the impact on the performance, and to identify a mediating role of the SE in increasing dexterity in RAS. Eight studies selected from the MEDLINE and Scopus® databases met inclusion criteria for a qualitative synthesis. Results indicated that haptic to other modalities SS enhanced force consistency and accuracy, and decreased surgeon fatigue. Expert surgeons, as compared to novices, showed a better natural SS processing, testified by a proficient performance with and without SS aids. No studies investigated the mediating role of SE. These findings indicate that SS is subjected to learning and memory processes that help surgeons to rapidly derive haptic-correlates from visual clues, which are highly required for a good performance. Also, the higher ability of doing SS and the associated perception of haptic sensations might increase multisensory integration, which might sustain performance.
Collapse
Affiliation(s)
- Valentina Cesari
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Franca Melfi
- Robotic Multispecialty Center for Surgery Robotic, Minimally Invasive Thoracic Surgery, University of Pisa, 56124 Pisa, Italy
| | - Angelo Gemignani
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Danilo Menicucci
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| |
Collapse
|
3
|
Eagleman DM, Perrotta MV. The future of sensory substitution, addition, and expansion via haptic devices. Front Hum Neurosci 2023; 16:1055546. [PMID: 36712151 PMCID: PMC9880183 DOI: 10.3389/fnhum.2022.1055546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023] Open
Abstract
Haptic devices use the sense of touch to transmit information to the nervous system. As an example, a sound-to-touch device processes auditory information and sends it to the brain via patterns of vibration on the skin for people who have lost hearing. We here summarize the current directions of such research and draw upon examples in industry and academia. Such devices can be used for sensory substitution (replacing a lost sense, such as hearing or vision), sensory expansion (widening an existing sensory experience, such as detecting electromagnetic radiation outside the visible light spectrum), and sensory addition (providing a novel sense, such as magnetoreception). We review the relevant literature, the current status, and possible directions for the future of sensory manipulation using non-invasive haptic devices.
Collapse
Affiliation(s)
- David M. Eagleman
- Department of Psychiatry, Stanford University School of Medicine, Stanford, CA, United States,Neosensory, Palo Alto, CA, United States,*Correspondence: David M. Eagleman ✉
| | | |
Collapse
|
4
|
Jamari J, Ammarullah MI, Santoso G, Sugiharto S, Supriyono T, Permana MS, Winarni TI, van der Heide E. Adopted walking condition for computational simulation approach on bearing of hip joint prosthesis: review over the past 30 years. Heliyon 2022; 8:e12050. [PMID: 36506403 PMCID: PMC9730145 DOI: 10.1016/j.heliyon.2022.e12050] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/23/2022] [Accepted: 11/24/2022] [Indexed: 12/11/2022] Open
Abstract
Bearing on artificial hip joint experiences friction, wear, and surface damage that impact on overall performance and leading to failure at a particular time due to continuous contact that endangers the user. Assessing bearing hip joint using clinical study, experimental testing, and mathematical formula approach is challenging because there are some obstacles from each approach. Computational simulation is an effective alternative approach that is affordable, relatively fast, and more accessible than other approaches in examining various complex conditions requiring extensive resources and several different parameters. In particular, different gait cycles affect the sliding distance and distribution of gait loading acting on the joints. Appropriate selection and addition of gait cycles in computation modelling are crucial for accurate and reliable prediction and analysis of bearing performance such as wear a failure of implants. However, a wide spread of gait cycles and loading data are being considered and studied by researchers as reported in literature. The current article describes a comprehensive literature review adopted walking condition that has been carried out to study bearing using computational simulation approach over the past 30 years. Many knowledge gaps related to adoption procedures, simplification, and future research have been identified to obtain bearing analysis results with more realistic computational simulation approach according to physiological human hip joints.
Collapse
Affiliation(s)
- J. Jamari
- Department of Mechanical Engineering, Faculty of Engineering, Diponegoro University, Semarang 50275, Central Java, Indonesia
- Undip Biomechanics Engineering & Research Centre (UBM-ERC), Diponegoro University, Semarang 50275, Central Java, Indonesia
| | - Muhammad Imam Ammarullah
- Undip Biomechanics Engineering & Research Centre (UBM-ERC), Diponegoro University, Semarang 50275, Central Java, Indonesia
- Department of Mechanical Engineering, Faculty of Engineering, Pasundan University, Bandung 40153, West Java, Indonesia
- Biomechanics and Biomedics Engineering Research Centre, Pasundan University, Bandung 40153, West Java, Indonesia
| | - Gatot Santoso
- Department of Mechanical Engineering, Faculty of Engineering, Pasundan University, Bandung 40153, West Java, Indonesia
- Biomechanics and Biomedics Engineering Research Centre, Pasundan University, Bandung 40153, West Java, Indonesia
| | - S. Sugiharto
- Department of Mechanical Engineering, Faculty of Engineering, Pasundan University, Bandung 40153, West Java, Indonesia
- Biomechanics and Biomedics Engineering Research Centre, Pasundan University, Bandung 40153, West Java, Indonesia
| | - Toto Supriyono
- Department of Mechanical Engineering, Faculty of Engineering, Pasundan University, Bandung 40153, West Java, Indonesia
- Biomechanics and Biomedics Engineering Research Centre, Pasundan University, Bandung 40153, West Java, Indonesia
| | - Muki Satya Permana
- Department of Mechanical Engineering, Faculty of Engineering, Pasundan University, Bandung 40153, West Java, Indonesia
- Biomechanics and Biomedics Engineering Research Centre, Pasundan University, Bandung 40153, West Java, Indonesia
| | - Tri Indah Winarni
- Undip Biomechanics Engineering & Research Centre (UBM-ERC), Diponegoro University, Semarang 50275, Central Java, Indonesia
- Department of Anatomy, Faculty of Medicine, Diponegoro University, Semarang 50275, Central Java, Indonesia
- Center for Biomedical Research (CEBIOR), Faculty of Medicine, Diponegoro University, Semarang 50275, Central Java, Indonesia
| | - Emile van der Heide
- Department of Mechanics of Solids, Surfaces & Systems (MS3), Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
- Laboratory for Surface Technology and Tribology, Faculty of Engineering Technology, University of Twente, Postbox 217, 7500 AE Enschede, the Netherlands
| |
Collapse
|
5
|
Lynch P, Broderick P, Monaghan K. Sensory substitution for orthopaedic gait rehabilitation: A systematic review and meta-analysis for clinical practice guideline development. Heliyon 2022; 8:e10986. [PMID: 36254278 PMCID: PMC9568842 DOI: 10.1016/j.heliyon.2022.e10986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/23/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022] Open
Abstract
Introduction Sensory Substitution is a biofeedback intervention whereby at least sensory system is utilised to supplement environmental information which is traditionally gathered by another sense. Objective To present an evidence-based overview of the feasibility and effectiveness of wearable Sensory Substitution devices on gait outcomes in orthopaedic patient populations. Methods This Systematic Review and Meta-Analysis was reported according to the PRISMA 2020 statement. PubMed, the Cochrane Library, Web of science and PEDro were searched for relevant published literature. Inclusion criteria limited the search strictly to patients diagnosed with an orthopaedic condition and who were randomly grouped to a Sensory Substitution intervention or conventional therapy/training or an equivalent placebo intervention. Results Nine Randomised Controlled Trials and three Crossover Trials investigating the effectiveness of Sensory Substitution supplemented gait training were identified and included participants with a variety of orthopaedic conditions. Meta-Analyses revealed positive findings of feasibility as well as statistical and clinical effect of the interventions in improving measures of gait speed, weight-bearing control, measures of functionality and subjective self-reporting. Meta-Analyses also revealed the interventions effects were not significant in the management of pain and retention of gait speed. Negatively reinforced Sensory Substitution biofeedback was statistically and clinically effective, whilst positively reinforced biofeedback was not. Conclusion For orthopaedic patient populations to improve gait speed, weight-bearing control, functionality, pain and self-report measures, the authors recommend a Sensory Substitution supplemented gait training programme with negative biofeedback on performance. The intervention should be undertaken for 20 min per day, 3 days per week for 5 weeks. The intervention should coincide with structured analgesia administration to facilitate effective pain management. Limitations of the data included some low sample sizes and large age-ranges. No financial support was provided for this study.
Collapse
Affiliation(s)
- Peter Lynch
- Biomedical Science Research Group (HEAL), School of Science, Atlantic Technological University (ATU), Sligo, Ireland
- Neuroplasticity Research Group, School of Science, Atlantic Technological University (ATU), Sligo, Ireland
| | - Patrick Broderick
- Biomedical Science Research Group (HEAL), School of Science, Atlantic Technological University (ATU), Sligo, Ireland
- Neuroplasticity Research Group, School of Science, Atlantic Technological University (ATU), Sligo, Ireland
| | - Kenneth Monaghan
- Biomedical Science Research Group (HEAL), School of Science, Atlantic Technological University (ATU), Sligo, Ireland
- Neuroplasticity Research Group, School of Science, Atlantic Technological University (ATU), Sligo, Ireland
| |
Collapse
|