1
|
Liu XM, Halushka MK. Beyond the Bubble: A Debate on microRNA Sorting Into Extracellular Vesicles. J Transl Med 2025; 105:102206. [PMID: 39647608 PMCID: PMC11842217 DOI: 10.1016/j.labinv.2024.102206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/10/2024] Open
Abstract
Over the past decade, a scientific field has been developed demonstrating microRNAs (miRNAs) to be actively sorted into extracellular vesicles via specific nucleotide motifs that interact with discrete RNA-binding proteins. These miRNAs are proposed to be transported into recipient cells in which they can regulate specific cellular pathways. This mechanism could have enormous potential in explaining how cells signal and regulate other cells nearby or at a distance. Tens of studies have built this theme of a regulated transport of miRNAs. However, some concerns exist about this field. Taken together, there are concerns of a lack of a consistent motif, RNA-binding protein, or preferential miRNA involved in this process. In this study, we provide an expert and extensive analysis of the field that makes the cases for and against an active sorting mechanism. We provide potential explanations on why there is a lack of agreement. Most importantly, we provide ideas on how to move this field forward with more rigor and reproducibility. It is hoped that by engaging in a scientific debate of the pros and cons of this field, more rigorous experiments can be performed to conclusively demonstrate this biological activity.
Collapse
Affiliation(s)
- Xiao-Man Liu
- The Stanley Center for Psychiatric Research, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Marc K Halushka
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
2
|
Uddin MB, Wang Z, Yang C. Epitranscriptomic RNA m 6A Modification in Cancer Therapy Resistance: Challenges and Unrealized Opportunities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 12:e2403936. [PMID: 39661414 PMCID: PMC11775542 DOI: 10.1002/advs.202403936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/24/2024] [Indexed: 12/12/2024]
Abstract
Significant advances in the development of new cancer therapies have given rise to multiple novel therapeutic options in chemotherapy, radiotherapy, immunotherapy, and targeted therapies. Although the development of resistance is often reported along with temporary disease remission, there is often tumor recurrence of an even more aggressive nature. Resistance to currently available anticancer drugs results in poor overall and disease-free survival rates for cancer patients. There are multiple mechanisms through which tumor cells develop resistance to therapeutic agents. To date, efforts to overcome resistance have only achieved limited success. Epitranscriptomics, especially related to m6A RNA modification dysregulation in cancer, is an emerging mechanism for cancer therapy resistance. Here, recent studies regarding the contributions of m6A modification and its regulatory proteins to the development of resistance to different cancer therapies are comprehensively reviewed. The promise and potential limitations of targeting these entities to overcome resistance to various anticancer therapies are also discussed.
Collapse
Affiliation(s)
- Mohammad Burhan Uddin
- Department of Pharmaceutical SciencesNorth South UniversityBashundharaDhaka1229Bangladesh
| | - Zhishan Wang
- Stony Brook Cancer CenterStony Brook UniversityStony BrookNY11794USA
| | - Chengfeng Yang
- Stony Brook Cancer CenterStony Brook UniversityStony BrookNY11794USA
- Department of PathologyRenaissance School of MedicineStony Brook UniversityStony BrookNY11794USA
| |
Collapse
|
3
|
Mangiapane G, D'Agostino VG, Tell G. Emerging roles of bases modifications and DNA repair proteins in onco-miRNA processing: novel insights in cancer biology. Cancer Gene Ther 2024; 31:1765-1772. [PMID: 39322751 DOI: 10.1038/s41417-024-00836-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Onco-microRNAs (onco-miRNAs) are essential players in the post-transcriptional regulation of gene expression and exert a crucial role in tumorigenesis. Novel information about the epitranscriptomic modifications, involved in onco-miRNAs biogenesis, and in the modulation of their interplay with regulatory factors responsible for their processing and sorting are emerging. In this review, we highlight the contribution of bases modifications, sequence motifs, and secondary structures on miRNAs processing and sorting. We focus on several modes of action of RNA binding proteins (RBPs) on these processes. Moreover, we describe the new emerging scenario that shows an unexpected though essential role of selected DNA repair proteins in actively participating in these events, highlighting the original intervention represented by the non-canonical functions of Apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1), a central player in Base Excision Repair (BER) pathway of DNA lesions. Taking advantage of this new knowledge will help in prospecting new cancer diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Giovanna Mangiapane
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Vito Giuseppe D'Agostino
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DMED), University of Udine, Udine, Italy.
| |
Collapse
|
4
|
Qu S, Nelson HM, Liu X, Wang Y, Semler EM, Michell DL, Massick C, Franklin JL, Karijolich J, Weaver AM, Coffey RJ, Liu Q, Vickers KC, Patton JG. 5-Fluorouracil treatment represses pseudouridine-containing miRNA export into extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70010. [PMID: 39281020 PMCID: PMC11393769 DOI: 10.1002/jex2.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/18/2024]
Abstract
5-Fluorouracil (5-FU) has been used for chemotherapy for colorectal and other cancers for over 50 years. The prevailing view of its mechanism of action is inhibition of thymidine synthase leading to defects in DNA replication and repair. However, 5-FU is also incorporated into RNA causing defects in RNA metabolism, inhibition of pseudouridine modification, and altered ribosome function. We examined the impact of 5-FU on post-transcriptional small RNA modifications (PTxMs) and the expression and export of RNA into small extracellular vesicles (sEVs). EVs are secreted by all cells and contain a variety of proteins and RNAs that can function in cell-cell communication. We found that treatment of colorectal cancer (CRC) cells with 5-FU represses sEV export of miRNA and snRNA-derived RNAs, but promotes export of snoRNA-derived RNAs. Strikingly, 5-FU treatment significantly decreased the levels of pseudouridine on both cellular and sEV small RNA profiles. In contrast, 5-FU exposure led to increased levels of cellular small RNAs containing a variety of methyl-modified bases. These unexpected findings show that 5-FU exposure leads to altered RNA expression, base modification, and aberrant trafficking and localization of small RNAs.
Collapse
Affiliation(s)
- Shimian Qu
- Department of Biological SciencesVanderbilt UniversityNashvilleTennesseeUSA
- Center for Extracellular Vesicle ResearchVanderbilt University and Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Hannah M. Nelson
- Department of Biological SciencesVanderbilt UniversityNashvilleTennesseeUSA
- Center for Extracellular Vesicle ResearchVanderbilt University and Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Xiao Liu
- Center for Extracellular Vesicle ResearchVanderbilt University and Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Departments of Biostatistics and BioinformaticsVUMCNashvilleTennesseeUSA
| | - Yu Wang
- Center for Extracellular Vesicle ResearchVanderbilt University and Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Departments of Biostatistics and BioinformaticsVUMCNashvilleTennesseeUSA
| | - Elizabeth M. Semler
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Danielle L. Michell
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Clark Massick
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Jeffrey L. Franklin
- Center for Extracellular Vesicle ResearchVanderbilt University and Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTennesseeUSA
| | - John Karijolich
- Department of Pathology, Microbiology and ImmunologyVanderbilt UniversityNashvilleTennesseeUSA
| | - Alissa M. Weaver
- Center for Extracellular Vesicle ResearchVanderbilt University and Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTennesseeUSA
| | - Robert J. Coffey
- Center for Extracellular Vesicle ResearchVanderbilt University and Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTennesseeUSA
| | - Qi Liu
- Center for Extracellular Vesicle ResearchVanderbilt University and Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Departments of Biostatistics and BioinformaticsVUMCNashvilleTennesseeUSA
| | - Kasey C. Vickers
- Center for Extracellular Vesicle ResearchVanderbilt University and Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - James G. Patton
- Department of Biological SciencesVanderbilt UniversityNashvilleTennesseeUSA
- Center for Extracellular Vesicle ResearchVanderbilt University and Vanderbilt University Medical CenterNashvilleTennesseeUSA
| |
Collapse
|
5
|
Nelson HM, Qu S, Huang L, Shameer M, Corn KC, Chapman SN, Luthcke NL, Schuster SA, Stamaris TD, Turnbull LA, Guy LL, Liu X, Michell DL, Semler EM, Vickers KC, Liu Q, Franklin JL, Weaver AM, Rafat M, Coffey RJ, Patton JG. Transfer of miR-100 and miR-125b increases 3D growth and invasiveness in recipient cancer cells. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:397-416. [PMID: 39697634 PMCID: PMC11648436 DOI: 10.20517/evcna.2024.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 12/20/2024]
Abstract
Aim Extracellular communication via the transfer of vesicles and nanoparticles is now recognized to play an important role in tumor microenvironment interactions. Cancer cells upregulate and secrete abundant levels of miR-100 and miR-125b that can alter gene expression in donor and recipient cells. In this study, we sought to identify targets of miR-100 and miR-125b and conclusively demonstrate that microRNAs (miRNAs) can be functionally transferred from donor to recipient cells. Methods To identify targets of miR-100 and miR-125b, we used bioinformatic approaches comparing multiple colorectal cancer (CRC) cell lines, including knockout lines lacking one or both of these miRNAs. We also used spheroid and 3D growth conditions in collagen to test colony growth and invasiveness. We also used Transwell co-culture systems to demonstrate functional miRNA transfer. Results From an initial list of 96 potential mRNA targets, we identified and tested 15 targets, with 8 showing significant downregulation in the presence of miR-100 and miR-125b. Among these, cingulin (CGN) and protein tyrosine phosphatase receptor type-R (PTPRR) are downregulated in multiple cancers, consistent with regulation by increased levels of miR-100 and miR-125b. We also show that increased cellular levels of miR-100 and miR-125b enhance 3D growth and invasiveness in CRC and glioblastoma cell lines. Lastly, we demonstrate that extracellular transfer of miR-100 and miR-125b can silence both reporter and endogenous mRNA targets in recipient cells and also increase the invasiveness of recipient spheroid colonies when grown under 3D conditions in type I collagen. Conclusion miR-100 and miR-125b target multiple mRNAs that can regulate 3D cell-autonomous growth and invasiveness. By extracellular transfer, miR-100 and miR-125b can also increase colony growth and invasiveness in recipient cells through non-cell-autonomous mechanisms.
Collapse
Affiliation(s)
- Hannah M. Nelson
- Laboratory of James G. Patton, Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Shimian Qu
- Laboratory of James G. Patton, Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Liyu Huang
- Laboratory of James G. Patton, Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Muhammad Shameer
- Laboratory of James G. Patton, Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Kevin C. Corn
- Laboratory of Marjan Rafat, Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Sydney N. Chapman
- Laboratory of James G. Patton, Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Nicole L. Luthcke
- Laboratory of James G. Patton, Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Sara A. Schuster
- Laboratory of James G. Patton, Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Tellie D. Stamaris
- Laboratory of James G. Patton, Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Lauren A. Turnbull
- Laboratory of James G. Patton, Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Lucas L. Guy
- Laboratory of James G. Patton, Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Xiao Liu
- Laboratory of Qi Liu, Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Danielle L. Michell
- Laboratory of Kasey C. Vickers, Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Elizabeth M. Semler
- Laboratory of Kasey C. Vickers, Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kasey C. Vickers
- Laboratory of Kasey C. Vickers, Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Qi Liu
- Laboratory of Qi Liu, Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey L. Franklin
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Alissa M. Weaver
- Laboratory of Alissa M. Weaver, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37235, USA
| | - Marjan Rafat
- Laboratory of Marjan Rafat, Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Robert J. Coffey
- Laboratory of Robert J. Coffey, Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James G. Patton
- Laboratory of James G. Patton, Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
6
|
Nelson HM, Qu S, Huang L, Shameer M, Corn KC, Chapman SN, Luthcke NL, Schuster SA, Turnbull LA, Guy LL, Liu X, Vickers KC, Liu Q, Franklin JL, Weaver AM, Rafat M, Coffey RJ, Patton JG. miR-100 and miR-125b Contribute to Enhanced 3D Growth and Invasiveness and can be Functionally Transferred to Silence Target Genes in Recipient Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575716. [PMID: 38826470 PMCID: PMC11142119 DOI: 10.1101/2024.01.16.575716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Extracellular communication via the transfer of vesicles and nanoparticles is now recognized to play an important role in tumor microenvironment interactions. Cancer cells upregulate and secrete abundant levels of miR-100 and miR-125b that can alter gene expression by both cell- and non-cell-autonomous mechanisms. We previously showed that these miRNAs activate Wnt signaling in colorectal cancer (CRC) through noncanonical pairing with 5 negative regulators of Wnt signaling. To identify additional targets of miR-100 and miR-125b , we used bioinformatic approaches comparing multiple CRC cell lines, including knockout lines lacking one or both of these miRNAs. From an initial list of 96 potential mRNA targets, we tested 15 targets with 8 showing significant downregulation in the presence of miR-100 and miR-125b . Among these, Cingulin (CGN) and Protein tyrosine phosphatase receptor type-R (PTPRR) are downregulated in multiple cancers, consistent with regulation by increased levels of miR-100 and miR-125b. We also show that increased cellular levels of miR-100 and miR-125b enhance 3D growth and invasiveness in CRC and glioblastoma cell lines. Lastly, we demonstrate that extracellular transfer of miR-100 and miR-125b can silence both reporter and endogenous mRNA targets in recipient cells and also increase the invasiveness of recipient spheroid colonies when grown under 3D conditions in type I collagen.
Collapse
|
7
|
Qu S, Nelson H, Liu X, Semler E, Michell DL, Massick C, Franklin JL, Karijolich J, Weaver AM, Coffey RJ, Liu Q, Vickers KC, Patton JG. 5-Fluorouracil Treatment Represses Pseudouridine-Containing Small RNA Export into Extracellular Vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575751. [PMID: 38293013 PMCID: PMC10827090 DOI: 10.1101/2024.01.15.575751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
5-fluorouracil (5-FU) has been used for chemotherapy for colorectal and other cancers for over 50 years. The prevailing view of its mechanism of action is inhibition of thymidine synthase leading to defects in DNA replication and repair. However, 5-FU is also incorporated into RNA causing toxicity due to defects in RNA metabolism, inhibition of pseudouridine modification, and altered ribosome function. Here, we examine the impact of 5-FU on the expression and export of small RNAs (sRNAs) into small extracellular vesicles (sEVs). Moreover, we assess the role of 5-FU in regulation of post-transcriptional sRNA modifications (PTxM) using mass spectrometry approaches. EVs are secreted by all cells and contain a variety of proteins and RNAs that can function in cell-cell communication. PTxMs on cellular and extracellular sRNAs provide yet another layer of gene regulation. We found that treatment of the colorectal cancer (CRC) cell line DLD-1 with 5-FU led to surprising differential export of miRNA snRNA, and snoRNA transcripts. Strikingly, 5-FU treatment significantly decreased the levels of pseudouridine on both cellular and secreted EV sRNAs. In contrast, 5-FU exposure led to increased levels of cellular sRNAs containing a variety of methyl-modified bases. Our results suggest that 5-FU exposure leads to altered expression, base modifications, and mislocalization of EV base-modified sRNAs.
Collapse
|
8
|
Nelson H, Qu S, Franklin JL, Liu Q, Pua HH, Vickers KC, Weaver AM, Coffey RJ, Patton JG. Extracellular RNA in oncogenesis, metastasis and drug resistance. RNA Biol 2024; 21:17-31. [PMID: 39107918 PMCID: PMC11639457 DOI: 10.1080/15476286.2024.2385607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/09/2024] [Accepted: 07/24/2024] [Indexed: 08/18/2024] Open
Abstract
Extracellular vesicles and nanoparticles (EVPs) are now recognized as a novel form of cell-cell communication. All cells release a wide array of heterogeneous EVPs with distinct protein, lipid, and RNA content, dependent on the pathophysiological state of the donor cell. The overall cargo content in EVPs is not equivalent to cellular levels, implying a regulated pathway for selection and export. In cancer, release and uptake of EVPs within the tumour microenvironment can influence growth, proliferation, invasiveness, and immune evasion. Secreted EVPs can also have distant, systemic effects that can promote metastasis. Here, we review current knowledge of EVP biogenesis and cargo selection with a focus on the role that extracellular RNA plays in oncogenesis and metastasis. Almost all subtypes of RNA have been identified in EVPs, with miRNAs being the best characterized. We review the roles of specific miRNAs that have been detected in EVPs and that play a role in oncogenesis and metastasis.
Collapse
Affiliation(s)
- Hannah Nelson
- Department of Biological Sciences, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sherman Qu
- Department of Biological Sciences, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jeffrey L. Franklin
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Qi Liu
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, USA
| | - Heather H. Pua
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kasey C. Vickers
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Medicine, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alissa M. Weaver
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Robert J. Coffey
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Medicine, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, USA
| | - James G. Patton
- Department of Biological Sciences, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
9
|
Lin YH. The effects of intracellular and exosomal ncRNAs on cancer progression. Cancer Gene Ther 2023; 30:1587-1597. [PMID: 37884579 DOI: 10.1038/s41417-023-00679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
Altered gene expression as well as mislocalization of a gene's encoded product (proteins or noncoding RNAs (ncRNAs)) can lead to disease and cancer formation. Multiple studies have indicated that exosomes and their contents act as cell-to-cell communicators and play a key role in cancer progression. Moreover, exosomes contain several functional molecules, including ncRNAs. NcRNAs function as master regulators to coordinate cell growth, cell motility and drug resistance. However, intracellular ncRNAs, which can be transferred to recipient cells via exosomes (exosomal ncRNAs), mediate common/distinct downstream molecules, signaling pathways and functions that are less emphasized concepts in cancer development research. In this study, by using exosomes as a model, we comprehensively discuss the current knowledge regarding (1) the functional role of ncRNAs, both their intracellular and exosomal forms, in cancer progression, (2) the possible mechanism of ncRNA incorporation into exosomes and (3) the therapeutic applications and limitations of exosomes based on current knowledge.
Collapse
Affiliation(s)
- Yang-Hsiang Lin
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
10
|
HNRNPA2B1-Mediated MicroRNA-92a Upregulation and Section Acts as a Promising Noninvasive Diagnostic Biomarker in Colorectal Cancer. Cancers (Basel) 2023; 15:cancers15051367. [PMID: 36831695 PMCID: PMC9954252 DOI: 10.3390/cancers15051367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
MicroRNA-92a (miR-92a) may serve as a novel promising biomarker in multiple cancers, including colorectal cancer (CRC); however, the diagnostic accuracy and the underlying molecular mechanism of miR-92a in CRC is poorly understood. We first carried out meta-analysis and found that serum/plasma miR-92a yield better diagnostic efficacy when compared to stool samples and CRC tissues, and this finding was validated by our independent study through stool sample. Multiple bioinformatics assay indicated that miR-92a expression was positively correlated with heterogeneous nuclear ribonucleoproteins A2/B1 (HNRNPA2B1) expression and closely related with the clinical characteristics of CRC. Experimental evidence showed that knockdown of HNRNPA2B1 could significantly decrease miR-92a expression and secretion in RKO cells. HNRNPA2B1 mediated miR-92a via m6A RNA modification. These findings indicate that HNRNPA2B1-m6A RNA modification-derived MicroRNA-92a upregulation and section from the local CRC acts a candidate noninvasive serum biomarker in colorectal cancer. Our study provides a novel insight into miR-92a mechanisms in relation to both expression and secretion for CRC diagnosis.
Collapse
|
11
|
Liu WW, Zhang ZY, Wang F, Wang H. Emerging roles of m6A RNA modification in cancer therapeutic resistance. Exp Hematol Oncol 2023; 12:21. [PMID: 36810281 PMCID: PMC9942381 DOI: 10.1186/s40164-023-00386-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/11/2023] [Indexed: 02/23/2023] Open
Abstract
Marvelous advancements have been made in cancer therapies to improve clinical outcomes over the years. However, therapeutic resistance has always been a major difficulty in cancer therapy, with extremely complicated mechanisms remain elusive. N6-methyladenosine (m6A) RNA modification, a hotspot in epigenetics, has gained growing attention as a potential determinant of therapeutic resistance. As the most prevalent RNA modification, m6A is involved in every links of RNA metabolism, including RNA splicing, nuclear export, translation and stability. Three kinds of regulators, "writer" (methyltransferase), "eraser" (demethylase) and "reader" (m6A binding proteins), together orchestrate the dynamic and reversible process of m6A modification. Herein, we primarily reviewed the regulatory mechanisms of m6A in therapeutic resistance, including chemotherapy, targeted therapy, radiotherapy and immunotherapy. Then we discussed the clinical potential of m6A modification to overcome resistance and optimize cancer therapy. Additionally, we proposed existing problems in current research and prospects for future research.
Collapse
Affiliation(s)
- Wei-Wei Liu
- grid.59053.3a0000000121679639Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China ,grid.27255.370000 0004 1761 1174School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Zhong-Yuan Zhang
- grid.59053.3a0000000121679639Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fei Wang
- Neurosurgical Department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Hao Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China. .,Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China.
| |
Collapse
|
12
|
Glass SE, Coffey RJ. Recent Advances in the Study of Extracellular Vesicles in Colorectal Cancer. Gastroenterology 2022; 163:1188-1197. [PMID: 35724732 PMCID: PMC9613516 DOI: 10.1053/j.gastro.2022.06.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 12/15/2022]
Abstract
There has been significant progress in the study of extracellular vesicles (EVs) since the 2017 American Gastroenterological Association-sponsored Freston Conference "Extracellular Vesicles: Biology, Translation and Clinical Application in GI Disorders." The burgeoning interest in this field stems from the increasing recognition that EVs represent an understudied form of cell-to-cell communication and contain cargo replete with biomarkers and therapeutic targets. This short review will highlight recent advances in the field, with an emphasis on colorectal cancer. After a brief introduction to secreted particles, we will describe how our laboratory became interested in EVs, which led to refined methods of isolation and identification of 2 secreted nanoparticles. We will then summarize the cargo found in small EVs released from colorectal cancer cells and other cells in the tumor microenvironment, as well as those found in the circulation of patients with colorectal cancer. Finally, we will consider the continuing challenges and future opportunities in this rapidly evolving field.
Collapse
Affiliation(s)
- Sarah E Glass
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
13
|
del Valle-Morales D, Le P, Saviana M, Romano G, Nigita G, Nana-Sinkam P, Acunzo M. The Epitranscriptome in miRNAs: Crosstalk, Detection, and Function in Cancer. Genes (Basel) 2022; 13:1289. [PMID: 35886072 PMCID: PMC9316458 DOI: 10.3390/genes13071289] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023] Open
Abstract
The epitranscriptome encompasses all post-transcriptional modifications that occur on RNAs. These modifications can alter the function and regulation of their RNA targets, which, if dysregulated, result in various diseases and cancers. As with other RNAs, miRNAs are highly modified by epitranscriptomic modifications such as m6A methylation, 2'-O-methylation, m5C methylation, m7G methylation, polyuridine, and A-to-I editing. miRNAs are a class of small non-coding RNAs that regulates gene expression at the post-transcriptional level. miRNAs have gathered high clinical interest due to their role in disease, development, and cancer progression. Epitranscriptomic modifications alter the targeting, regulation, and biogenesis of miRNAs, increasing the complexity of miRNA regulation. In addition, emerging studies have revealed crosstalk between these modifications. In this review, we will summarize the epitranscriptomic modifications-focusing on those relevant to miRNAs-examine the recent crosstalk between these modifications, and give a perspective on how this crosstalk expands the complexity of miRNA biology.
Collapse
Affiliation(s)
- Daniel del Valle-Morales
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (D.d.V.-M.); (P.L.); (M.S.); (G.R.); (P.N.-S.)
| | - Patricia Le
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (D.d.V.-M.); (P.L.); (M.S.); (G.R.); (P.N.-S.)
| | - Michela Saviana
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (D.d.V.-M.); (P.L.); (M.S.); (G.R.); (P.N.-S.)
| | - Giulia Romano
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (D.d.V.-M.); (P.L.); (M.S.); (G.R.); (P.N.-S.)
| | - Giovanni Nigita
- Comprehensive Cancer Center, Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210, USA;
| | - Patrick Nana-Sinkam
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (D.d.V.-M.); (P.L.); (M.S.); (G.R.); (P.N.-S.)
| | - Mario Acunzo
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (D.d.V.-M.); (P.L.); (M.S.); (G.R.); (P.N.-S.)
| |
Collapse
|