1
|
Jankovská I, Karešová V, Michlová T, Kunc P, Knížková I, Zárybnická M, Langrová I. Effect of Pregnancy on Mercury Concentration in the Body of Free-living Small Rodents. J Wildl Dis 2024; 60:970-973. [PMID: 39150752 DOI: 10.7589/jwd-d-23-00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/22/2024] [Indexed: 08/17/2024]
Abstract
Relatively little information exists on the effects of mercury on terrestrial wildlife populations. We analyzed 38 free-living small rodent females (Myodes glareolus, Microtus agrestris, and Apodemus flavicolis), of which 11 were pregnant, for total mercury concentrations in combined liver and kidney samples. Using a single-purpose atomic absorption spectrometer for mercury determination, the measured mercury values ranged from 0.006 to 0.079 mg/kg. Pregnant females had significantly (P<0.041) higher mercury levels in liver and kidney than did nonpregnant females. Our results suggest that during mercury biomonitoring studies it is necessary to consider the pregnancy of the analyzed animals.
Collapse
Affiliation(s)
- Ivana Jankovská
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00, Czech Republic
| | - Veronika Karešová
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00, Czech Republic
| | - Tereza Michlová
- Department of Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00, Czech Republic
| | - Petr Kunc
- Institute of Animal Science, Přátelství 815; 104 00 Prague-Uhříněves, Czech Republic
| | - Ivana Knížková
- Institute of Animal Science, Přátelství 815; 104 00 Prague-Uhříněves, Czech Republic
| | - Markéta Zárybnická
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00, Czech Republic
| | - Iva Langrová
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00, Czech Republic
| |
Collapse
|
2
|
Savoca MS, Robuck AR, Cashman MA, Cantwell MG, Agvent LC, Wiley DN, Rice R, Todd S, Hunter NE, Robbins J, Goldbogen JA, Lohmann R. Whale baleen to monitor per- and polyfluoroalkyl substances (PFAS) in marine environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:862-870. [PMID: 39959431 PMCID: PMC11824945 DOI: 10.1021/acs.estlett.4c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) comprise > 10,000 synthetic compounds that are globally distributed and highly persistent but remain challenging to monitor. Here we assess the utility of baleen-an accreting, keratinaceous tissue that baleen whales use for filter-feeding-to track PFAS dynamics in marine food webs. In six species investigated, PFAS were detected in all baleen tested (n = 18 plates, 220 samples, Σ10PFAS range 0.02 - 60.5 ng/g dry weight), higher than other tissue types besides liver. Three of the species in our dataset had not been tested for PFAS-contamination previously and two of those species-blue whale and North Atlantic right whale-are endangered species internationally. Apparent links were observed between PFAS and life-history events by testing successive subsamples along the growth axis of the baleen plates. These results establish baleen as a viable sample matrix for assessing PFAS contamination in marine ecosystems by enabling multiyear time-series analyses through single-tissue sampling with seasonal resolution.
Collapse
Affiliation(s)
- Matthew S. Savoca
- Department of Oceans, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950
| | - Anna R. Robuck
- US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, RI 02882
- University of Rhode Island Graduate School of Oceanography, Narragansett, RI 02882
| | - Michaela A. Cashman
- US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, RI 02882
| | - Mark G. Cantwell
- US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, RI 02882
| | - Lindsay C. Agvent
- University of Rhode Island Graduate School of Oceanography, Narragansett, RI 02882
| | - David N. Wiley
- National Oceanic and Atmospheric Administration, Stellwagen Bank National Marine Sanctuary, Scituate, MA 02066
| | - Rachel Rice
- College of the Atlantic, Bar Harbor, ME 04609
| | - Sean Todd
- College of the Atlantic, Bar Harbor, ME 04609
| | | | | | - Jeremy A. Goldbogen
- Department of Oceans, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950
| | - Rainer Lohmann
- University of Rhode Island Graduate School of Oceanography, Narragansett, RI 02882
| |
Collapse
|
3
|
Fernández Ajó A, Teixeira C, M D de Mello D, Dillon D, Rice JM, Buck CL, Hunt KE, Rogers MC, Torres LG. A longitudinal study of endocrinology and foraging ecology of subadult gray whales prior to death based on baleen analysis. Gen Comp Endocrinol 2024; 352:114492. [PMID: 38479678 DOI: 10.1016/j.ygcen.2024.114492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
Individual-level assessments of wild animal health, vital rates, and foraging ecology are critical for understanding population-wide impacts of exposure to stressors. Large whales face multiple stressors, including, but not limited to, ocean noise, pollution, and ship strikes. Because baleen is a continuously growing keratinized structure, serial extraction, and quantification of hormones and stable isotopes along the length of baleen provide a historical record of whale physiology and foraging ecology. Furthermore, baleen analysis enables the investigation of dead specimens, even decades later, allowing comparisons between historic and modern populations. Here, we examined baleen of five sub-adult gray whales and observed distinct patterns of oscillations in δ15N values along the length of their baleen plates which enabled estimation of baleen growth rates and differentiation of isotopic niche widths of the whales during wintering and summer foraging. In contrast, no regular patterns were apparent in δ13C values. Prolonged elevation of cortisol in four individuals before death indicates that chronic stress may have impacted their health and survival. Triiodothyronine (T3) increased over months in the whales with unknown causes of death, simultaneous with elevations in cortisol, but both hormones remained stable in the one case of acute death attributed to killer whale predation. This parallel elevation of cortisol and T3 challenges the classic understanding of their interaction and might relate to increased energetic demands during exposure to stressors. Reproductive hormone profiles in subadults did not show cyclical trends, suggesting they had not yet reached sexual maturity. This study highlights the potential of baleen analysis to retrospectively assess gray whales' physiological status, exposure to stressors, reproductive status, and foraging ecology in the months or years leading up to their death, which can be a useful tool for conservation diagnostics to mitigate unusual mortality events.
Collapse
Affiliation(s)
- Alejandro Fernández Ajó
- Geospatial Ecology of Marine Megafauna Lab, Marine Mammal Institute, Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, Newport 97365, OR, USA.
| | - Clarissa Teixeira
- Marine Mammal Institute, Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, Newport 97365, OR, USA
| | - Daniela M D de Mello
- Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo 05508090, SP, Brazil
| | - Danielle Dillon
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - James M Rice
- Oregon Marine Mammal Stranding Network, Marine Mammal Institute, Oregon State University, Newport 97365, OR, USA
| | - C Loren Buck
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Kathleen E Hunt
- George Mason University & Smithsonian-Mason School of Conservation, 1500 Remount Rd, Front Royal, VA 22630, USA
| | - Matthew C Rogers
- NOAA, National Marine Fisheries Service, Alaska Fisheries Science Center Auke Bay Laboratories, Juneau, AK 99801, USA
| | - Leigh G Torres
- Geospatial Ecology of Marine Megafauna Lab, Marine Mammal Institute, Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, Newport 97365, OR, USA
| |
Collapse
|
4
|
Cheeseman T, Southerland K, Acebes JM, Audley K, Barlow J, Bejder L, Birdsall C, Bradford AL, Byington JK, Calambokidis J, Cartwright R, Cedarleaf J, Chavez AJG, Currie JJ, De Weerdt J, Doe N, Doniol-Valcroze T, Dracott K, Filatova O, Finn R, Flynn K, Ford JKB, Frisch-Jordán A, Gabriele CM, Goodwin B, Hayslip C, Hildering J, Hill MC, Jacobsen JK, Jiménez-López ME, Jones M, Kobayashi N, Lyman E, Malleson M, Mamaev E, Martínez Loustalot P, Masterman A, Matkin C, McMillan CJ, Moore JE, Moran JR, Neilson JL, Newell H, Okabe H, Olio M, Pack AA, Palacios DM, Pearson HC, Quintana-Rizzo E, Ramírez Barragán RF, Ransome N, Rosales-Nanduca H, Sharpe F, Shaw T, Stack SH, Staniland I, Straley J, Szabo A, Teerlink S, Titova O, Urban R J, van Aswegen M, de Morais MV, von Ziegesar O, Witteveen B, Wray J, Yano KM, Zwiefelhofer D, Clapham P. A collaborative and near-comprehensive North Pacific humpback whale photo-ID dataset. Sci Rep 2023; 13:10237. [PMID: 37353581 PMCID: PMC10290149 DOI: 10.1038/s41598-023-36928-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/12/2023] [Indexed: 06/25/2023] Open
Abstract
We present an ocean-basin-scale dataset that includes tail fluke photographic identification (photo-ID) and encounter data for most living individual humpback whales (Megaptera novaeangliae) in the North Pacific Ocean. The dataset was built through a broad collaboration combining 39 separate curated photo-ID catalogs, supplemented with community science data. Data from throughout the North Pacific were aggregated into 13 regions, including six breeding regions, six feeding regions, and one migratory corridor. All images were compared with minimal pre-processing using a recently developed image recognition algorithm based on machine learning through artificial intelligence; this system is capable of rapidly detecting matches between individuals with an estimated 97-99% accuracy. For the 2001-2021 study period, a total of 27,956 unique individuals were documented in 157,350 encounters. Each individual was encountered, on average, in 5.6 sampling periods (i.e., breeding and feeding seasons), with an annual average of 87% of whales encountered in more than one season. The combined dataset and image recognition tool represents a living and accessible resource for collaborative, basin-wide studies of a keystone marine mammal in a time of rapid ecological change.
Collapse
Affiliation(s)
- Ted Cheeseman
- Happywhale, Santa Cruz, California, USA.
- Southern Cross University, Lismore, NSW, Australia.
| | | | | | | | - Jay Barlow
- NOAA Southwest Fisheries Science Center, San Diego, California, USA
| | - Lars Bejder
- Hawai'i Institute of Marine Biology, University of Hawai'i at Manoa, Kaneohe, Hawai'i, USA
| | - Caitlin Birdsall
- Marine Education and Research Society, Port McNeill, British Columbia, Canada
- Ocean Wise, Vancouver, British Columbia, Canada
| | - Amanda L Bradford
- NOAA Fisheries Pacific Islands Fisheries Science Center, Honolulu, Hawai'i, USA
| | - Josie K Byington
- Pacific Wildlife Foundation, Port Moody, British Columbia, Canada
| | | | | | | | | | | | | | - Nicole Doe
- Marine Education and Research Society, Port McNeill, British Columbia, Canada
| | | | - Karina Dracott
- Ocean Wise, Vancouver, British Columbia, Canada
- North Coast Cetacean Society, Hartley Bay, British Columbia, Canada
| | | | - Rachel Finn
- NOAA Hawaiian Islands Humpback Whale National Marine Sanctuary, Kihei, Maui, Hawaii, USA
| | | | - John K B Ford
- Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | | | - Christine M Gabriele
- Glacier Bay National Park and Preserve, Gustavus, Alaska, USA
- Hawai'i Marine Mammal Consortium, Kamuela, Hawai'i, USA
| | - Beth Goodwin
- Eye of the Whale Marine Mammal Research, Kamuela, Hawai'i, USA
| | - Craig Hayslip
- Marine Mammal Institute, Oregon State University, Newport, Oregon, USA
| | - Jackie Hildering
- Marine Education and Research Society, Port McNeill, British Columbia, Canada
| | - Marie C Hill
- NOAA Fisheries Pacific Islands Fisheries Science Center, Honolulu, Hawai'i, USA
- Cooperative Institution of Marine and Atmospheric Research, Research Corporation of the University of Hawai'i, Honolulu, Hawai'i, USA
| | | | - M Esther Jiménez-López
- Departamento Académico de Ingeniería en Pesquerías, Universidad Autónoma de Baja California Sur, La Paz, Baja California Sur, México
| | | | | | - Edward Lyman
- NOAA Hawaiian Islands Humpback Whale National Marine Sanctuary, Kihei, Maui, Hawaii, USA
| | - Mark Malleson
- Humpback Whales of the Salish Sea, Duncan, British Columbia, Canada
| | - Evgeny Mamaev
- Commander Islands National Park, Kamchatka Krai, Russian Federation
| | | | | | | | - Christie J McMillan
- Marine Education and Research Society, Port McNeill, British Columbia, Canada
- Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | - Jeff E Moore
- NOAA Southwest Fisheries Science Center, San Diego, California, USA
| | - John R Moran
- NOAA Alaska Fisheries Science Center, Juneau, Alaska, USA
| | - Janet L Neilson
- Glacier Bay National Park and Preserve, Gustavus, Alaska, USA
| | | | - Haruna Okabe
- Okinawa Churashima Foundation, Kunigami-gun, Japan
| | | | - Adam A Pack
- University of Hawai'i at Hilo, Hilo, Hawai'i, USA
- The Dolphin Institute, Hilo, Hawai'i, USA
| | - Daniel M Palacios
- Marine Mammal Institute, Oregon State University, Newport, Oregon, USA
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Newport, Oregon, USA
| | | | | | | | | | - Hiram Rosales-Nanduca
- Departamento Académico de Ingeniería en Pesquerías, Universidad Autónoma de Baja California Sur, La Paz, Baja California Sur, México
| | - Fred Sharpe
- Alaska Whale Foundation, Petersburg, Alaska, USA
| | - Tasli Shaw
- Humpback Whales of the Salish Sea, Duncan, British Columbia, Canada
| | | | | | - Jan Straley
- University of Alaska Southeast, Juneau, Alaska, USA
| | - Andrew Szabo
- Alaska Whale Foundation, Petersburg, Alaska, USA
| | - Suzie Teerlink
- NOAA Fisheries Alaska Regional Office, Juneau, Alaska, USA
| | - Olga Titova
- Severtsov Institute of Ecology and Evolution, Moscow, Russian Federation
| | - Jorge Urban R
- Universidad Autónoma de Baja California Sur, La Paz, Mexico
| | | | | | | | | | - Janie Wray
- North Coast Cetacean Society, Hartley Bay, British Columbia, Canada
| | - Kymberly M Yano
- NOAA Fisheries Pacific Islands Fisheries Science Center, Honolulu, Hawai'i, USA
- Cooperative Institution of Marine and Atmospheric Research, Research Corporation of the University of Hawai'i, Honolulu, Hawai'i, USA
| | | | - Phil Clapham
- Seastar Scientific, Vashon Island, Washington, USA
| |
Collapse
|
5
|
Dillon D, Witten PE, Buck CL. Evaluating Dermal Bone as a Novel Source of Endocrine Information in Ninespine and Threespine Stickleback Fish. Integr Org Biol 2023; 5:obad007. [PMID: 36937455 PMCID: PMC10019498 DOI: 10.1093/iob/obad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/01/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Monitoring the physiology of small aquatic and marine teleost fish presents challenges. Blood samples, often the first choice for endocrinologists, can be difficult or even impossible to obtain and alternative matrices currently used for hormone analyses do not occur in fishes (e.g., hair, feathers etc.) or are not easily collected from small aquatic organisms (e.g., urine and feces). Some teleosts, however, have enlarged bony dermal elements that possibly accumulate and store steroid hormones in physiological relevant concentrations. Both threespine stickleback (Gasterosteus aculeatus) and ninespine stickleback (Pungitius pungitius) have a series of external, lateral bony plates, dorsal spines, and a pair of pelvic spines attached to the pelvic girdle. We investigated if cortisol, the primary circulating glucocorticoid in teleosts, could be extracted from stickleback dermal bone and quantified using a commercially available enzyme immunoassay (EIA). We successfully validated a cortisol EIA for dermal bone extracts, determined that cortisol was detectable in both species, and found that dermal bone cortisol levels significantly correlated with cortisol levels in whole body homogenate. Ninespine stickleback had significantly higher dermal bone cortisol concentrations than threespine stickleback and female threespine stickleback tended to have over twice the mean dermal bone cortisol concentration than males. Because both stickleback species are widely used for ecotoxicological studies, using dermal bone as a source of endocrine information, while leaving the body for contaminant, genomic, histological, and stable isotope analyses, could be a powerful and parsimonious tool. Further investigation and physiological validations are necessary to fully understand the utility of this new sample matrix.
Collapse
Affiliation(s)
- D Dillon
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| | - P E Witten
- Research Group Evolutionary Developmental Biology, Ghent University, Ledeganckstraat 35, 9000 Ghent, Belgium
| | - C L Buck
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| |
Collapse
|