1
|
Acquah T, Appiah-Brempong M, Anornu GK. Groundwater quality and associated health risks in the Eastern Region of Ghana. Heliyon 2025; 11:e41910. [PMID: 39897790 PMCID: PMC11786682 DOI: 10.1016/j.heliyon.2025.e41910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 02/04/2025] Open
Abstract
In the Eastern Region of Ghana, 95 % of residents have access to boreholes. However, approximately 30 % of these boreholes are characterized by unpleasurable taste, odour, oily scum and particulate matter. Thus, this study aimed to assess water quality, predict the sources of groundwater contaminants, evaluate the human health risk and to generate spatial distribution and health risk maps. In achieving this, the water quality of 136 boreholes in the region was evaluated through Water Quality Index (WQI) and Groundwater Pollution Index (GPI) analyses. Multivariate statistical procedures, namely, principal component and correlation analyses were employed to define the major groundwater pollutants and their possible sources. Non-carcinogenic health risk to infants, children and adults through nitrates, iron, manganese and fluorides ingestion was also assessed. The results revealed that groundwater in the region is generally slightly acidic with a mean pH of 6.30. WQI analysis grouped 68 % of the groundwater samples under the 'excellent' and 'good' water types with the remaining percent categorized under 'poor', 'very poor' and 'unsafe' drinking water types. GPI analysis classified 95 %, 2.21 % and 2.79 % of the boreholes as 'insignificant', 'low' and 'highly' polluted zones. From the multivariate analyses, the dominant pollutants were iron, manganese, chlorides, sodium, fluorides, potassium, turbidity, total suspended and dissolved solids, hardness, alkalinity, sulphates, nitrates and phosphates. The sources of these contaminants are primarily from rock-water interactions and fertilizers. Health risk assessment for nitrates, fluorides, iron and manganese ingestion revealed that 23, 17 and 15 boreholes in the region are likely to pose non-carcinogenic health risk to infants, children and adults respectively. Health risk maps indicated that the most vulnerable districts were Atiwa East, Fanteakwa North, Achiase, Birim South, Akwapim, Suhum and Ayensuano. From these findings, it is imperative that appropriate groundwater remediation measures are implemented in the region to protect public health.
Collapse
Affiliation(s)
- Thomas Acquah
- Regional Water and Environmental Sanitation Centre, Kumasi, Department of Civil Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Miriam Appiah-Brempong
- Regional Water and Environmental Sanitation Centre, Kumasi, Department of Civil Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Geophrey Kwame Anornu
- Regional Water and Environmental Sanitation Centre, Kumasi, Department of Civil Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
2
|
Patel SK, Shukla SC, Natarajan BR, Asaithambi P, Dwivedi HK, Sharma A, Singh D, Nasim M, Raghuvanshi S, Sharma D, Sen S, Dubey S, Prajapati AK. State of the art review for industrial wastewater treatment by electrocoagulation process: Mechanism, cost and sludge analysis. DESALINATION AND WATER TREATMENT 2025; 321:100915. [DOI: 10.1016/j.dwt.2024.100915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Muñoz-Martinez MX, Macías-Quiroga IF, Sanabria-González NR. Adsorption of Cr(VI) Using Organoclay/Alginate Hydrogel Beads and Their Application to Tannery Effluent. Gels 2024; 10:779. [PMID: 39727537 DOI: 10.3390/gels10120779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
The tanning industry is among the most environmentally harmful activities globally due to the pollution of lakes and rivers from its effluents. Hexavalent chromium, a metal in tannery effluents, has adverse effects on human health and ecosystems, requiring the development of removal techniques. This study assessed the efficacy of organobentonite/alginate hydrogel beads in removing Cr(VI) from a fixed-bed adsorption column system. The synthesized organobentonite (OBent) was encapsulated in alginate, utilizing calcium chloride as a crosslinking agent to generate hydrogel beads. The effects of the volumetric flow rate, bed height, and initial Cr(VI) concentration on a synthetic sample were analyzed in the experiments in fixed-bed columns. The fractal-like modified Thomas model showed a good fit to the experimental data for the asymmetric breakthrough curves, confirmed by the high R2 correlation coefficients and low χ2 values. The application of organoclay/alginate hydrogel beads was confirmed with a wastewater sample from an artisanal tannery industry in Belén (Nariño, Colombia), in which a Cr(VI) removal greater than 99.81% was achieved. Organobentonite/alginate hydrogels offer the additional advantage of being composed of a biodegradable polymer (sodium alginate) and a natural material (bentonite-type clay), resulting in promising adsorbents for the removal of Cr(VI) from aqueous solutions in both synthetic and real water samples.
Collapse
Affiliation(s)
- Mayra X Muñoz-Martinez
- Departamento de Ingeniería Química, Universidad Nacional de Colombia Sede Manizales, Campus La Nubia, km 9 vía al Aeropuerto, Manizales 170003, Colombia
| | - Iván F Macías-Quiroga
- Departamento de Física y Química, Universidad Nacional de Colombia Sede Manizales, Campus La Nubia, km 9 vía al Aeropuerto, Manizales 170003, Colombia
| | - Nancy R Sanabria-González
- Departamento de Ingeniería Química, Universidad Nacional de Colombia Sede Manizales, Campus La Nubia, km 9 vía al Aeropuerto, Manizales 170003, Colombia
| |
Collapse
|
4
|
Morales JJD, Téllez Monzón LA, Nieto RL, Jorge-Montalvo P, Visitación-Figueroa L. Valorization of treated wastewater from the soaking of baby alpaca skin fur. Heliyon 2024; 10:e38247. [PMID: 39364233 PMCID: PMC11447450 DOI: 10.1016/j.heliyon.2024.e38247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/08/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
Baby alpaca fur industry generates considerable wastewater during the soaking process, which contains high levels of total suspended solids (TSSs), proteins, and salts, among other components. The valorization of wastewater after precipitation, coagulation-flocculation, and aeration treatments was evaluated for use in irrigation water, fertigation, groundwater recharge, concrete construction, and disposal. The precipitation treatment sludge and the coagulation-flocculation treatment were evaluated as a protein source, soil quality improvement, and disposal. The treatment system included evaluations of nine pH levels, seven coagulant doses, and seven aeration times. The contents of TSSs, chemical oxygen demand (COD), total Kjeldalh nitrogen (TKN), ammonia nitrogen (N-NH3), and oils and fats (O&G), among other parameters, were determined in the treated and untreated wastewater. Before entering the treatment system, the physicochemical characterization of the wastewater showed a high concentration of parameters related to organic matter and dust, such as O&G, five-day biological oxygen demand (BOD5), COD, TSSs, TKN, and N-NH3. The optimal removal parameters were pH 12 for the chemical precipitation of proteins, a dose of 480 mg/L FeCl3 as a coagulant for TSSs removal, and 150 min of aeration; removal efficiencies of 99.02 %, 77.49 %, 79.93 %, and 64.62 % for TSSs, Cod, TKN, and N-NH3, respectively, were obtained. The wastewater after treatment can be used for groundwater recharge and concrete construction, and the wastewater with 2 % dilution can be used for irrigation water and fertigation. The sludge after precipitation is rich in protein and can be used as a protein source or soil quality improver.
Collapse
Affiliation(s)
- Jacqueline Jannet Dioses Morales
- Center for Research in Chemistry, Toxicology, and Environmental Biotechnology, Department of Chemistry, Faculty of Science, Universidad Nacional Agraria La Molina, 15024, Lima, Peru
| | - Lena Asunción Téllez Monzón
- Center for Research in Chemistry, Toxicology, and Environmental Biotechnology, Department of Chemistry, Faculty of Science, Universidad Nacional Agraria La Molina, 15024, Lima, Peru
| | | | - Paola Jorge-Montalvo
- Center for Research in Chemistry, Toxicology, and Environmental Biotechnology, Department of Chemistry, Faculty of Science, Universidad Nacional Agraria La Molina, 15024, Lima, Peru
| | - Lizardo Visitación-Figueroa
- Center for Research in Chemistry, Toxicology, and Environmental Biotechnology, Department of Chemistry, Faculty of Science, Universidad Nacional Agraria La Molina, 15024, Lima, Peru
| |
Collapse
|
5
|
Hasan MA, Hossain R, Sahajwalla V. Utilization of battery waste derived ZnO in the removal of dye from aqueous solution: A waste to wealth approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120461. [PMID: 38537458 DOI: 10.1016/j.jenvman.2024.120461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/02/2024] [Accepted: 02/20/2024] [Indexed: 04/07/2024]
Abstract
Every year a huge amount of zinc carbon batteries is discarded as waste and the management of such waste has become a growing concern all over the world. However, from these waste carbon batteries different kinds of valuable materials could be recovered. On the other hand, different industries discharged large volumes of dye wastewater into the environment which has a profound impact on environment and as well as human health. In this study, ZnO was recovered from the waste carbon batteries through pyrometallurgy process and utilized it for the treatment of methylene blue and methyl orange dye water. The batch adsorption process was carried out to observe the effect of adsorbent dosage, pH, contact time, stirring speed and temperature. Under the obtained optimal conditions adsorption kinetics (Pseudo-first order and pseudo-second order) and adsorption isotherms (Langmuir, Freundlich and Temkin) were analyzed. The results disclosed that 0.5 g and 0.6 g of ZnO showed maximum removal efficiency for MB and MO dye solution (50 ppm) whereas pH 13 and 6 were the optimal for MB and MO respectively. Kinetic studies indicate that both the adsorption processes were pseudo-second order. It was also revealed that based on regression coefficient R2 value the adsorption of MB and MO on ZnO is followed Langmuir model. Furthermore, the findings revealed that the MO adsorption on ZnO is a chemical adsorption process and MB adsorption is a physical adsorption process.
Collapse
Affiliation(s)
- Md Anik Hasan
- Centre for Sustainable Materials Research and Technology (SMaRT@UNSW), School of Materials Science and Engineering UNSW Sydney, Australia; Department of Leather Engineering, Khulna University of Engineering and Technology (KUET), Khulna, 9203, Bangladesh
| | - Rumana Hossain
- Centre for Sustainable Materials Research and Technology (SMaRT@UNSW), School of Materials Science and Engineering UNSW Sydney, Australia.
| | - Veena Sahajwalla
- Centre for Sustainable Materials Research and Technology (SMaRT@UNSW), School of Materials Science and Engineering UNSW Sydney, Australia
| |
Collapse
|
6
|
Kaur A, Kansal SK. Flower shaped Bi 2O 2.33/Bi 2WO 6 composite: An efficient photocatalyst for degradation of methylene blue from aqueous solution in direct solar light. CHEMOSPHERE 2024; 349:140862. [PMID: 38056720 DOI: 10.1016/j.chemosphere.2023.140862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Herein, we synthesized a Bi2O2.33/Bi2WO6 heterostructure as a platform for the degradation of methylene blue (MB) dye in an aqueous phase. The heterostructure was synthesized by facile ultrasonicated assisted solvothermal method. Various structural, morphological and other techniques such as XRD, FTIR, PL, EIS, UV-DRS, FESEM, HRTEM, XPS, EPR, TGA, BET surface area were used to analyze the characteristics of as-synthesized Bi2O2.33/Bi2WO6. The morphological studies revealed the deposition of Bi2O2.33 flowers in high density on Bi2WO6. Under solar irradiation, 98.6% degradation of MB was achieved in 190 min at optimal conditions (pH = 5, catalyst dose = 0.35 gL-1 and MB concentration = 10 mgL-1). The improved photocatalytic ability of composite in contrast to Bi2O2.33 and Bi2WO6 could be usually ascribed to the interface created between them, assisting the charge transfer. Based on the findings of radical trapping experiments, the charge transfer process over the photocatalyst was completely studied. Additionally, the present heterostructure demonstrated good recyclability over five runs. In nutshell, this study provided a facile approach for synthesizing solar light driven photocatalyst for degradation of methylene blue in aqueous phase and can further explored to be utilized for varied environmental remediation.
Collapse
Affiliation(s)
- Amandeep Kaur
- National Institute of Technical Teachers Training and Research, Sector 26, Chandigarh, 160019, India; Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh, 160014, India
| | - Sushil Kumar Kansal
- Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
7
|
Tewari S, Reshamwala SMS, Bhatt L, Kale RD. Vegan leather: a sustainable reality or a marketing gimmick? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3361-3375. [PMID: 38110677 DOI: 10.1007/s11356-023-31491-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023]
Abstract
The textile industry is the only one which has utilised all kinds of resources available in nature, and the evolution of textile materials has drastically hampered nature as well. Leather and fur are a few of the classic examples of materials derived from animals that have attracted dialogues about animal rights and ethical sourcing. To substitute animal-based leather, numerous materials have been manufactured synthetically and semi-synthetically. This review article discusses various types of leather, viz., bovine leather, poromerics, leatherette, plant-based vegan leather, and the sustainable alternatives available in the market as well as at the inductive research phase. The article is a comprehensive review of the leather and its commercially available alternatives along with their marketing strategy, and technical details. The article also compiles insight into the processing, and the components of vegan leather and the environmental issues related to them. The sustainability and circularity of processing in manufacturing vegan leather have also been discussed, with biodegradability as the focal point.
Collapse
Affiliation(s)
- Srishti Tewari
- Department of Fibers and Textile Processing Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai, 400019, Maharashtra, India
| | | | - Latika Bhatt
- Department of Textile Design, National Institute of Fashion Technology, Bhopal, India
| | - Ravindra D Kale
- Department of Fibers and Textile Processing Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai, 400019, Maharashtra, India.
| |
Collapse
|
8
|
Kaksonen AH, Janneck E. Biological Iron Removal and Recovery from Water and Wastewater. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 190:31-88. [PMID: 38951134 DOI: 10.1007/10_2024_255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Iron is a common contaminant in source water and wastewater. The mining and metallurgical industries in particular can produce and discharge large quantities of wastewater with high iron concentrations. Due to the harmful effects of iron on organisms and infrastructure, efficient technologies for iron removal from water and wastewater are needed. On the other hand, iron is a valuable commodity for a wide range of applications. Microorganisms can facilitate iron removal and recovery through aerobic and anaerobic processes. The most commonly utilized microbes include iron oxidizers that facilitate iron precipitation as jarosites, schwertmannite, ferrihydrite, goethite, and scorodite, and sulfate reducers which produce hydrogen sulfide that precipitates iron as sulfides. Biological iron removal has been explored in various suspended cell and biofilm-based bioreactors that can be configured in parallel or series and integrated with precipitation and settling units for an effective flow sheet. This chapter reviews principles for biological iron removal and recovery, the microorganisms involved, reactor types, patents and examples of laboratory- and pilot-scale studies, and full-scale implementations of the technology.
Collapse
Affiliation(s)
- Anna Henriikka Kaksonen
- Commonwealth Scientific and industrial Research Organisation (CSIRO) Environment, Floreat, WA, Australia.
- Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Faculty of Science and Engineering, Curtin University, Bentley, WA, Australia.
- School of Engineering, University of Western Australia, Crawley, WA, Australia.
| | | |
Collapse
|
9
|
Mahmoud MS, Wang JH, Shen Y, Guo ZW, Yang Y, Zhu DC, Peters RW, Mostafa MK, Mahmoud AS. Performance of the Dual-Chamber Fungal Fuel Cell in Treating Tannery Wastewater. APPLIED SCIENCES 2023; 13:10710. [DOI: 10.3390/app131910710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Fungi are typically expressed as excellent microorganisms that produce extracellular enzymes used in the bioaccumulation phenomenon. In this study, laboratory-scale dual-chamber fungal fuel cells (FFCs) were applied as an alternate approach for the available degradation of complex organic pollutants represented in chemical oxygen demand (COD) and total nitrogen (TN), as well as inorganic pollutants represented as total chromium (Cr), and the generation of bioenergy represented in output voltages (V), power density (PD) and current density (CD), as applied to tannery effluent. Aspergillus niger strain, (A. niger), which makes up 40% of the fungal population in tannery effluent was examined in a training study for efficient hexavalent chromium bioaccumulation, especially in high concentrations. The trained A. niger showed a faster growth rate than the untrained one in broth media containing different loaded chromium concentrations. For an external resistance of 1000 Ω, two FFCs were utilized, one with electrolytic matrices including phosphate buffer solution (PBS) and bicarbonate buffer solution (BBS), and the other without electrolytic matrices, where the energy generation and treatment efficacy of the two dual-chamber FFCs were evaluated for a period of 165 h. At 15 h, the electrolytic FFCs showed a high voltage output of 0.814 V, a power density of 0.097 mW·m−2, and a current density of 0.119 mAm−2 compared to the non-electrolytic FFC. At 165 h, the electrolytic FFCs showed high removal efficiency percentages for COD, TN, and total Cr of up to 77.9%, 94.2%, and 73%, respectively, compared to the non-electrolytic FFC.
Collapse
Affiliation(s)
- Mohamed S. Mahmoud
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
- Housing and Building National Research Center (HBRC), Sanitary and Environmental Institute (SEI), Cairo 12311, Egypt
| | - Jian-Hui Wang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Zhi-Wei Guo
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yan Yang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Dao-Chen Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Robert W. Peters
- Department of Civil, Construction, and Environmental Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mohamed K. Mostafa
- Faculty of Engineering and Technology, Badr University in Cairo (BUC), Badr 11829, Egypt
| | - Ahmed S. Mahmoud
- Scientific Research Development Unit, Egyptian Russian University (ERU), Badr 11829, Egypt
- Institute of Environmental Studies, Arish University, Al Arish 45511, Egypt
| |
Collapse
|
10
|
Fernandez M, Gómez RJ, González PS, Barroso CN, Paisio CE. Sequential application of activated sludge and phytoremediation with aquatic macrophytes on tannery effluents: in search of a complete treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27718-3. [PMID: 37204583 DOI: 10.1007/s11356-023-27718-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/13/2023] [Indexed: 05/20/2023]
Abstract
Tannery effluents with a high organic matter load (indicated by their COD level) have to be treated before they are discharged, so as to minimize their negative impact on the environment. Using field mesocosm systems, this study evaluated the feasibility of treating such effluents through bioaugmentation with activated sludge, followed by phytoremediation with aquatic macrophytes (Lemnoideae subfamily). Regardless of its quality, the activated sludge was able to remove approximately 77% of the COD from effluents with a low initial organic load (up to 1500 mg/L). The macrophytes then enhanced removal (up to 86%), so the final COD values were permissible under the current legislation for effluent discharge. When the initial organic load in the undiluted effluents was higher (around 3000 mg/L), the COD values obtained after consecutive bioaugmentation and phytoremediation were close to the legally allowed limits (583 mg/L), which highlights the potential of phytoremediation as a tertiary treatment. This treatment also brought total coliform counts down to legally acceptable values, without plant biomass decreasing over time. Moreover, the plant biomass remained viable and capable of high COD removal efficiency (around 75%) throughout two additional reuse cycles. These findings indicate that the efficiency of the biological treatments assayed here depends largely on the initial organic load in the tannery effluents. In any case, the sequential application of activated sludge and aquatic macrophytes proved to be a successful alternative for remediation.
Collapse
Affiliation(s)
- Marilina Fernandez
- Departamento de Biología Molecular- FCEFQyN, Universidad Nacional de Río Cuarto, UNRC, 5800 Río Cuarto, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS) CONICET, Río Cuarto, Córdoba, Argentina
| | - Roxana J Gómez
- Departamento de Biología Molecular- FCEFQyN, Universidad Nacional de Río Cuarto, UNRC, 5800 Río Cuarto, Córdoba, Argentina
| | - Paola S González
- Departamento de Biología Molecular- FCEFQyN, Universidad Nacional de Río Cuarto, UNRC, 5800 Río Cuarto, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS) CONICET, Río Cuarto, Córdoba, Argentina
| | - Cintia N Barroso
- Departamento de Biología Molecular- FCEFQyN, Universidad Nacional de Río Cuarto, UNRC, 5800 Río Cuarto, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS) CONICET, Río Cuarto, Córdoba, Argentina
| | - Cintia E Paisio
- Departamento de Biología Molecular- FCEFQyN, Universidad Nacional de Río Cuarto, UNRC, 5800 Río Cuarto, Córdoba, Argentina.
- Instituto de Biotecnología Ambiental y Salud (INBIAS) CONICET, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
11
|
Islam S, Kamila S, Chattopadhyay A. Toxic and carcinogenic effects of hexavalent chromium in mammalian cells in vivo and in vitro: a recent update. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2023; 40:282-315. [PMID: 36728911 DOI: 10.1080/26896583.2022.2158675] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chromium VI (Cr (VI)) can cross cell membranes readily and causes the formation of Cr-DNA adducts, genomic damages, elevation of reactive oxygen species (ROS) and alteration of survival signaling pathways, as evidenced by the modulation in p53 signaling pathway. Mammals, including humans are exposed to Cr, including Cr (VI), frequently through inhalation, drinking water, and food. Several studies demonstrated that Cr (VI) induces cellular death through apoptosis and autophagy, genotoxicity, functional alteration of mitochondria, endocrine and reproductive impairments. In the present review, studies on deleterious effects of Cr (VI) exposure to mammalian cells (in vivo and in vitro) have been documented. Special attention is paid to the underlying molecular mechanism of Cr (VI) toxicity.
Collapse
Affiliation(s)
- Shehnaz Islam
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, India
| | - Sreejata Kamila
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, India
| | | |
Collapse
|
12
|
Sounderarajan S, Puchalapalli DSR, Ayothiraman S. Effect of synthetic fatty liquor and neatsfoot oil as co-contaminants on the reduction of hexavalent chromium using Fusarium oxysporum and its kinetic study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86427-86438. [PMID: 35639327 DOI: 10.1007/s11356-022-21080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
The hexavalent chromium is one of the major carcinogenic components released during the tanning process and lots of work have been carried out on the reduction of hexavalent chromium via chemical and biological routes. Different fatty oils are also employed in the tanning process and have also been released as an effluent along with chromium. However, it is difficult to find a study on the reduction of chromium in the presence of other contaminant which would help to mimic the real-time complication of treating the tannery effluent. It is the first attempt on the reduction of hexavalent chromium in the presence of synthetic fatty liquor and neatsfoot oil using Fusarium oxysporum. The maximum percentage of chromium reduction was 73.62% and 60.28% in neatsfoot oil and synthetic fatty oil, respectively, for the initial chromium concentration of 25 mg/L. The biomass productivity was better with both neatsfoot oil and synthetic fatty oil, whereas the same has decreased with the presence of chromium. The reduction of chromium was found to follow the uncompetitive substrate inhibition kinetics than the general Michaelis-Menten kinetics. The kinetic parameters were calculated using particle swarm optimization algorithm, which were compared with the already reported data. The uncompetitive substrate inhibition kinetics was represented the experimental data in both the cases and the value of substrate inhibition constant was low in the case of neatsfoot oil compared with the synthetic fatty liquor.
Collapse
Affiliation(s)
- Sathieesh Sounderarajan
- Department of Chemical Engineering, National Institute of Technology Andhra Pradesh, West Godavari District, Tadepalligudem, Andhra Pradesh, 534101, India
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, West Godavari District, Tadepalligudem, Andhra Pradesh, 534101, India
| | - Dinesh Sankar Reddy Puchalapalli
- Department of Chemical Engineering, National Institute of Technology Andhra Pradesh, West Godavari District, Tadepalligudem, Andhra Pradesh, 534101, India
| | - Seenivasan Ayothiraman
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, West Godavari District, Tadepalligudem, Andhra Pradesh, 534101, India.
| |
Collapse
|
13
|
Katiyar A, Bhaskar M, Singh A, Sharma D, Abhishek A, Garg V. Phytoremediation of chromium, iron and nickel by Indian Rice Plant (Oryza sativa L.): An opportunity for management of multi-metal contaminated tannery wastewaterPhytoremediation of chromium, iron and nickel by Indian Rice Plant (Oryza sativa L.): An opportunity for management of multi-metal contaminated tannery wastewater. JOURNAL OF EXPERIMENTAL BIOLOGY AND AGRICULTURAL SCIENCES 2022; 10:511-523. [DOI: 10.18006/2022.10(3).511.523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
India is the largest producer of leather and leather products. Tannery industries use a large number of synthetic chemicals for the processing of leather and generate a huge amount of wastewater containing a large amount of potentially toxic heavy metals (PTHMs) making them problematic for next-door soil and water system. Currently, phytoremediation is an inexpensive green technology used to move, eradicate, and stabilized heavy metal contamination from contaminated sludge, soil, and wastewater. In this study, the accumulation and distribution of PTHMs found in tannery wastewater and their physio-biochemical effects on Oryza sativa L. have been studied by ICP-MS, GC-MS, and biochemical analysis. The plant was grown in the soil spiked with a mixture of metals (Cr, Fe and Ni) and their five-level of treatment T1 (25mg/kg); T2 (50mg/kg); T3 (100mg/kg); T4 (200mg/kg) and T5 (400mg/kg). During the experiments, various morphological attributes, oxidative stress, enzymatic activities, chlorophyll, and protein content at the different stage was measured. Further, metal accumulation pattern in different parts of plants was also measured. Results of the study revealed that plant root, shoot length, chlorophyll content, and enzymatic activities were significantly reduced after the treatment with 200 mg/kg PTHMs; whereas oxidative stress was increase compared to control levels. Further, treatment of PTHMs suggested that the rice plant (Oryza sativa L.) is well adapted to tolerate and accumulate a high level of heavy metals (up to 200mg/kg) in the root and shoot of the treated plants. If it is treated above this, then seeds were also affected and not safe for human consumption.
Collapse
|